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Evolution of the velocity dispersion of particles undergoing the
action of an external field of random waves is considered. For
moderate Kubo numbers, the particle trapping effect is not
negligible, so a discrepancy between the quasilinear diffusion
and the results of simulations becomes evident. It is shown that
the Fokker–Planck equation with the time dependent diffusion
coefficient describes the particle trapping to some extent. Apart of
this, such an equation accounts for the non-resonant wave-particle
interaction.

1. Introduction

For a long time, the particle diffusion in turbulent
fields is one of the fundamental problems of theoretical
and practical interests. In non-equilibrium plasmas, the
diffusion leads up to the saturation of instabilities and
the establishment of a stationary state. In a beam-
plasma system, a stationary level of turbulence depends
on the rate of particle spread in a resonant region of the
velocity space.

The quasilinear theory [1] gives a self-consistent
description of the beam-field evolution for weak
fields. Particle diffusion is governed by the Fokker–
Planck equation with the velocity-dependent diffusion
coefficient determined by a wave spectrum. A diffusion
coefficient is calculated in the approximation of a free-
particle propagator and under the assumption that the
field correlation time is negligible on the time scale
of the system evolution. The latter implies that the
contribution to the particle spread on a scale of the order
of the correlation time is relatively small. With a growth
of the field intensity in a course of the system evolution,
a discrepancy between the quasilinear theory and the
results of numerical experiments becomes evident [2].

In a number of works, starting from work [3], it
was proposed to extend the quasilinear description
to stronger fields by renormalization of the diffusion

coefficient. It was supposed to be calculated not on
the free particle propagator, but on a such one that
accounts for the particle diffusion described by the same
diffusion coefficient. In such a way, a closed equation for
the renormalized diffusion coefficient may be obtained.
However, this scheme is inconsistent since the particle
spread on the correlation time scale is assumed to be
determined by an asymptotic diffusion coefficient. In
contrast, the simulations of the diffusion of resonant
particles in external fields [4] show a substantial growth
of the velocity dispersion on the initial stage, in extent of
a fraction of the correlation time, which is slowing down
later on. Therefore, prior to develop a renormalization
procedure, it is necessary to have correct description of
the particle spread on a short-time scale.

In our previous works [5, 6], it was shown that,
for moderate Kubo numbers (Q = 1 ÷ 3), the velocity
dispersion evolution obtained from the Fokker–Planck
equation with a time-dependent diffusion coefficient is
in agreement with the results of simulation contrary to
one calculated with the asymptotic diffusion coefficient.
It proves to be important to account for a time variation
of the diffusion coefficient on the scale of the correlation
time. Along with fast initial growth, the oscillation
of the dispersion was observed in simulations. Though
the oscillations were partly recovered by solutions of
the Fokker–Planck equation with the time-dependent
diffusion coefficient, their origin nevertheless was not
clear. In this paper, we examine the nature of the
dispersion oscillation in more details.

For moderate Kubo numbers, the particle trapping
effect should come into play, and this introduces
difficulties in a description of the diffusion. It is
commonly assumed that the effect of particle trapping
by waves could not be described by equations obtained
by the expansion in integer powers of a field. Here, we
will show that the Fokker–Planck equation accounts for
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the particle trapping to some extent if the dependence
of the diffusion coefficient on time is retained. Other
significant feature of the time-dependent diffusion
coefficient is its capability to account for the non-
resonant interaction of particles with waves. Both these
effects, the particle trapping and the non-resonant wave-
particle interaction are not described by the diffusion
equation with an asymptotic diffusion coefficient.

In Section 2, we briefly recall the model which was
used in [5, 6] and discuss some details of the derivation
of a diffusion equation for the transition probability.
Oscillatory features of the velocity dispersion due to
the bouncing of resonant particles and the velocity
modulation of non-resonant particles are considered in
Section 3.

