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Electron energy bands in crystalline AlN, GaN, and InN have
been calculated in the framework of the density functional theory
and making use of a mixed basis. In particular, to calculate the
Hamiltonian matrix, the wave functions corresponding to the
Bloch states of core electrons together with the plane waves were
used. The obtained band structure is in better agreement with
experiment than that calculated by the method of a priori atomic
pseudopotentials in the framework of the local density functional
theory.

1. Introduction

Such semiconductors of the A3B5-group as AlN,
GaN, and InN – as well as their alloys – are new
materials intended for applications in high-frequency
optoelectronics and for creation of high-power devices
[1]. The energy gap widths in those crystals and
the alloys on their basis are characterized by values
within the range from 1.9 to 6.2 eV. Although modern
spectroscopic methods have been applied since the 1980s
to study these semiconducting crystals, the parameters
of their electron energy bands (interband gaps, effective
masses) still remain open for discussion.

This uncertainty disturbs researchers very much,
because InN-based heterostructures are very promising
for manufacturing lasers, photodiodes, and other devices.
Experimental values of the energy gap width Eg at point
Γ fall within the interval from 0.7 to 2 eV [2]. At the
same time, theoretical values of this parameter do not
go beyond the interval from −0.44 to 1.49 eV [3,4].

This work aimed at the a priori, i.e. making no use
of experimental data, calculation of the electron energy
structure in crystalline AlN, GaN, and InN in the mixed
basis consisting of the core Bloch functions and the plane
waves [5, 6].

2. Hamiltonian matrix in the mixed basis and
the results of calculation of the electron
energy spectrum

The electron energy spectrum of the crystal is sought as
a solution of the Schrödinger equation

(T + V (r))Ψkα(r) = EkαΨkα(r), (1)

where T = −∇2/2 is the operator of kinetic energy, V is
the potential of an electron in the crystal, and Ψkα and
Ekα are the wave function and the energy, respectively,
of an electron with the wave vector k in the Brillouin
zone and belonging to the α-th energy band. The wave
function of an electron in the crystal is sought in the
mixed basis as a series

Ψkα(r) =
∑

t

∑
a

akta,α|kta〉+
∑

G

aα(k + G)|k + G〉,

(2)

where akta,α and aα are the variational coefficients of
the expansion in core Bloch states

|kta〉 = N−1/2
∑

A

eik(a+A)ϕt(r− a−A) (3)
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and plane waves

|k + G〉 = Ω−1/2 exp(i(k + G)r). (4)

respectively. Here, ϕt are the wave functions of core
electrons in the atom [7], the notation t = {nlm} means
the quantum numbers of those core states, a stands
for the coordinates of the atom in an elementary cell,
G is the reciprocal lattice vector, N is the number of
elementary cells in the crystal, A’s are the Bravais lattice
vectors, and Ω is the crystal volume.

By substituting Eq. (2) into Eq. (1), we obtain a
system of linear equations in the block form [5,8]
(

Hkta,kt′a′−ESkta,kt′a′ Hkta,k+G′−ESkta,k+G′

Hk+G,kt′a′−ESk+G,kt′a′ Hk+G,k+G′−EδG,G′

)
×

×
(

akta,α

aα(k + G)

)
= 0, (5)

where H is the Hamiltonian matrix, and S is the overlap
matrix in the mixed basis. The upper left block of the
matrix in Eq. (5) is calculated using the Bloch functions
for core electrons in the atom (B–B), the lower right one
using the plane waves (PW–PW), and the upper right
one using the mixed functions (the Bloch functions and
the plane waves, B–PW). While calculating the matrix
elements in system (5), the Cartesian Gaussians [7]

ϕnem(r−A) =
∑

i

ciNi(x−Ax)l(y −Ay)m×

×(z −Az)n exp(−αi(r−A)2) (6)

were used, whose parameters ci and αi were calculated
in the Hartree–Fock approximation; and Ni = N(αi) are
normalization constants. Making use of those Gaussians,
the elements of the overlap, S, and kinetic-energy, T,
matrices in the system of equations (5) can be expressed
in the analytical form [9].

Let us calculate the matrix elements for the crystal
potential V . The potential of an electron in the crystal
is presented as a superposition of contributions made by
every lattice site:

V (r) =
∑

C

∑
µ

υµ(r− cµ −C), (7)

where µ = {M, N}, M = (Al, Ga, In); and cµ = 0 for
µ = M, or cµ = (a1 + a2 + a3)/4, i.e. a quarter of the
cube’s diagonal, for µ = N. Every atomic potential v is
a sum

υ(r) = υn(r) + υe(r) + υxc(r) (8)

of the nuclear attractive potential υn, the potential
of electron repulsion υe, and the exchange-correlation
potential υxc parameterized in [10].

