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The problem of determination of the parameters of a stationary
glow discharge is considered in the general statement. The coupled
system of nonlinear equations includes the balance equation with
regard for diffusion processes for electrons and ions and the Poisson
equation for the electric potential. The problem is considered in the
spherical and – for comparison – planar geometries. The boundary
conditions were determined by the electric current density at
the boundaries of the discharge gap; the electron temperature
was considered constant. The nonlinear coupled boundary-value
problem is solved by using the method of continuation with
respect to a parameter. The influence of diffusion processes and
the geometry of the gas discharge on its properties are analyzed.

1. Introduction

The theory of gas-filled diodes represents one of the
fundamental ones in the physics of gas discharges
and low-temperature plasmas. At the same time, glow
discharges are widely used in various technological
processes related to a surface modification of
constructional details and elements. Though the glow
discharge is characterized with higher power losses
in the discharge gap as compared to the arc one, it
has a doubtless advantage concerning a possibility of
the maximal localization of the technological action
of a discharge in the anomalous mode on a treated
surface. In this case, its effectiveness is reached locally
due to the formation of the region of proper cathode
potential drop between the plasma and the surface of a
detail [1].

A characteristic peculiarity of low-pressure low-
temperature plasma is the difference between the
electron temperature Te and that of a heavy component
Ta. The principal role in the balance of charged particles
is played by the processes of electron-impact ionization
as well as diffusion processes that, together with the
drift shift of charged particles under the action of
an external field, determine the physical parameters
of the discharge and the conditions of its existence.
The characteristic temperature difference, Te À Ta,
also essentially influences the development of diffusion
processes.

Considerable mathematical difficulties in the
determination of parameters of gas-discharge plasma
arising in the general statement with regard for the
diffusion of charged particles compel to use a simplified
statement of the problem. As a rule, the glow-discharge
theory considers the cathode region in the planar
geometry and the plasma of the positive column in
the axisymmetric geometry as a practically independent
region. As for the positive column region, with regard
for the quasineutrality of plasma and the assumption
Te(r) = const, this essentially simplifies the system of
equations reducing it to the equation of electron balance,
where the determining role is played by their losses due
to the diffusion to walls [2]. In spite of the mathematical
simplicity of such an approach, it has a rather limited
value, though allowing one to determine Te and the
relative radial distribution of the electron concentration
Ne(r). Indeed, in addition to the exclusion of the cathode
region from the consideration, such a statement of
the problem also excludes the possibility of both the
quantitative estimation of the potential drop across
the discharge gap and the determination of absolute
values of Ne due to the uncertainty of the boundary
conditions for the flows of charged particles, especially
in the case of the current running under conditions of
the accompanying gradient of Ne (which can take place
in a nonplanar geometry).

The numerical calculations of plasma parameters
were initiated by works [3,4]. Recently, a significant
success has been achieved in this field [5–12]. However,
the numerical modeling of processes mainly concerns
either discharges with no regard for diffusion [3–5, 10–12]
or short non-stationary discharges, where the positive
column region is practically absent [6–9]. Not in the
least place, this is related to the requirement of self-
consistency of the discharge parameters, namely the
correspondence between the specified currents and the
potential drop across the discharge gap. In the case of the
stationary coupled nonlinear boundary-value problem, it
is extremely difficult to coordinate these parameters in
the solution.
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It is known [9] that, in glow discharges of the
planar geometry, the role of diffusion processes becomes
evident at pressures of 1 Torr and lower. It is the
pressure region that is characteristic of the processes
of surface modification in the glow discharge (0.01–
1 Torr in [13]). The investigation of the role of diffusion
processes in glow discharges on the basis of numerical
modeling is related to the characteristic methodical
problem conditioned by the so-called “mesh diffusion”: it
arises when using the difference schemes of calculations
somewhat distorting the character of physical pro-
cesses [5–9].

The influence of the spherical geometry on the
character of processes in a glow discharge is hard to
predict as compared to the planar one. In the former
case, the densities of current, drift and diffusion flows
decrease along the radius of the system, which creates
additional gradients of the concentration of charges
particles; respectively, the effectiveness of the ionization
processes and the electric field distribution can change.

Thus, since the glow discharges with electrodes,
whose geometry often is close to the spherical one, are
widely used in technological processes [13], it is necessary
to develop the corresponding methods for calculation of
the physical and technological parameters of discharges
just in the spherical geometry. In the present paper,
the comparative determination of the parameters of
stationary glow discharges of the spherical and planar
geometries is performed.