2. Model for Simulation and Equation for
Transition Probability

In simulations, we consider the motion of noninteracting
particles in a 1D external electric field that is a
superposition of waves with the same frequency ω,
various wave numbers, and random phases. In more
details, this model is described in works [5, 6]. The
total intensity of waves ϕ2

0 is distributed among the
partial harmonics over a finite interval of wave numbers
according to the Gaussian law. A spectrum is located
around the central wave number k0 and characterized
by the width ∆k. The overlap parameter for the
central harmonic is taken large enough so, when the
total intensity of waves is fixed, the results do not
depend on the number of waves, and the approximation
of the continuous spectrum is valid. Dimensionless
parameters of the field are the dimensionless amplitude
of the potential σ = (k0/ω)2(e/m)ϕ0, the dimensionless
spectrum width d = ∆k/k0, and the Kubo number
Q =

√
σ/d that is the ratio of the field correlation time

to the characteristic bounce period of particles.
In simulations, we found the temporal evolution of a

distribution function in the velocity space which initially
was taken as the delta function, along with evolution of
its second moment, the velocity dispersion. The latter is
compared with numerical and analytical solutions of the
equation for transition probability.

We now discuss some details of the derivation of the
diffusion equation for the transition probability averaged
over random phases, W . The diffusion equation for W
has been obtained by a number of authors in various
approximations. Here, we start from a rather general
equation which is exact provided the field statistical
properties are completely characterized by the pair

correlation function [8]
(

∂

∂t
+ v

∂

∂x

)
W (x, v, t; x′, v′, t′) =

=
( e

m

)2 ∂

∂v

t∫

t′

dτ

∫
dyduW (x, v, t; y, u, τ)×

×〈E(x, t)E(y, τ)〉 ∂

∂u
W (y, u, τ ;x′, v′, t′),

W (x, v, t′;x′, v′, t′) = δ(x− x)δ(v − v′). (1)

This equation is non-linear and non-local. So it should
be simplified in order to obtain an explicit solution.

For t−τcor > t′ ( τcor ≡ 2/∆k v is the correlation time
of the Lagrangian correlation function, 〈E2〉x−y, t−τ ), the
interval [t − τcor, t] gives the main contribution to the
integral over τ on the right-hand side of Eq. (1). So the
following substitution is justified:

∂

∂u
W (y, u, τ ; x′, v′, t′) ⇒ ∂

∂v
W (x, v, t; x′, v′, t′). (2)

Then Eq. (1) transforms to a local equation. Note that
we will use such a substitution also for t − τcor < t′,
though it is not so evident for such a case. To some
extent, it is supported by a fast relaxation of the
transition probability from the initial δ-like form on a
fraction of the interval [0, τcor].

The Fokker–Planck diffusion equation familiar from
the quasilinear theory can be obtained in two further
steps given by Eqs. (3) and (4). The first one is a
substitution of the free particle propagator

W0(x, v, t; y, u, τ) ≡ δ(x− y − v(t− τ)) δ(v − u)

for the transition probability at the interval of
correlation time

W (x, v, t; y, u, τ) ⇒ W0(x, v, t; y, u, τ), (3)

and the second step is a transition to the time
independent diffusion coefficient (asymptotic value)

t∫

t′

...dτ ⇒
t∫

−∞
...dτ. (4)

As far as a justification for both approximations given
by Eqs. (3) and (4) is a decay of the field correlation
function 〈E2〉x, t at t > τcor, it may look like one of them
implies other one as well. Probably, for this reason, the
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Fig. 1. Asymptotic value of the diffusion coefficient D(v). Gray
strip indicates the interval of the phase velocities of waves taken
in simulations. Resonant particles, v0 = 1, are in the middle of this
interval; non-resonant particles, v0 = 0.5 and 1.8, are far beyond
of it

previous efforts to extend the quasilinear description
for stronger fields were mostly directed to the
renormalization of the asymptotic value of the diffusion
coefficient. Our results [5, 6] show that, for moderate
Kubo numbers, it is more important to account for the
dependence of the diffusion coefficient on time than to
renormalize a propagator:

t∫

t′

W...dτ ⇒
t∫

t′

W0...dτ. (5)

As a result, for the transition probability in the velocity
space

w(v, v0, t) =
∫

dxW (x− x′, v, v0, t),

we obtain the Fokker–Planck equation

∂w(v, v0, t)
∂t

=
∂

∂v
D(v, t)

∂

∂v
w(v, v0, t) (6)

with the time-dependent diffusion coefficient

D(v, t) =
( e

m

)2
t∫

0

〈E2〉vτ,τdτ. (7)

The well-known quasilinear diffusion coefficient D(v) is
the asymptotic value of D(v, t).