To speed up calculations, we approximated the
dependence v(r) (Eq. (8)) by the formula

υ(r) =
n0∑

i=1

cie
−βir

2
+

n0+n2∑

i=n0+1

cir
2e−βir

2−

−Zne−λr2 erf(
√

pr)
r

, (9)

where the first two summands are Gaussians, and the
third summand simulates the Coulombic component. In
expression (9), ci,βi, and λ are variational parameters
of approximation; Zn is the number of nuclear protons;
and the parameter p determines the depth of the model
Coulombic potential well (criteria for its choice have
been analyzed by us in [5]). For nitrogen and indium,
we put p = 106. The increase of the p-value gave rise to
a deepening of the potential well and a variation of the
band energy values by about 0.01 eV.

The elements of potential matrix calculated making
use of the first and the second summand in function (9)
are analytical expressions [9, 11]. The third summand
is more complicated, and we would like to expose here
an algorithm for calculations, where this summand is
engaged. To take advantage of using the Gaussians in
the calculation of three-center integrals, we first carry
out the integral transformation

erf(
√

p|r|)
|r| =

2√
π

√
p∫

0

e−u2r2
du, (10)

after which the matrix element calculated using the wave
functions for the localized Bloch states reads

〈kta
∣∣∣∣
erf(

√
p |r|)e−sr2

|r|

∣∣∣∣kt′b〉 =

=
2√
π

∑

B

∑

C

eikB exp
[
−αiαi

sij
(B + b− a)2

]
×

×

√
p∫

0

{
exp

[
− sij(λ + u2)

sij + λ + u2
(C + c−D)2

]
×

×
∫ [

exp
[
−(sij + λ + u2)(r−E)2

]
×
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×(x− ax)L1(y − ay)M1(z − az)N1(x− bx −Bx)L2×

×(y − by −By)M2(z − bz −Bz)N2

]
dr

}
du, (11)

where sij = αi +αj . When deriving Eq. (11), we applied
– twice – the theorem on the product of two Gaussians
centered at different sites. The product is equal to a third
Gaussian,

e−α(r−A)2e−β(r−B)2 = e−
αβ

α+β (B−A)2e−(α+β)(r−D)2 (12)

centered at the site

D =
αA + βB

α + β
. (13)

The first application of formulas (12) and (13) gives
rise to the following coordinates of a new center:

D =
αia + αj(b + B)

sij
. (14)

The next application of those formulas results in a new
center of Gaussian localization in formula (11):

E =
sijD + (λ + u2)(c + C)

sij + λ + u2
. (15)

The integration in Eq. (11) is carried separately over
each coordinate. However, all expressions must be first
reduced to a single common center by substituting the
coefficient in the exponent according to the formula
s = sij + β + u2:
∫

(x− ax)L1(x− bx −Bx)L2e−(sij+β+u2)(x−Ex)2dx =

=
∫

((x− Ex) + (Ex − ax))L1×

×((x− Ex) + (Ex − bx −Bx))L2e−s(x−Ex)2 . (16)

Then, we expand the Newton binomials on the right-
hand side of Eq. (16) and write down it in the following
form:

L1∑

ix=0

L2∑

jx=0

(ix
L1)(

jx
L2)×

×(Ex − ax))L1−ix(Ex − bx −Bx))L2−jxIx(ix + jx, s),
(17)

where

Ix(n) =
∫

(x− Ex)ne−s(x−Ex)2dx =

=
{

(n− 1)
√

π2−n/2s−(n+1)/2, n− even,
0, n− odd.

(17a)

At last, on the basis of Eqs. (11)–(17), we obtain
the calculation formula for the element of the potential
energy matrix (the third summand on the right-hand
side of Eq. (9)):

2√
π

∑

B

eikB exp
[
−αiαj

sij
(B + b− a)2

]
×

×
∑

C

√
p∫

0

exp
[
− sij(β + u2)

sij + β + u2
(C + c−D)2

]
×

×
[ L1∑

ix=0

L2∑

jx=0

(ix
L1)(

jx
L2)(Ex − ax))L1−ix×

×(Ex − bx −Bx))L2−jxIx(ix + jx, s)×

×
M1∑

iy=0

M2∑

jy=0

(iy
M1)(

jy
M2)(Ey − ay))M1−iy×

×(Ey − by −By))M2−jyIy(iy + jy, s)×

×
N1∑

iz=0

N2∑

jz=0

(iz
N1)(

jz
N2)(Ez − az))N1−iz×

×(Ez − bz −Bz))N2−jzIz(iz + jz, s)
]
du. (18)

The one-dimensional integration in expression (18)
was executed with the help of the Gauss quadrature
formula [12]. The number of integration nodes was
selected so that a further increase of their number would
not give rise to the variation of band energy values by
more than 10−4 eV.