2. Problem Statement and Solution Technique

Aiming at the modeling of one of the modes of
experimental investigations [13], we consider that the
discharge is maintained between two concentrically
enclosed spheres; moreover, the surface of the internal
sphere represents the cathode, whereas that of the
external one – the anode. In the spherical coordinate
system, the balance equation for the concentration of
charged particles with regard for the symmetry of the
problem has a form

1
r2

d

dr

(
r2Je

)− α(E)|Je| = 0, (1)

1
r2

d

dr

(
r2Ji

)− α(E)|Je| = 0, (2)

Je = −µeNeE −De
dNe

dr
, (3)

Ji = µiNiE −Di
dNi

dr
, (4)

where Je and Ji stand for the densities of the electron
and ion flows, respectively, (J = e (Ji − Je) is the
electric current density in the discharge); Ne, Ni denote
their concentrations; E is the electric field strength in
the discharge; De, µe, Di, and µi are the diffusion and
mobility coefficients of electrons and ions, respectively;
α(E) is the first Townsend coefficient.

In order to close the system of equations (1), (2),
one should add the Poisson equation for the electrostatic
potential to them,

1
r2

d

dr

(
r2 dϕ

dr

)
=

e

ε0
(Ne −Ni) , E = −dϕ

dr
, (5)

where e is the electron charge, and ε0 is the dielectric
constant.

The boundary conditions for problem (1), (2), (5) are
as follows:

Je = −γJi, eJe = γJK/(1 + γ), ϕ = 0, (6)

Ji = 0, eJe = JA, ϕ = V, (7)

at the cathode and the anode, respectively; here, JK , JA

are the current densities at the cathode and the anode;
γ denotes the coefficient of electron secondary emission
from the cathode; and V is the voltage drop across the
discharge gap.

The search for the solution of the coupled nonlinear
boundary-value problem with nonlinear boundary
conditions represents a rather complicated task from the
viewpoint of computational mathematics. In addition,
the existence conditions of stationary glow discharges
critically depend on both the relation between the
concentrations of charged particles and the electric
field in the whole discharge gap. This fact imposes
essential limitations on their initial approximations and
the methods of linearization of the initial problem in
the sense of the “physicity” of the approximation. The
last circumstance practically requires to search for a
self-consistent solution of the nonlinear boundary-value
problem.

In order to find the solution of problem (1), (2),
(5)–(7), the method of continuation of the solution
with respect to a parameter [14] (the so-called
quasilinearization method) was used. The search for
the first approximation is performed in the assumption
[3,4,9–12] that the role of diffusion is inessential and can
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be neglected. In this case, the relation for the electron
and ion flows will include only the drift components:

Je = µeNeE, Ne = Je/µeE, (8)

Ji = µiNiE, Ni = Ji/µiE. (9)

In a similar manner, the equation for the electric
potential will be reformulated for the electric field
strength with regard for relations (8), (9):

1
r2

d

dr

(
r2E

)
=

e

ε0

(
Ji

µiE
− Je

µeE

)
. (10)

It is worth noting that the boundary-value problem
(1), (2), (5)–(7) is formulated with respect to the electron
and ion flows and represents a boundary-value problem
for first-order equations. Its solution can exist only for
a certain value of the parameter, which is presented
here by the value of the electric field strength at one
of the points of the boundary. The solution of the
nonlinear boundary-value problem with differential first-
order equations is found within the “shooting” method,
by changing the value of the electric field strength at the
anode. After solving the boundary-value problem for the
flows, let’s reformulate the initial problem (1), (2), (5)–
(7) in accordance with the method of continuation of the
solution with respect to a parameter with regard for the
diffusion terms:

1
r2

d

dr

(
r2

(
−µeNeE −De

dNe

dr

))
−

−α(E)
∣∣∣∣−µeNeE −De

dNe

dr

∣∣∣∣ = 0, (11)

1
r2

d

dr

(
r2

(
µiNiE −Di

dNi

dr

))
−

−α(E)
∣∣∣∣−µeNeE −De

dNe

dr

∣∣∣∣ = 0, (12)

1
r2

d

dr

(
r2E

)
=

=
e

ε0

(
Ji

µiE
− Je

µeE
− λ

(
Di

µiE

dNi

dr
− De

µeE

dNe

dr

))
,

(13)

where λ denotes some formal parameter of the method.
Supposing that the drift component of the flows in the

cathode region is much higher than the diffusion one
due to a large absolute value of the electric field, the
boundary conditions take the form

eµiNiE = JK/(1 + γ),

eµeNeE = γJK/(1 + γ), ϕ = 0, (14)

