TEMPERATURE RELAXATION PROCESSES

TEMPERATURE RELAXATION PROCESSES
IN A MAGNETIZED PLASMA

V.N. PAVLENKO, V.G. PANCHENKO

UDC 533.9

©2008

Institute for Nuclear Research, Nat. Acad. Sci. of Ukraine
(47, Nauky Ave., Kyiv 03680, Ukraine)

By means of the kinetic fluctuation theory, the relaxation process
between the electron and ion temperatures in a magnetized
homogeneous plasma is considered. The cases where the external
upper-hybrid pump wave excites modified convective cells, ion-
acoustic waves and ion-cyclotron oscillations with ion temperature
anysotropy are analyzed. The inverse relaxation time in the
regime, where turbulent fluctuations are developed, is calculated
for these cases, and its dependence on the pump wave and plasma
parameters is deduced.

Investigations of the temperature relaxation process
between electrons and ions in plasmas are important
for plasma diagnostics, measurements of the efficiency of
high-frequency pump power dissipation, and for plasma
heating.

The theory of temperature relaxation was developed
in [1-3] for an isotropic magnetized plasma and also for a
plasma subjected to external electromagnetic radiation.

The theory for fluctuations in a plasma with a high-
frequency pump was developed in [4-7]. On the basis
of this theory, the relaxation processes in plasmas were
studied in [8-10].

It has been found [8] that a high-frequency electric
field close to the lower-hybrid resonant frequency has a
significant influence on the relaxation rate between the
electron and ion temperatures in a magnetized uniform
plasma. It was shown that, due to the pump-wave
field, the inverse relaxation time contains an additional
term which increases anomalously when the pump-wave
amplitude approaches the threshold value.

The relaxation process in a  magnetized
inhomogeneous plasma is considered in [9] when the
external lower-hybrid pump wave decays into a daughter
wave and an electron drift one. In the region above
the instability threshold, the inverse relaxation time is
calculated, and its dependence on the density gradient
and the pump-wave intensity and frequency is obtained.

In [10], the relaxation between the electron and
ion temperatures is investigated when the ion-cyclotron
wave is excited parametrically by the lower-hybrid pump
wave in a plasma with ion temperature anisotropy. The
dependence of the relaxation time on the pump-wave
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amplitude and the anisotropy of the ion temperature is
calculated.

In the present paper, on the basis of the kinetic
fluctuation theory, the relaxation process between
the electron and ion temperatures in a magnetized
homogeneous plasma with a high-frequency pump is
considered. The case where the external upper-hybrid
pump wave decays into daughter and ion-acoustic
waves in a plasma is considered. The situation when
the upper-hybrid pump wave parametrically excites
modified convective cells and ion-cyclotron oscillations
with ion temperature anisotropy is also analyzed. The
inverse relaxation time in the regime, when the turbulent
fluctuations are developed, is calculated for these cases,
and its dependence on the pump wave and the plasma
parameters is obtained.

Consider the electron-ion plasma in an external
magnetic field BoZ. Furthermore, the plasma is
subjected to an HF pump field, whose electric field is
directed perpendicularly to the external magnetic field.
For a long-wavelength (kg = 0) pump wave, we can write
E(t) = Eyijcoswot. First, we consider the case where
the pump wave frequency is close to the upper-hybrid
frequency,

WUH1 ~ (wf,e +wZ )2, (1)

where wy, is the electron plasma frequency and we. is the
electron gyrofrequency. Here, wpe > wee, i.e. we have the
case of a weakly magnetized plasma.

The important role of parametric instabilities in the
region of upper-hybrid resonance was pointed out in [11-
13].

We consider the decay of the pump wave into an
upper-hybrid wave and modified convective cells:

wo = WyuH1 T We- (2)

Here, w, = (mi/me)l/2 cos Ow,; is the real part of the

frequency of a modified convective cell, Imw = 7, =

1 . . ..
5Vei, Where vg; is the electron-ion collision frequency,

O is the angle between k and Eo, and w,; is the ion
gyrofrequency. It should be noted that convective modes
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arise in the magnetized plasma with a small ratio of the
plasma pressure to the magnetic pressure and can also
occur in the ionospheric plasma [14, 15].

The dipole approximation is assumed for the pump
wave, because typical ionospheric plasma parameters
satisfy the condition ko/ko, < 1. Here, ko = wp/c (with
wo & wpe for the upper-hybrid wave) is the wave vector
of the pump upper-hybrid wave, and the wave number
ko, satisfies the decay condition (2) (we assume that
kor < 1/pe, where p is the Larmor radius). Thus, we
have

kO ~ wpeVTe

—_— =

ko1

<1,
Wee €
where V. is the electron thermal velocity.

