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The results of our researches dealing with the peculiarities in the
behavior of the liquid–gas coexistence curve on the diagram near
to the critical point, which were carried out in the framework
of the scaling theory with the use of the Clapeyron–Clausius
equation, are reported. Making allowance for the asymmetry of
the liquid–gas coexistence curve in the framework of the algebra of
fluctuating variables enabled us to demonstrate that the derivative�

dp
dT

�
cc

is finite at the critical point and to obtain a corresponding
expression in terms of the critical parameters of the system. The
theoretical results have been compared with experimental data
for CO2 and C2H6. The critical exponent for the temperature
dependence of the Tolman δT -correction has been calculated.

1. Introduction

Studies of the thermodynamic properties of substances
in the vicinity of their liquid–vapor critical points
are a challenging problem. While considering the
features of the system behavior, the interaction between
strongly developed fluctuations of the corresponding
order parameter comes to the foreground as the
critical point is approached, so that the details of
intermolecular interaction become smoothed out. It
is this circumstance that predetermines the universal
behavior of systems of different nature near their
critical points. Such a universality enables one, without
specifying the substance, to obtain the important
information concerning the singular behavior of a
substance in the vicinity of its critical point. In this
work, we are going to demonstrate that the derivative of
the pressure with respect to the temperature calculated
along the coexistence curve tends to a definite finite
value as the system state approaches the critical one and
to derive an expression for this derivative in terms of the
critical parameters of the system. The result obtained
will be applied to find the temperature behavior of the
Tolman δT -correction.

A necessary condition for the two phases of a one-
component system to be in equilibrium is the equality of
the chemical potentials µ of their molecules. Therefore,

the equation

dµl = dµg, (1.1)

where the subscripts l and g correspond to the liquid
and vapor phases, respectively, determines the phase
coexistence curve [1] in the differential form. Expressing
the chemical potentials in terms of the pressure p and the
temperature T in the system, we obtain the well-known
Clapeyron–Clausius equation
(

dp

dT

)

cc

=
s0

g − s0
l

V 0
g − V 0

l

, (1.2)

where s0 and V 0 are the entropy and the volume,
respectively, per one particle, and the subscript cc
corresponds to the coexistence curve. Hence, under
declared conditions, the determination of the derivative
is reduced to the elucidation of the behavior of the
numerator and the denominator in formula (1.2) as the
critical point is approached.

In the classical Landau theory of phase transitions,
this quantity has indubitably no singularity. But if this
theory is realized with engaging the van der Waals
equation, then, while approaching the critical point,(

dp
dT

)
cc
→ 4 pc

Tc
, where pc and Tc are the critical pressure

and temperature, respectively. Really, by expanding the
reduced van der Waals equation into a series in the
vicinity of the critical point, we obtain the following
expression:

p− pc

pc
≈ −3

2
ϕ3 + 4τ − 6τϕ + 9τϕ2 − 27

2
ϕ3τ, (1.3)

where τ = T−Tc

Tc
and ϕ = V−Vc

Vc
are the rela-

tive deviations of the temperature and the volume,
respectively, from their critical values Tc and Vc. In
this case, like in the Landau theory, the shape of the
coexistence curve in the vicinity of the critical point
is governed by the power exponent β: ϕ ∼ (−τ)β . In
the van der Waals theory, the critical exponent of the
coexistence curve is equal to 1/2.
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By realizing the Landau theory with the help of the
first or second Dieterici equation, we obtain that, in this
limit,

(
dp
dT

)
cc
→ pc

Tc
or

(
dp
dT

)
cc
→ 5 pc

Tc
, respectively.

2. Behavior of the Coexistence Curve in the
Scaling Theory

According to the fluctuation theory of phase transitions
[2], let us consider an arbitrary scalar quantity
An (x) subjected to fluctuations, and the corresponding
conjugated external field hn (x), where x is the spatial
variable. Those quantities are associated with an
extra term in the fluctuation Hamiltonian δHn =
− ∫

hn (x)An (x)dx which was made dimensionless by
its dividing by kBTc, where kB is the Boltzmann
constant. In so doing, the system is associated with
a Hamiltonian which coincides with the corresponding
thermodynamic potential. Such a Hamiltonian describes
the behavior of the system in the sense that it provides
correct average values for thermodynamic quantities, if
a proper distribution function is made use of.