Now, the elements in the matrices associated with
overlapping, kinetic energy, and first two components
of the crystal potential (9) in the system of equations
(5) are analytical expressions in all their blocks. The
calculation of coefficients in Eq. (5) was completed by
carrying out the numerical integration in Eq. (18). The
solution of system (5) gives us the required energy of
electrons in the crystal.

The results of calculations of the electron energy
spectrum in the crystals concerned are summarized in
Tables 1 to 3, the titles of which also indicate the
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number of equations N included in system (5). For
instance, in the case of AlN, 875 equations (N =
875) were used to determine 5 core Bloch states of
aluminum (1s, 2s, 2px, 2py, and 2pz), 1 core Bloch
state of nitrogen (1s), and 869 plane waves. The
last sphere in the momentum space totally filled by
the latter corresponded to the sum of squared Miller
indices h2 + k2 + l2 = 88. A further increase of
the plane wave number in Eq. (2) did not result
in noticeable variations of the band energies; and
that is why we confined ourselves to N -values quoted
here in the case of the crystals concerned. Columns
MB in the Tables contain our results, which were
calculated for the system of equations (5) in the
framework of the mixed basis method. Columns LDA−d
and LDA+d contain the results of calculations of the
electron band energies [2] by the a priori method of
atomic pseudopotentials without and with the inclusion
of Ga’s 3d-states and In’s 4d-ones into the basis,
respectively.

Column EXX in Table 1 includes the results of
calculations of band energies by the method of exact
exchange potential [3,4]. Columns EXX−d and EXX+d
in Tables 2 and 3 contain the results of calculations by
the method of exact exchange potential without and with
the inclusion of Ga’s 3d-states and In’s 4d-ones into the
basis, respectively. Experimental data were taken from
work [4]. Striking is a small number of experimental
data for the band energy values in all three crystals
concerned.

The results of calculations were obtained by
other authors in the local density approximation
(LDA), making use of the electron exchange-correlation
potential and the formulas which are accurate in the

T a b l e 1. Electron energy values (in eV) at points Γ,
X, and L of the first Brillouin zone in an AlN crystal,
N = 875

Level MB LDA EXX Exp.
Γ1v −15.30
Γ15v 0.00 0.00 0.00 0.00
Γ1c 5.01 4.27 5.74
Γ15c 13.81
X3v −4.26
X5v −1.52
X1c 5.30 3.27 5.06 5.11
X1c 9.95
X3c 15.04
L1v −13.72
L1v −4.99
L3v −0.42
L1c 8.40 7.25 8.58
L1c 11.39
L3c 12.70

limit of a uniform electron density distribution [10]. In
the LDA−d approximation, the wave functions of 3d-
or 4d-electrons are associated with the core states of
atoms. On the contrary, the LDA+d one supposes that
the Bloch functions of those electrons are included into
the basis along with plane waves (2).

The EXX−d and EXX+d approximations are based
on knowing the exact exchange potential for all atomic
electrons at the stage of parameter calculations for the a
priori pseudopotentials and only for valence electrons
at a stage of band energy calculations (see Tables 1
to 3).

For level Γ1c, a decrease of its energy value,
i.e. a deterioration of the result, is observed at the
transition from the LDA−d approximation to the
LDA+d one, and an increase, i.e. an improvement, of
the result on changing from the EXX−d to the EXX+d
approximation. This tendency is repeated for the lower
level X1c, but is opposite for the even lower level L1c.

The EXX approximation is much more accurate as
compared with the LDA, although the computational
algorithms engaged in the EXX approximation are
slower. The data presented in Table 3 demonstrate
that the LDA can hardly be applicable to crystals with
narrow interband gaps.

Tables 2 and 3 also demonstrate that the energy
values obtained for the bottom of the valence band
in the LDA are, as a rule, lower than those obtained
in the MB and EXX approximations. The case
LDA+d (Table 3) is an exception, where the bottom
of the valence band lies lower than that in the
EXX−d case; however, the corresponding width of the
energy gap turns out negative, which contradicts the
experiment.