It is well known [8] that the connection between the
inverse relaxation time and the power density for the
plasma ion component is defined by the formula

1 2W;
S~ L )

Tei  3n.d.

where the power density is

W; = n; / p—2[idﬁ. (4)
Qmi

In (4), I, is the collision integral which can be
represented in the Fokker—Planck-form

Ia(p) = Z dE(LanDoanan + LanAan)f(p)' (5>

The quantities D,, and A,, are, respectively, the
diffusion coefficient in the velocity space and the
dynamic friction coefficient, and the notation L, means

0 nw, 0
Lom = kj—— ca 9
Yap, " v ap.

Taking into account that the main contribution
to the collision integral (5) for a parametrically
unstable plasma is made by the diffusion coefficient (in
comparison with the dynamic friction coefficient), we
can present the power density in the form [8, 16]

Ak [ dw (OESE) o

where <5E)6E)>w7]; is the spectral density of turbulent
fluctuations of the electric field in the region above the
instability threshold. The correlator (§ESE ), i near the
natural plasma frequencies is obtained from the well-

known expression [§], in which the plasma eigenmodes
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are w; = wj + ivex (j = UH,C for the upper-hybrid
wave and a modified convective cell, respectively).
Here, for the saturation of the parametric instability,
we have introduced the effective collision frequency
Veti1 ~ Ve B /E% , [17) which defines the additional
wave damping due to the scattering of charged particles
by turbulent electric field fluctuations. Here,

2 32 2
wi B mevZ;wum
k22

Et2h1 =16 (7)

mw2,we
is the threshold electric field for the decay instability (2).
Substituting the redefined expression for the field
fluctuation spectral density into (6) and integrating
with respect to w and E, we obtain the formula that
determines the power density absorbed in the plasma

2 4
1 [w E
Wi~ — pe) Veiio ) 8

2m (wo B (k1) ®

where k7 is the wavenumber satisfying the decay
condition (2).
Substituting expression (8) into (3), we have
11 e mwlw(ke)’Ey

~ 19 4 2"
Teil 12 meT, me WOVeiWUHlBO

(9)

It can be seen from (9) that the inverse relaxation time
has a sharp dependence on the pump frequency and is
proportional to the pump wave intensity.

As our second example, we consider the decay of the
pump wave into an upper-hybrid and ion-acoustic wave
Wo = WUH2 T Ws, (10)
where w, = |k |vs and v, = (T./m;)*/? is the ion sound
velocity. Consider an upper-hybrid wave satisfying the
dispersion relation

%2;@ sin2®> . (1)

WUH2 = Wee (1 + 207
It should be noted that expression (11) is valid in a
strongly magnetized plasma for the case wpe < wee. We
assume that the damping rate of the upper-hybrid wave
YUH R Vei- We note also that the pump-wave frequency
wp must be slightly above wypse, because ws < wp, wuns.
Near the eigen-frequencies of the plasma, we
now express the spectral density in terms of the
fluctuation intensities at the ion-acoustic and upper-
hybrid frequencies [15]. Thus,
(OESE), (12a)

i= w[[gé(w —ws) + 170w — wU)},
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where

S

r=——//———
k' ImedRee/0w

(OF 2>g_wO 20w —wo +wrr)

T oy2
X T AR 0w — )

4 €

(12b)

Note that we do not need the expression for I¥ since the
instability saturation mechanism is determined mainly
by low-frequency ion-acoustic turbulent fluctuations.

Taking into account that vega ~ (E2/E2 ) (Vsvei)'/?

when vego > Vei,7vs [12], we substitute expression
(12) into (6) and integrate with respect to w and k.
Then using formula (3) and performing lengthy but
straightforward calculations, we obtain the following
expression for the inverse relaxation time:

11 e’E2  E3
3 meTewd EtQh2

)2 (13)

("Ys Vej
Tei2

It should be noted that the threshold value of the
parametric decay (10) is governed by [15]

o1 (5rme\ V2 v2 wi (W — w?)?
E2 ~ 2 ( 2mie) C’I;eBg 0( 0 ce) Vei (14)
By carrying out the integration above, we have assumed
that 0(ws — wo + wy) = O[(k — ko)vs], where ko =
(wo — wy)/vs is the wave number which satisfies the
decay condition (10).
Thirdly, we consider
ion wvelocity distribution
be anisotropic, i.e. it is

the situation where the
function is supposed to
characterized by different

temperatures along the directions parallel and
perpendicular to Bg. The unperturbed particle
distribution functions are therefore written in the
form [18]:
3/2 1/2

Fouw =70 Ma / T, / %
o O 27TTQ T”a
% exp _mavia B MV, , (15)

2T o 2T,

where ng, is the equilibrium density and m, is the
particle mass. The temperature T, is, in the general
case, supposed to be different from 7' .