µiNiE −Di
dNi

dr
= 0, −µeNeE −De

dNe

dr
= JA/e,

ϕ = V (15)

at the cathode and the anode, respectively. The
boundary conditions for the electric potential are
determined from the solution of problem (1), (2), (10)
with respect to the flows. At the first step, the gradients
of the electron and ion concentrations that appear in the
Poisson equation (13) are determined, with the use of the
found flows, from the solution of the following system of
differential equations:

Je = −µeNeE −De
dNe

dr
, (16)

Ji = µiNiE −Di
dNi

dr
, (17)

with the initial conditions (14).
According to the method of continuation with respect

to a parameter, we assume that the solution of the
problem at λ = 0 is known. In the given case, it is
the solution of problem (1), (2), (10) for the flows. At
λ = 1, problem (11)–(15) is identical with the initial
one (1), (2), (5)–(7). After differentiating with respect
to the parameter, the nonlinear boundary-value problem
(11)–(15) is presented in the form of a collection of
linear boundary-value problems for the derivatives of
the unknown functions with respect to the parameter
λ. For their solution at each step, one uses the method
of their reduction to a number of Cauchy problems that
can be integrated with the help of the implicit Euler
method of the second order of accuracy. After solving
the linear boundary-value problems for the derivatives
with respect to the parameter, the values of the unknown
functions are found by means of the integration of the
latter over λ.

In the case of solving the nonlinear coupled
boundary-value problem (1)–(7), the method of
continuation with respect to a parameter has certain
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a b
Fig. 1. Spatial distribution of the concentration of ions (solid curve), electrons (dashed curve) and the electric field strength (dash-dotted
curve) in the spherical geometry (rK = 2 cm): а – I = 10−2 A, b – I = 10−1 A

advantages as compared with the difference schemes
proposed in [7]. First of all, it is the absence of the
so-called “mesh diffusion,” whose presence in difference
schemes results from the approximation of differential
operators by finite differences [6]. This fact allows us
to estimate more correctly the influence of diffusion
on the characteristics of a glow discharge. In addition,
the change of the order of the method in difference
schemes also conditions a change of the global matrix
of the system of algebraic equations, which the initial
boundary-value problem is reduced to. Thus, the only
possible way to control the convergence of the process
considered in works [6–10] is a change of the difference
mesh length. At the same time, the method of reduction
of the linearized boundary-value problem to the system
of Cauchy problems gives, in our case, a possibility to
regulate the accuracy of calculations not only changing
the difference mesh length but also choosing the order
of the scheme of integration of the Cauchy problems.
The latter possibility can shorten (depending on the
choice of the scheme) the time of calculations in the
case of a permanent mesh in the process of successive
approximations to the solution of the initial nonlinear
boundary-value problem.

3. Analysis of Numerical Results

In the calculations for a glow discharge in the plasma-
forming medium of molecular nitrogen, we assumed
the following relation for the first Townsend coefficient

[2,6,16]:

α = 12p exp (−342p/|E|) , cm−1, (18)

where p is the pressure (Torr), E is the electric
field strength (V/cm). The diffusion coefficients were
determined as

De = µekTe/e, Di = µikTi/e, (19)

(k is the Boltzmann constant) with the following
values of the physical parameters [5]: µe = 4.4 ×
105p−1 cm2·Torr/(V·s), µi = 1.44×103 cm2·Torr/(V·s),
Ti = Ta = 300 K, Te = 11600 K. The temperature Te

was estimated using the technique presented in [2] with
regard for the spherical geometry of the discharge region
[15]. The coefficient of electron secondary emission from
the cathode amounts to γ = 0.02 in the same way as in
[2–4].

We considered the following values of parameters of
the problem in the spherical geometry: p = 1.1 Torr,
rK = 2 cm, R = 33 cm are the radii of the
internal (cathode) and the external (anode) spheres
of the gas-filled diode, respectively. The calculations
were performed for two values of the discharge current
intensity I = 10−2 and I = 10−1 A (respectively,
the current density J(r) = I/4πr2 at the cathode
amounted to 0.2 and 2 mA/cm2, which fits the interval
of calculations carried out in [3,7]).

Some results of calculations are presented in Figs. 1–
4. For the convenience of comparison with the case of
planar geometry, the distances from the cathode ∆r are
marked out at the abscissa axes of the figures. In
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a b

Fig. 2. Spatial distribution of the concentration of electrons (1, 2), ions (3, 4) and the electric field strength in the neighborhood of the
cathode potential drop (5, 6) in the “planar” geometry (rK = 100 cm) (1, 3, 5) and in the spherical geometry (rK = 2 cm) (2, 4, 6)
(I = 10−1А)

particular, Fig. 1 gives the radial distribution of the ion
and electron concentrations as well as the electric field
strength in a spherical diode for the mentioned values of
discharge currents. Here, we assume that the diffusion
in the discharge gap can be neglected (that is, it is the
solution of problem (1), (2), (10)).