Solutions of Eq. (6) are found numerically. In
addition, the WKB approximation for this solution was
proposed in [5]. Both numerical and WKB solutions of
the Fokker–Planck equation are used to calculate the
evolution of the velocity dispersion to compare it with
the results of simulations.

a

b
Fig. 2. v(t) for three realizations of a field. Resonant particles,
v0 = 1; σ = 0.0016, Q = 1 (a) and σ = 0.0256, Q = 4 (b).
For resonant particles, the period of oscillations increases with
the field. Oscillations are attributed to the bouncing of trapped
particles

3. Oscillatory Features of Velocity Dispersion
at Small Times

Comparison of the results of simulations and the
solutions of the Fokker–Planck equation (6) in a wide
range of parameters for small Kubo numbers Q ¿ 1
gives no noticeable difference between solutions with
D(v) and D(v, t). For Q > 1, only solutions with
D(v, t) agree with the results of simulations either on
the scale of the correlation time or on that by two orders
larger [5, 6].

Here, we will discuss oscillatory features of the
velocity dispersion observed on a small time scale. By
resonant particles, we would mean those whose initial
velocities are equal to the phase velocity of the central
harmonic, i.e. v0 = 1. Non-resonant particles have the
initial velocities beyond the interval of phase velocities
of the waves taken in the simulation (Fig. 1). Length
and time in the plots are normalized to the wavelength
of the central harmonic 2π/k0 and the period of waves
2π/ω. All plots except Fig. 5 are given for the spectrum
width d = 0.04.
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a

b
Fig. 3. v(t) for three realizations of a field. Non-resonant particles,
v0 = 0.5. σ = 0.0016, Q = 1 (a) and σ = 0.0256, Q = 4 (b ). For
non-resonant particles, contrary to resonant ones, the period of
oscillations is not affected by the field. Oscillations are attributed
to the modulation of the velocity by a field

Before considering the oscillations of the velocity
dispersion, let us compare the oscillations of velocities
for arbitrary resonant and non-resonant particles. The
scaling of the periods of oscillation with field amplitudes
for two types of particles is different. A temporal
variations of the velocity, v(t), observed in simulations
are given in Figs. 2 and 3 for Kubo numbers Q = 1 and
Q = 4. For resonant particles, the period of oscillations
depends on the field amplitude (and consequently on
Q) and corresponds to the particle bouncing, (Fig. 2),
whereas, for non-resonant particles, there is no such
dependence (Fig. 3).

Figure 4 shows that solutions of the Fokker–Planck
equation for resonant particles recover not only the fast
initial growth of the dispersion observed in simulations
for the moderate Kubo numbers Q = 1, 2, 3, 4 but, to
a certain extent, its oscillations and afterwards the
correct transition to a slow growth. Oscillations of
the velocity dispersion of resonant particles appear for
Q > 1, when the bounce period becomes less than the
correlation time. We attribute such oscillations of the
dispersion to the bouncing of resonant particles trapped
by the waves. The reason for this assumption is given

Fig. 4. Resonant particles, v0 = 1. The results of simulations (NE)
are compared with the numerical (FP) and analytical (WKB)
solutions of the Fokker–Planck equation with the time dependent
D(v, t) and asymptotic D(v, t) diffusion coefficients. Fast initial
growth of the dispersion for the Kubo numbers Q = 1, 2, 3, 4;
correspondingly, σ = 0.0016, 0.0064, 0.0144, 0.0256. The period
of oscillations corresponds to the bounce period that is scaled with
the field amplitude as Tres ∼ σ−1/2. Oscillations of the dispersion
due to the bouncing of trapped particles are partly recovered by
solutions of the Fokker–Planck equation with the time dependent
diffusion coefficient
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Fig. 5. Dispersion of resonant particles, v0 = 1, obtained in
simulations for various field amplitudes σ = 0.01, 0.1, and 1. On
each of the plots, three curves are given for d = 0.4, 0.1, and 0.04.
The period of oscillations corresponds to the bounce period and
does not depend on the spectrum width d

by the same scaling of its period with amplitude (Figs. 4
and 5) as of the bounce period

Tres =
λ

vbounce
=

1√
σ

. (8)

In addition, Fig. 5 shows that the oscillation period does
not depend on the spectrum width d.