We limit our anlysis to electrostatic, weakly damped
oscillations close to harmonics of the ion cyclotron
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frequency (w =~ nwg) which can exist if the wave
propagation direction is nearly perpendlcular to Bo, ie.
the angle between the wave vector k and Bo is close
to m/2. In order to describe these waves, we adopt
the approximation (w — nwea) /krvig > 1, kpe < 1,
vy € w/ kv < ve. Then, for n = 1, we obtain the
expression for the frequency and the damping rate of
such oscillations [19]

Rew = w® = wy; (I'+ A1(B14)), (16)
mw =3+ = =
AW T Alw
_ 9)1/221%ei L . 17
(ﬂ-/ ) k// Vg T/Z eXp 2k/2/ U’/Z ( )

In (16) and (17), A, (B1:) = I.(B1:) e P+, where I,
is the modified Bessel function, 3,; = (kpi;)? > 1.
Moreover, relations (16) and (17) were obtained in the
case which is interesting in applications, namely, when
Tui/TLi <A< 1.

Note that the anisotropic distribution of ions over
velocities is typical of the plasma held in adiabatic traps.
In this case, all the ion anisotropic instabilities possess
the frequencies close to the ion-cyclotron one and its
harmonics with the increments and the conditions for
the emergence of those instabilities essentially depending
on a degree of ion anisotropy.

We consider the decay of the pump wave into
a daughter upper hybrid wave and ion-cyclotron
oscillations in a plasma with ion temperature anisotropy:

wo = wunz +w. (18)

The parametric instability threshold for this decay
is [11]
32r  viB? Veﬂi(l) (19)
3sin*f 2 '

WetWei

2
EthSN

2

Taking into account that veg =~ Eb; Ve; When vy <
Vot < 'yz [1 2] and using the analogous procedure as that
which has been described earlier), we find, as a result,
the relaxation time dependence on the ion temperature

anisotropy

1 T\ 2/? C
~ T2 [ 22 .
Tei3 L <Tu) P <T”iTJ_i)

(20)
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Here, C' is a constant which does not depend on the
electron and ion temperatures.

In the present paper, the relaxation processes
between the electron and ion temperatures in the
magnetized plasma with an upper-hybrid pump are
investigated. The expressions for the inverse relaxation
time in the cases where the upper-hybrid pump
parametrically excites modified convective cells, ion-
acoustic waves, and ion-cyclotron oscillations in a
plasma with ion temperature anisotropy are obtained.

These results can be of interest for plasma diagnostics
and for considering the plasma heating efficiency.

We would like to express our gratitude to Prof.
L. Stenflo for the useful discussion and comments.
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ITPOIIECHU TEILJIOBOI PEJTAKCAILIIT
vV 3AMATHIYEHIN ITJIA3MI

B.H. Ilasaenxo, B.I. Ilarnwenxo
PeszmowMme

Ha ocnosi kineruunol Teopil durykTyariit pO3IJIsSiHyTO IPOLECH Pe-
Jlakcarii Mi>k €JIEKTPOHHOIO 1 I0HHOIO TeMIlepaTypaMu B MarHiToak-
TUBHIN ofxHOpPinHi#M miasmi. [IpoanasizoBaHo Buajku, KOJIM 30B-
HIIIHST BEPXHBOTIOpH/IHA XBUJIS HaKadKy 30yKye KOHBEKTHBHI
KOMIpPKH, iI0HHO-3BYKOBI XBHJIi Ta iOHHO-IIMKJIOTPOHHI OCHMJIAIII 3
aHizoTpormiero ionnol Temneparypu. O6unciIeHO 0OOEpHEHHIT Yac pe-
nakcalil B pexkuMi TypOyIeHTHUX (DiIyKTyaliil it X BUIIAIKIB
Ta OTPUMAHO HOr0 3aJIe2KHICTh BiJl IapaMeTpiB IIa3MH i XBUJI Ha-
Ka4KH.
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