The expression for δHn must remain invariant with
respect to the scale transformations with an arbitrary
scale factor λ [2],

An (λx) → λ−∆nA(x), (2.1)

provided that the following scaling conditions are
simultaneously imposed on the fields hn: hn → λ−Θnhn.
It is evident that the sum of the corresponding scaling
dimensionalities ∆n and Θn must amount to the space
dimension d.

According to the scaling theory [2], any scalar
thermodynamic quantity which undergoes fluctuations
in the given ensemble can be expanded in the basis of
such quantities An (x) which are the eigenfunctions of
the stretching operator with the scale dimensionality ∆n

[see Eq. (2.1)].
Let A1 be a quantity with the smallest exponent ∆1

in the algebra of fluctuating quantities in the liquid–
vapor system, and let A2 be the next, by dimensionality
(∆2), quantity in this algebra. Let us introduce the
local dimensionless density of entropy σ (x) by using the
expression

1
Vc

∫
σ (x)dx = −

(
∂G

∂τ

)

P,N

,

where G is the dimensionless thermodynamic Gibbs
potential. Then, confining the consideration to two
quantities which fluctuate most strongly, i.e. to the

relative volume and the entropy density, we write down
the relations of the algebra of fluctuating quantities for
relative deviations of the volume, ϕ = V−Vc

Vc
, and the

entropy density σ̃ = σ − σc from their critical values in
the close vicinity of Tc:

ϕ = A1 + bA2, σ = aA1 + A2. (2.2)

It is known that the presence of second terms on
the right-hand sides of expansions (2.2) means that
the asymmetry of the coexistence curve is taken into
account. The fields h1 and h2 conjugate to A1 (x) and
A2 (x) are linear combinations of the quantities τ =
T−Tc

Tc
and π = p−pc

pc
:

h1 = aτ − π, h2 = τ − bπ, (2.3)

they are also analogs of the parameter τ and the
magnetic field strength h for the ferromagnetic transition
near the Curie point. Therefore, making use of the
similarity relation, we obtain

〈A1〉 = hβ
2f (k) , 〈A2〉 = h1−α

2 g (k) , (2.4)

where k = h1/hβ+γ
2 , f (k) and g (k) are some universal

functions, and the broken brackets 〈. . . 〉 designate the
averaging with a distribution function that is determined
by the fluctuation Hamiltonian. In expressions (2.4), the
standard notations were used for the critical exponents
of the isochoric heat capacity (α), coexistence curve (β),
and isothermal compressibility (γ).

In the vicinity of the critical point, the coexistence
liquid–vapor curve is given – in terms of the (π, τ)-
variables – by the equation

h1 = aτ − π = 0, τ < 0. (2.5)

It is evident that, in this case, h2 = (1− ab) τ . Then,
making use of Eqs. (2.2) and (2.4), we obtain the
equation of state which looks as

V − Vc

Vc
= hβ

2f(k) + bh1−α
2 g(k). (2.6)

For the half-differences between the volumes and the
entropies of the liquid and the vapor, we write down the
following relations:

1
2

(Vg − Vl) = Vcf (0) (1− ab)β (−τ)β
,

1
2

(sg − sl) =
1
2
kB (σg − σl) = kB af (0) (1− ab)β (−τ)β

.

(2.7)
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It should be noted that the existence of the latent heat
for the liquid–vapor transition, rs = (sg − sl) T , testifies
that the coefficient a in expansion (2.2) is different from
zero.

By substituting the obtained relations (2.7) into the
Clapeyron–Clausius equation, we obtain the required
expression for the derivative,
(

dp

dT

)

cc

=
2af (0) (1− ab)β (−τ)β

kBN

2f (0) (1− ab)β (−τ)β
VcN

=
akB

Vc
. (2.8)

As was already mentioned, the dimensionless
quantity a acquires a nonzero value; moreover, it is
evident that a is not singular at the critical point,
because all the scale dimensionality is included into the
factor A1 in formula (2.2). Let us elucidate the sense of
the constant a in formula (2.8). From Eq. (2.5) for the
coexistence curve in the vicinity of the critical point, one
can see that a satisfies the equation

apcV
0
c = Tc

(
µ− µc

T − Tc

)

cc

+ s0
cTc, (2.9)

where µ = µl (p, T ) = µg (p, T ) is the common value for
the chemical potentials of the liquid and vapor molecules
along the coexistence curve of those two phases.