It is important that the effect of particle trapping is
partly recovered by Eq. (6). Due to a common notion,
trapping effects could not be described by equations
obtained by the expansion in integer powers of the field,
as far as the bounce period depends on a fractional power
of the field. Note that the quasilinear diffusion equation
does not reproduce neither the fast initial spread nor
oscillations (Fig. 4).

Fig. 6. Non-resonant particles, v0 = 0.5 and 1.8. Kubo numbers
Q = 1, σ = 0.0016. The results of simulations are compared
with numerical and analytical solutions of the Fokker–Planck
equation with the time dependent diffusion coefficient. The period
of oscillations Tnonres does not depend on the field amplitude σ.
Oscillations of the dispersion occur due to a modulation of particle
velocities by waves

The comparison of the non-resonant particle
dispersions given in Fig. 6 shows that Eq. (6) recovers
the non-local interaction in the velocity space between
particles and waves as well. The initial particle
velocities, v0 = 0.5 and 1.8, are far beyond the interval
of phase velocity localization (0.91, 1.11) taken in
simulations. The quasilinear diffusivity is zero for such
a case.

For non-resonant particles, oscillations of the
dispersion is attributed to the particle motion
modulation by waves. Consequently, the period of
oscillation is estimated as

Tnonres =
1

v0 − 1
. (9)

Contrary to resonant particles, it does not depend on
the field intensity (Figs. 6 and 7).

In Fig. 8, the corresponding oscillations of the
distribution functions of resonant and non-resonant
particles are shown.

A difference in the scalings of a period of oscillations
of the velocity dispersion between resonant and non-
resonant particles can be also seen from the surface plot
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Fig. 7. Dispersion of non-resonant particles, v0 = 1.2, obtained in
simulations for various field amplitudes. The period of oscillations
does not depend on the field amplitude

Fig. 8. Distribution functions of resonant particles, v0 = 1,
τcor ' 8, and non-resonant particles, v0 = 0.5, τcor ' 16, obtained
in the WKB approximation

of the diffusion coefficient (Fig. 9). In the region of
resonant velocities near v = 1, the valleys in the plot of
the diffusion coefficient are oriented along the time axis,
and such orientation brings to the bouncing of resonant
particles.

In the region of velocities far from v = 1, the
diffusivity decays to the wings. Its valleys are bent to be
oriented along the velocity axes. Small diffusivity causes
a small displacement of non-resonant particles, and the
particle diffusion is not restricted in velocity due to a
changed orientation of valleys; so the oscillation of the

Fig. 9. Diffusion coefficient D(v,t). Valleys distant from v0 = 1 are
extended along the v-axis; near the resonant region, they make a
bend and are oriented along the t-axis

dispersion is caused in this case by the temporal
variation of the diffusion coefficient in the vicinity of
a fixed velocity.

4. Conclusions

Simulations of the particle diffusion in an external field
of random waves show a fast initial spread of velocities
for a moderate Kubo numbers: the early stage gives a
substantial contribution in the overall dispersion. It may
be expected that a higher initial rate of velocity spread
causes a lower saturation level of instability.

The solutions of the Fokker–Planck equation with
the time dependent diffusion coefficient recover the
oscillations observed in the simulation. Oscillations are
attributed to the particle trapping and the non-resonant
particle-wave interaction, the effects of which are not
described by the diffusion equation known from the
quasilinear theory.
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ЗАХОПЛЕННЯ ЧАСТИНОК
ТА НЕРЕЗОНАНСНА ВЗАЄМОДIЯ
В ЗАДАЧI СТОХАСТИЧНОГО ПРИСКОРЕННЯ

В.I. Засенко, А.Г. Загороднiй, Я. Вейланд

Р е з ю м е

Розглянуто еволюцiю дисперсiї швидкостi частинок, що ру-
хаютья в зовнiшньому полi випадкових хвиль. Для помiр-

них чисел Кубо стає помiтним ефект захоплення части-

нок хвилями, що веде до розбiжностi мiж результатами

квазiлiнiйного опису дифузiї та моделювання. Показано, що

рiвняння Фоккера–Планка iз залежним вiд часу коефiцiєнтом

дифузiї деякою мiрою описує захоплення частинок. Крiм то-

го, це рiвняння враховує нерезонансну взаємодiю частинок з

хвилями.