The distributions of the electron and ion
concentrations with regard for diffusion processes were
also determined. However, for the chosen pressure
p = 1.1 Torr, the additional influence of diffusion on the
drift electron flow doesn’t exceed 10% even in the narrow
cathode region of the maximal gradient of Ne(r); beyond
its limits, it doesn’t exceed 1%. For ions, the influence
of diffusion can be neglected. That’s why their influence
isn’t reflected in the mentioned figure. In what follows,
we characterize only the changes of the voltage across
the discharge gap conditioned by diffusion processes (see
Fig. 3). It is worth noting that the role of diffusion must
be more essential in the case of a decrease of the pressure
in the spherical diode.

It is worth noting that we neglected the diffusion
flows in the cathode layer in the boundary conditions
(14) at the cathode. On the other hand, as follows from
the presented dependences, the latter can influence the
distribution of the concentrations of charged particles in
the boundary region of the cathode layer and the positive
column.

In order to separate the influence of the geometry of
a discharge gap on the properties of the glow discharge,

we also performed calculations for the planar geometry.
This case is characterized with the same system of initial
equations, but the cathode radius is assumed to be
rK = 100 cm. This point minimizes the role of the
electrode curvature at least as concerns the processes
in the cathode region. From the results presented in
Fig. 2,a, it follows that the latter case is characterized
by a considerable increase of the concentration of
charged particles in the cathode region and especially
in the positive column. It is essential that, in both
cases, an approximately linear dependence of the electric
field in the cathode region on the spatial coordinate
(Fig. 2,b) is conserved, which well corresponds to
the basic assumptions of the classic theory of glow
discharges [2].

Respectively, the “planar” geometry of the glow
discharge is characterized by a lower potential drop
across the discharge gap than that in the case of the
spherical geometry (Fig. 3). In contrast, taking into
account the diffusion processes results in the increase
of the potential drop across the discharge gap as follows
from the same figure by the example of the discharge
current of 10−2 A. However, in the case of the planar and
spherical geometries, the cathode potential drop is not
essentially changed in contrast to the field distribution in
the positive column region, whereas the role of diffusion
processes is mainly reduced to a change of the cathode
drop.
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Fig. 3. Spatial distribution of the potential drop across a discharge
gap in the spherical geometry (rK = 2 cm, I = 10−1A) (1),
in the “planar” geometry (rK = 100 cm, I = 10−1A) (2), in
the spherical geometry with regard for diffusion (3), and in the
spherical geometry with no regard for diffusion (4) (rK = 2 cm,
I = 10−2А)

Fig. 4. Spatial distribution of the first Townsend coefficient in
the neighborhood of the cathode potential drop in the spherical
geometry: solid curve – I = 10−1 A, dashed curve – I = 10−2 A;
rK = 2 cm

For the sake of illustration, Fig. 4 also shows the
distributions of the first Townsend coefficient. It is
worth noting that, beyond the limits of the cathode
layer, its values fall practically up to zero. This is
valid for the modes with regard for diffusion and
without it. In the positive column region, the influence
of ionization with regard for the Townsend coefficient
becomes much lower than that of the volume ionization
in the positive column plasma [2,16] for the considered
values of the electron temperature, which can condition
a partial distortion of the real picture of the field and
concentration distributions.

Attention is attracted to the appearance of a local
maximum in the ion distribution (Fig. 1,a and 2,a). It
also corresponds to the results of work [10], where it
was explained by a considerable nonlinearity of the first
Townsend coefficient (see Fig. 4).

The results obtained in this paper concerning the
observed behavior of the low-temperature plasma of a
glow discharge and the variation of the voltage across
the electrodes depending on the discharge current agree
with the basic tendencies of experimental investigations
[13,15]. At the same time, the authors didn’t pose the
problem to achieve the quantitative coincidence between
the experimental results and those of numerical modeling
at the given stage, because, as for the parameter most
convenient for comparison – discharge voltage, they are
determined in one way or another by the choice of

the Townsend and the secondary ion-electron emission
coefficients. The investigation of the validity of choosing
these parameters wasn’t a task of this work.