Hence, while approaching the critical point along the
coexistence curve, we ultimately obtain
(

dp

dT

)

cc

=
kBTc

pc (V 0
c )2

((
µ− µc

T − Tc

)

cc

+ s0
c

)
=

=
kBTc

pc (V 0
c )2

(
lim

T→Tc

(
dµ

dT

)

cc

+ s0
c

)
. (2.10)

It should be emphasized that expression (2.10) could
be derived directly, if one would consider an increment
of the chemical potential in terms of the (p, T )-variables.
Taking into account the behavior of the derivative(

dµ
dT

)
cc

when the critical point is approached, one may

draw conclusion that the derivative
(

dp
dT

)
cc

acquires a
finite nonzero value at the critical point itself.

We also note that the following relation between
critical parameters can be derived from Eq. (2.10) for
a certain group of substances which satisfy the law of
corresponding states:

kB

(
Tc

PcV 0
c

)2 (
s0

c + lim
T→Tc

(
dµ

dT

)

cc

)
= z, (2.11)

where the number z is identical for all substances
which obey the law of corresponding states and can

be determined from the reduced equation of state.
It is evident that z is equal to the value of the
reduced pressure derivative with respect to the reduced
temperature at the critical point.

3. Comparison of Theoretical Results with
Experimental Data

The experimental data for the dependence of the latent
heat of the liquid–vapor transition on the temperature
were taken from work [3]; they are exhibited in the figure
on the logarithmic scale. The table contains the slope
coefficients for the straight lines drawn through seven,
three, or two points which are nearest to the critical
one. As the approximation interval converges to the
critical point, the calculated value of the exponent β
tends expectedly to the corresponding value known from
the literature [4].

According to the experimental data obtained in work
[4], for the deviation of the density ∆ρ = ρ − ρc which
is approximated by the formula ∆ρ = ±B0 (−τ)β0 +
B1 (−τ)β1 , the following values of the critical indices β0

and β1 in the temperature interval τ ≈ 10−4÷10−3 were
obtained: for C2H6, β0 = 0.338± 0.006 and β1 = 0.90±
0.05; for CO2, β0 = 0.347± 0.006 and β1 = 0.90± 0.05;
and, for Xe, β0 = 0.340±0.003 and β1 = 0.77±0.13.
One can see that, within the error limits, the agreement
is observed between the theory and the experiment.

4. Determination of the Temperature
Behavior of the Tolman δT -Correction Near
the Critical Point for a Spherical Droplet

Let us apply the results obtained and determine
the temperature behavior of the so-called Tolman δ-
correction in the vicinity of the critical point. As is
known, the dependence of the surface tension coefficient
of a spherical droplet on its radius is described by the
Gibbs–Tolman–König–Buff equation [5]

ln
σ (R)
σ∞

=

R∫

∞
dr

2σ
r2

{
1 + δT

r + 1
3

(
δT

r

)2
}

1 + 2δT

r

{
1 + δT

r + 1
3

(
δT

r

)2
} , (4.1)

The values of the critical exponent β for the latent heat
of the liquid–vapor transition calculated with the use of
seven, three, or two experimental points

Substance β {7} β {3} β {2}
CO2 0.373±0.08 0.350±0.011 0.339±0.05
C2H6 0.369±0.05 0.362±0.05 0.353±0.06
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where σ∞ is the surface tension coefficient for the plane
interface, and δT is a correction introduced by Tolman
[6]. Provided that δT is a constant, integral (4.1) can
be calculated analytically [7], and, if δT

R ¿ 1, the
dependence σ = σ (R) can be written down – in the first
approximation in the small parameter δT

R – in the form
which looks like the well-known Tolman formula [5]

σ = σ∞

(
1− 2δT

R

)
. (4.2)

If one takes the isothermal equation of state for a
liquid in the form p − p0 = f

(
V0−V

V0

)
, where f is a

definite function, and V0 is a point on the coexistence
curve, the Tolman δ-correction in a wide temperature
interval is determined, as was demonstrated in works
[8, 9], by the expression

δT =
4f ′ (0)− 3f ′′ (0)