T a b l e 2. Electron energy values (in eV) at points Γ,
X, and L of the first Brillouin zone in an GaN crystal,
N = 1082

Level MB LDA−d LDA+d EXX−d EXX+d Exp.
Γ1v -16.47 −15.5 −16.3 −16.7 −17.8
Γ15v 0.00 0.00 0.00 0.00 0.00 0.00
Γ1c 2.49 2.0 1.9 2.8 3.1 3.2
Γ15c 11.52 10.2 10.6 11.3 12.2
X1v -15.30 −12.4 −13.0 −13.5 −14.8
X3v -5.29 −6.1 −6.5 −6.8 −6.9
X5v -2.66 −2.4 −2.8 −2.7 −3.0
X1c 4.92 3.3 3.2 4.4 4.7
X1c 8.11 6.6 6.9 7.7 8.4
X3c 12.45 11.9 12.2 14.0 14.5
L1v −15.51 −13.2 −13.8 −14.3 −15.5
L1v −6.53 −6.8 −7.0 −7.6 −7.5
L3v −0.95 −0.8 −1.0 −0.9 −1.1
L1c 5.82 4.8 4.7 6.1 5.7
L1c 9.73 8.9 9.1 10.4 11.2
L3c 11.65 10.3 10.6 11.3 12.3
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3. Conclusions

Making use of no experimental data, the characteristic
energies of electrons in AlN, GaN, and InN crystals have
been calculated in the framework of the mixed basis
method. Formally, the MB method is related to the LDA
one; however, the latter is based only on a priori atomic
pseudopotentials and on the plane-wave basis. Table 3
demonstrates a contradiction between the energy values
for the bottom of the conduction band obtained in the
LDA. Really, the energy value obtained for level Γ1c by
the more consistent LDA+d method is negative and, as
such, has no physical meaning, although, from logical
reasoning, it should have been better than that found in
the framework of the LDA-d approach.

The values of band energies obtained taking into
account the interactions between core and valence
electrons in the LDA are close to the corresponding
results found in the framework of the exact exchange
potential method. Hence, taking into consideration the
hybrid block structure of the overlap matrix and the
Hamiltonian in the system of equations (5) improves
the quality of the band energy calculation results to the
level which is characteristic of the more complicated but
more consistent EXX method. Using the MB method,
the considerably better values for electron band energies
can be obtained even in the LDA. This circumstance
follows from a basic difference between the LDA-based
MB and pseudopotential approaches: in the MB method,
the fact that an atom in the crystal is surrounded by
other atoms of the same or other kinds is consistently

T a b l e 3. Electron energy values (in eV) at points Γ,
X, and L of the first Brillouin zone in an InN crystal,
N = 965

Level MB LDA−d LDA+d EXX−d EXX+d Exp.
Γ1v −15.02 −13.99 −14.60 −14.37 −14.74
Γ15v 0.00 0.00 0.00 0.00 0.00 0.00
Γ1c 1.23 0.27 −0.44 1.49 0.81 0.7, 1.0, 1.9
Γ15c 10.80
X1v −13.21
X3v −4.08
X5v −1.81
X1c 4.66 2.87 2.82 4.63 4.20
X1c 7.96
X3c 10.60
L1v −4.73
L3v −0.62
L1c 4.84 3.51 2.95 4.75 4.14
L1c 8.36
L3c 10.82

taken into account in all blocks of the system of
equations (5), while the pseudopotential parameters are
“frozen” at a level of atomic data and are not changed
under the action of the crystalline environment. The
verification of this assumption making use of others
crystals will be the purpose of our further researches.
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ЕЛЕКТРОННА ЕНЕРГЕТИЧНА СТРУКТУРА КРИСТАЛIВ
AlN, GaN та InN, РОЗРАХОВАНА В ЗМIШАНОМУ БАЗИСI
ОДНОЧАСТИНКОВИХ СТАНIВ

С.В. Cиротюк, С.Н. Краєвський, Ю.Є. Кинаш

Р е з ю м е

Розраховано електроннi енергетичнi спектри кристалiв AlN,
GaN та InN у змiшаному базисi у наближеннi функцiонала ло-
кальної електронної густини. Матрицю гамiльтонiана обчисле-
но на функцiях Блоха глибоких електронiв та плоских хвилях.
Отриманi зоннi енергiї краще узгоджуються з експериментом,
нiж розрахованi методом атомних апрiорних псевдопотенцiалiв
у наближеннi функцiонала локальної електронної густини.
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