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The processes of propagation and damping of spin waves in
magnetic materials with periodically modulated parameters of
uniaxial magnetic anisotropy, exchange interaction, and saturation
magnetization have been studied theoretically. The influence of
damping on the coefficient of bulk spin wave reflection from the
uniaxial ferromagnetic multilayer structure has been studied. The
dependences of the reflection amplitude on a wave frequency,
thickness of one of the layers, and damping parameter have been
investigated.

1. Introduction

In view of the peculiar properties characteristic of
multilayers and exciting prospects of their practical
applications, the investigation of multilayer magnetic
materials has attracted a great interest of researchers in
recent decades. On the one hand, this interest is brought
about by the necessity of both the transition to more
compact electronic devices and the operation in the high-
frequency range. On the other hand, it is caused by a
specific character of the wave propagation in multilayer
structures. Works [1–3] were aimed at the investigation
of the spectrum of bulk spin waves and their reflection
from an infinite uniaxial magnetic mulilayer structure
under the assumption about ideal exchange boundary
conditions without regard for a damping. More recent
papers devoted to the problem of the spin wave

Fig. 1. Illustration of a change of the parameters of exchange
interaction α, uniaxial anisotropy β, and saturation magnetization
M0 along the multilayer structure

propagation in multilayer systems have tended to turn
from the studies of idealized structures to the models
which are much closer to real magnetics. For this reason,
it is important to account for the effect of the spin
wave damping on the processes which occur in the
multilayer structures [4, 5]. The present paper considers
the influence of a weak damping on the coefficient of spin
wave reflection from a uniaxial multilayer ferromagnet.

2. Statement of the Problem

Consider a system which consists of three parts, whose
contact planes are parallel to the yz plane. The first and
the third (along the x direction) components are the
homogeneous uniaxial semiinfinite ferromagnets. The
slice between them is an N -layered ferromagnet with the
modulated constants of exchange interaction α, uniaxial
magnetic anisotropy β, and saturation magnetization
M0. The layers are parallel to the yz plane, and their
thicknesses are equal to a and b, respectively. The
quantities α, β, η, and M0 take the values α1, β1, η1,
M01 and α2, β2, η2, M02 for the corresponding layers, as
shown in Fig. 1. An easy axis is parallel to the direction
of the external homogeneous magnetic field H0 and the
z axis. Let us calculate the coefficient of spin wave
reflection from this structure.

3. Main Equations

We utilize the spin density formalism [6], according to
which the magnetization can be presented in the form

Mj (r, t) = M0jΨ+
j (r, t)σΨj (r, t) , j = 1, 2, (1)

where Ψj are the quasiclassical wave functions which
play the role of order parameter for the spin density, r
is the radius-vector of the Cartesian coordinate system,
t is time, and σ are the Pauli matrices.
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Lagrange’s equations for Ψj have the form

i~
∂Ψj (r, t)

∂t
= −µ0Hej (r, t)σΨj (r, t)+

+
ηj~
2

∂(Ψ+
j (r, t)σΨj (r, t))

∂t
σΨj (r, t), (2)

where µ0 is the Bohr magneton, ~ is the Planck constant,
ηj is the damping parameter in the Gilbert form.
Hej = − ∂wj

∂Mj
+ ∂

∂xk

∂wj

∂(∂Mj/∂xk)
, wj is the energy density.

It is noteworthy that, in the exchange approximation
provided that L >> l = a + b, where L is the
characteristic length of a material, the energy density
for each of the homogeneous layers can be written as

wj =
αj

2

(
∂mj

∂xk

)2

+
βj

2
(
m2

jx+m2
jy

)−H0Mjz, j = 1, 2.

(3)

Here, the facts are taken into account that, in
the basic state, the magnetization is parallel to ez,
M2

j (r, t) = const, and Mj (r, t) = M0jez + mj (r, t),
where mj (r, t) is a small correction term. Then, by using
the linear perturbation theory, a solution of (2) can be
written as

Ψj (r, t) = exp(iµ0H0t/~)
(

1
χj(r, t)

)
, (4)

where χj(r, t) is a small addition which characterizes a
deviation of the magnetization from that of the basic
state. By linearizing Eq. (2) with regard for (4) and
carrying out the Fourier transformation with respect to
the time and coordinates, we obtain
(

αj
d2

dx2
+ Ωj−αjk

2
⊥−βj − H̃0j +iηjΩj

)
χjω,k⊥(x) = 0,

(5)

where H̃0j =H0/M0j , Ωj = ω~/2µ0M0j , ω is the
frequency, k⊥ = (0, ky, kz), j = 1, 2, and χjω,k⊥ is the
Fourier transform of the function χj(r, t).