4. Conclusions

The problem of determination of the parameters of a
stationary glow discharge is considered in the general
statement. The influence of the discharge geometry and
diffusion processes on the physical parameters of the
discharge is investigated. The obtained numerical results
testify to the influence of diffusion on the characteristics
of the discharge mainly in the region of the cathode
layer. However, the investigations are performed at such
a pressure of the plasma-forming gas (1.1 Torr), where
its influence on diffusion processes isn’t too essential.
First of all, it is done from the considerations of the
separation of the influence of the geometry of a glow
discharge on its parameters. That’s why the problem was
considered in the spherical geometry and its solution was
compared with that for the planar geometry. The results
of modeling of gas discharges obtained in the given
paper can be used for the estimates of real technological
processes running in setups for the ion-plasma surface
treatment in glow discharge modes.

In conclusion, it is worth noting certain cautions.
The main disadvantage of the described approach to
the mathematical modeling of a glow discharge of
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the spherical geometry lies in the fact that, despite
the mathematical complexity of the given problem, its
solution is, however, of semiempirical character. Indeed,
the temperature is determined here with the use of the
assumption Te(r) = const which is not quite evident
in the spherical geometry and is formally borrowed
from a similar problem for a long cylindrical tube.
In addition, the requirement of self-consistency of the
magnitudes of the discharge current and the voltage drop
across the discharge gap results in the underspecification
of the boundary-value problem with respect to either
the currents or the voltage. This uncertainty can be
overcome by “fitting” one of the boundary conditions
from certain physical considerations, in other words,
supposing the initial boundary-value problem dependent
on a parameter presented, for example, by a boundary
value of some of the unknown functions. After that, one
should “optimize” the latter at each step of the solution
in the sense of the strict fulfillment of other boundary
conditions.

1. V.A. Zhovtyansky, Ukr. Fiz. Zh., see the same issue, p.490.
2. A. Engel and M. Steenbeck, Elektrische Gasentladungen. Ihre

Physik und Technik (Berlin, 1932/1934).
3. A.L. Ward, Phys. Rev. 112, 1852 (1958).
4. A.L. Ward, J. Appl. Phys. 33, 2789 (1962).
5. Yu.P. Raizer, Teplofiz. Vys. Temp. 24, 984 (1986).
6. Yu.P. Raizer and S.T. Surzhikov, Teplofiz. Vys. Temp. 26,

428 (1988).
7. Yu.P. Raizer and S.T. Surzhikov, Teplofiz. Vys. Temp. 28,

439 (1990).
8. S.T. Surzhikov and J.S. Shang, J. Comp. Phys., 199, 437

(2004).
9. A.S. Petrusev, S.T. Surzhikov, and J.S. Shang, Teplofiz. Vys.

Temp. 44, 814 (2006).

10. V.V. Aleksandrov, V.N. Koterov, V.V. Pustovalov, A.M.
Soroka, and A.F. Suchkov, Kvant. Elektr. 5, 114 (1978).

11. V.V. Aleksandrov, V.N. Koterov, and A.M. Soroka, Zh.
Vychisl. Mat. Mat. Fiz. 18, 1214 (1978).

12. N.T. Pashchenko and Yu.P. Raizer, Fiz. Plasmy 8, 1086
(1982).

13. O.G. Didyk, V.A. Zhovtyansky, V.G. Nazarenko, and V.A.
Khomich, Ukr. Fiz. Zh., see the same issue, p.482.

14. Ya. M. Grigorenko and N.D. Pankratova, Computational
Methods in Problems of Applied Mathematics (Lybid’, Kyiv,
1995).

15. I.N. Karp and V.А. Zhovtyansky, The Gas Institute, Nat.
Acad. Sci. Of Ukraine Report GR N0102U002955, Inv.
N0207U004628, 2006.

16. B.M. Smirnov, Physics of Weakly Ionized Gas (Nauka,
Moscow, 1978).

Translated from Ukrainian by H.G. Kalyuzhna

МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ПЛАЗМИ
ЖЕВРIЮЧОГО РОЗРЯДУ В СФЕРИЧНIЙ ГЕОМЕТРIЇ

В.А. Жовтянський, Ю.I. Лелюх

Р е з ю м е

Розглянуто задачу визначення параметрiв стацiонарного
жеврiючого розряду в загальнiй постановцi. Зв’язана система
нелiнiйних рiвнянь включає рiвняння балансу з урахуванням
дифузiйних процесiв для електронiв та йонiв, а також рiвнян-
ня Пуассона для електричного потенцiалу. Задачу розглянуто
у сферичнiй та, для порiвняння, в плоскiй геометрiї. Гранич-
нi умови визначалися густиною електричного струму на ме-
жах розрядного промiжку; електронна температура вважала-
ся сталою. Нелiнiйна зв’язана гранична задача розв’язувалась
методом продовження за параметром. Проаналiзовано вплив
дифузiйних процесiв та геометрiї газового розряду на його вла-
стивостi.
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