6 (f ′ (0))2
σ∞, (4.3)

where the derivatives are calculated at a coexistence
curve point, provided a constant temperature. Equation
(4.3) can be rewritten in terms of the isothermal
compressibility βT as follows:

δT =
[
1
6
βT +

1
2βT

(
∂βT

∂p

)

T

]
σ∞. (4.4)

Let us determine which of summands in formula (4.4)
dominates near the critical point. For this purpose, let
us express the isothermal compressibility as a function of
(V, p) or (V, T ) and write down its isothermal derivative
with respect to the pressure:
(

∂βT

∂p

)

T

=
(

∂βT

∂T

)

V

(
∂T

∂p

)

V

+
(

∂βT

∂V

)

p

(
∂V

∂p

)

T

.

(4.5)

According to the scaling theory, the derivative of
the pressure with respect to the temperature at the
critical point on the coexistence curve (as well as on
the isochore) is finite. Therefore, we obtain that the
augend and the addend are the quantities of the order
of (−τ)−γ−1 and (−τ)−2γ−β , respectively, near the
critical point. Hence, the addend on the right-hand side
of Eq. (4.5) dominates there. Then, the augend and
the addend in the brackets on the right-hand side of
formula (4.4) are of the order of (−τ)−γ and (−τ)−βδ,
respectively. Making use of the known relation −γ =
−β (δ − 1) between the critical exponents, we obtain
that the Tolman correction reads

δT ∼ ( −τ)−γ−β
σ∞ = ( −τ)−βδ

σ∞. (4.6)

Measurement data of the temperature dependence of the latent
heat of the liquid–vapor transition for CO2 and C2H6 [3]

Taking into account that the surface tension
coefficient tends to zero at the critical point following
the law σ∞ ∼ (−τ)(d−1)ν ∼ (−τ)2−α−ν = (−τ)γ+2β−ν ,
where ν is the critical exponent for the correlation
length, a corresponding scaling relation can be written
down for the Tolman δT -correction in a three-
dimensional space as

δT ∼ ( −τ)γ+2β−ν−γ−β = ( −τ)−(ν−β)
, (4.7)

where the power exponent ν − β is approximately equal
to 0.32.

Thus, since ν − β > 0, the Tolman δT -correction is
singular at the critical point, which is confirmed by the
results of experiments [10]. Therefore, it must be taken
into account in the vicinity of the critical point. We
note that the singular behavior of the surface tension
coefficient can be associated with “non-smoothness”
of the droplet surface, which is responsible for the
formation of clusters of the “seaweed-like” type with
a fractal dimensionality of the surface, rather than
compact three-dimensional spherical aggregates [11].

5. Conclusions

It has been demonstrated that the account of the
asymmetry of the liquid–vapor coexistence curve in the
framework of scaling theory allows one to adequately
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describe the behavior of this curve in the vicinity of the
critical point. An expression for the pressure derivative
with respect to the temperature on the coexistence curve
at T → Tc has been deduced, and the value of this
expression has been found finite and nonzero.

A relation between critical parameters, which is a
reflection of the law of corresponding states, has been
obtained.

The finiteness of the specified derivative was used
to find the critical exponent for a singular temperature
behavior of the Tolman δT -correction, which amounts to
β − ν ≈ −0.32.
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ОСОБЛИВОСТI ПОВЕДIНКИ КРИВОЇ СПIВIСНУВАННЯ
РIДИНА–ПАРА ТА δT -ПОПРАВКИ ПОБЛИЗУ
КРИТИЧНОЇ ТОЧКИ

Д.А. Гаврюшенко, К.Г. Калiхман, В.М. Сисоєв

Р е з ю м е

Наведено результати дослiдження особливостей поведiнки кри-
вої спiвiснування рiдина–пара на p − T -дiаграмi поблизу кри-
тичної точки, проведено на основi теорiї скейлiнгу з викори-
станням рiвняння Клапейрона–Клаузiуса. Врахування в рам-
ках алгебри величин, що зазнають флуктуацiй, асиметрiї кри-
вої спiвiснування рiдина–пара дозволило показати, що похiдна�

dp
dT

�
cc

в критичнiй точцi є скiнченною, та отримати вираз для
неї через критичнi параметри системи. Результати порiвняно з
експериментальними даними для CO2 i C2H6. Знайдено кри-
тичний показник для температурної поведiнки δT -поправки
Толмена.
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