By analogy with [7], the amplitude of the spin wave
reflection from the multilayer structure consisting of N
layers can be presented in the form

RN = R
1− exp(2iqlN)

1−R2 exp(2iqlN)
, (6)

where R is the amplitude of the reflection from the
semiinfinite multilayer structure (N = ∞),

R =

√
(ρ + 1)2 − τ2 −

√
(ρ− 1)2 − τ2

√
(ρ + 1)2 − τ2 +

√
(ρ− 1)2 − τ2

, (7)

q is the Bloch quasiwave vector which is determined from
the equation

exp(iqlN) =

√
(τ + 1)2 − ρ2 +

√
(τ − 1)2 − ρ2

√
(τ + 1)2 − ρ2 −

√
(τ − 1)2 − ρ2

, (8)

l = a + b is the period of the structure; ρ and τ are
the complex amplitudes of reflection and transmission,
respectively, for the symmetric (relative to its center)
unit period.

From these expressions, using the known methods
of quantum mechanics with regard for formula (5), one
can find the reflection and transmission amplitudes for
a single period.

4. Boundary Conditions

Equation (5) describes the magnetization dynamics in
the exchange approximation. Its solution should be
continuous and have a continuous derivative ∂χω,k⊥ (x)

∂x .
The boundary conditions will have the form (indices ω
and k⊥ are omitted):

χ1 (x0 − 0) = χ2 (x0 + 0) ,

α1χ
′
1 (x0 − 0) = α2χ

′
2 (x0 + 0) . (9)

5. Reflection and Transmission Amplitudes for
a Single Period

We represent the incident, reflected, and transmitted
waves in (5) as χI = exp

([
ik+

1 − k−1
]
x
)
, χρ =

ρ exp
(−[

ik+
1 − k−1

]
x
)
, and χτ = τ exp

([
ik+

1 − k−1
]
x
)
,

respectively. Substituting these expressions into
(9) with regard for the expression χlayer =
C1 exp

([
ik+

2 − k−2
]
x
)

+ C2 exp
(−[

ik+
2 − k−2

]
x
)

which
describes a wave in the intermediate layer, we find the
expressions for the amplitudes of the spin wave reflection
and transmission for each of the boundaries of the single
period:

ρ = exp
(
ik+

1 b
) · exp

(−k−1 b
) E−F−

GE+ − F+E−
,

τ = exp
(−ik+

1 a
) · exp

(
k−1 a

) 2G

GE+ − F+E−
, (10)
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where

G = 2α1α2

(
ik+

1 − k−1
) (

ik+
2 − k−2

)
,

F± = α2
1

(
ik+

1 − k−1
)2 ± α2

2

(
ik+

2 − k−2
)2

E± = e(ik+
2 −k−2 )a ± e−(ik+

2 −k−2 )a,

k±j =

√(
±mj +

√
m2

j + n2
j

)
/2,

mj =
(
Ωj − βj − αjk

2
⊥ − H̃0j

)
/αj , nj = ηjΩj/αj .

6. Reflection and Transmission Amplitudes for
a Multilayer Structure

With the use of expressions (10), Eq. (7) can be rewritten
as

R =

√
A+A− −

√
B+B−√

A+A− +
√

B+B−
, (11)

where

A± = q+ [p− cos (u2a) + ip+ sin (u2a)]+

+2g+ [p+ sin (u2a)− ip− cos (u2a)]−

−2α1α2

(
^
y

[
p+ cos (u2a) + ip− sin (u2a)

]
+

+
_
y [p− sin (u2a)− ip+ cos (u2a)]

)
−

− exp (−ν1b)
[
q−p− cos (u2a) + 2g−p+ sin (u2a)

]×

× [cos (u1b) + i sin (u1b)] + exp (−ν1b)
[
q−p+ sin (u2a)+

+2g−p− cos (u2a)
]
· [sin (u1b)− i cos (u1b)]∓

∓4α1α2 exp (−ν1b)
{[

^
y − i

_
y
]
cos (u1a)−

−
[

_
y − i

^
y
]
sin (u1a)

}
,

B± = −q+ [p− cos (u2a) + ip+ sin (u2a)]− 2g+×

× [p+ sin (u2a)−ip− cos (u2a)]−2α1α2

(
^
y

[
p+ cos (u2a)+

+ip− sin (u2a)
]

+
_
y [p− sin (u2a)− ip+ cos (u2a)]

)
−

− exp (−ν1b)
[
q−p− cos (u2a) + 2g−p+ sin (u2a)

]×

× [cos (u1b) + i sin (u1b)] + exp (−ν1b)
[
q−p+ sin (u2a) +

+2g−p− cos (u2a)
]
· [sin (u1b)− i cos (u1b)]∓ 4α1α2×

× exp (−ν1b)
{[

^
y−i

_
y
]
cos (u1a)−

[
_
y−i

^
y
]
sin (u1a)

}
,

p± =
1± exp(2ν2a)

exp(2ν2a)
, q± = α2

2

[
ν2
2 − u

2

2

]
± α2

1

[
ν2
1 − u

2

1

]
,

g± = α2
1u1ν1 ± α2

2u2ν2,
^
y = ν1ν2 − u1u2,

_
y = u1ν2 + u2ν1, uj = k+

j , νj = k−j .

As was noted above, the reflection amplitude for the
multilayer structure consisting of N layers is determined
by expression (6).

7. Discussion of Results

All the calculations will be carried out under the
assumption that the Gilbert damping parameters are
the same for both layers, η1 = η2 = η, and the
value of the external permanent magnetic field is
fixed and equals H0. Figure 2 shows the plots of the
frequency dependences of the reflection amplitude from
the multilayer structure calculated in the cases where η
takes two values, 0 and 0.003, as it is typical of ferrite-
garnets. Figure 3 depicts the dependences of the
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Fig. 2. Frequency dependences of the amplitude of reflection from the multilayer structure calculated for two values of damping
parameters. The plots are referred to the case of a normal wave incidence on the periodic structure with the following parameters:
α1 = α2 = 2× 10−11m2, β1 = 20, β2 = 100, H0 = 1000 Oe, M01 = 90 Gs, M02 = 95 Gs, a=3.8 µm, b=0.2µm

Fig. 3. Dependence of the reflection amplitude on a layer thickness for ω = 5.8× 1011 s−1 and L = a + b = 4 µm. All other parameters
are the same as in Fig. 2

reflection amplitude |R| on a thickness a of one of the
layers, provided that the values of the structure period
l and wave frequency ω are fixed. It is seen that the
amplitude of a reflected wave strongly depends on the
frequency and the ratio between the layer thicknesses. It
should be stressed that a profound characteristic of both
the figures is the presence of periodically repeated points
which correspond to a complete transmission of a wave
through the multilayer magnet. It is noteworthy that the
idealized case η = 0 corresponds to such parameters of
the actual structure where η is small enough, so that it
can be neglected.

It should also be noted that, as seen from Fig. 4,
an increase in η results in the enhancement of the total

damping, which, in turn, leads to a decrease in the
reflection amplitude.

8. Conclusions

In summary, the reflectivity of the multilayer structure
under study displays the periodic dependence on the
frequency and the ratio between the thicknesses of
layers. What is more, the account for the damping
essentially affects the features of the spin wave reflection
from the multilayer structure and qualitatively changes
the characteristic parts of the curves which illustrate the
dependences of the reflection amplitude on the frequency
and the layer thickness. As for the future prospects of
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Fig. 4. Dependence of the reflection amplitude on a value of
the Gilbert damping parameter for the structure with the same
parameters as used for the plots in Fig. 2

developing the problems outlined in this paper, it is of
interest to combine the obtained results with the data
on the field dependence of the coefficient of spin wave
reflection from the multilayer structures under study,
which will make it possible to create a complex approach
applicable to the design of spin wave devices.
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ВIДБИТТЯ ТА ЗАГАСАННЯ ОБ’ЄМНИХ СПIНОВИХ
ХВИЛЬ У ОДНОВIСНIЙ БАГАТОШАРОВIЙ
ФЕРОМАГНIТНIЙ СТРУКТУРI

Ю.I. Горобець, С.О. Решетняк, Т.А. Хоменко

Р е з ю м е

Теоретично вивчено процес поширення спiнових хвиль у
магнiтних матерiалах з перiодично модульованими парамет-
рами одновiсної магнiтної анiзотропiї, обмiнної взаємодiї та на-
магнiченостi насичення. Дослiджено вплив слабкого загасання
на коефiцiєнт вiдбиття спiнових хвиль вiд одновiсної багатоша-
рової феромагнiтної структури, а також залежностi коефiцiєн-
та вiдбиття вiд частоти хвилi, товщини одного з шарiв та вiд
параметра загасання.

556 ISSN 0503-1265. Ukr. J. Phys. 2008. V. 53, N 6


