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A canonical partition function for the two-component excluded
volume model is derived, leading to two different van der Waals
equations of state. The one of them is known as the Lorentz–
Berthelot mixture, and the other has been proposed recently.
Both models are analyzed in the canonical and grand canonical
ensembles. In comparison with the one-component van der Waals
excluded volume model, the suppression of particle densities
is reduced in these two-component formulations, but in two
essentially different ways. Presently used multicomponent models
have no such reduction. They are shown to be not correct when
used for the mixture of particles with different hard-core radii.

For high temperatures, the excluded volume interaction is
refined by accounting for the Lorentz contraction of the spherical
excluded volumes, which leads to a distinct enhancement for the
light particle contributions into thermodynamic functions. The
resulting influence of two hard-core radii and Lorentz contraction
on pion and nucleon yields is studied in detail for AGS and SPS
data.

1. Introduction

Thermal models are commonly used to interpret
experimental data on hadron collisions, see, for instance,
[1–5]. In the van der Waals (VdW) excluded volume
model, the short-range repulsion between particles is
represented by hard-core potentials, i. e. the finite size
of the particles is taken into account. As a consequence,
the particle yields are essentially reduced compared to
the ideal gas results, whereas yield ratios remain almost

unchanged, if the same hard-core radius is used for all
particle species.

As particle species with smaller hard-core radii are
closer to the ideal case, their particle densities are
suppressed less. Consequently, their yield ratios to
particle species with larger hard-core radii are enhanced.
This fact has been used in recent attempts [6] to
explain the experimentally observed pion abundance for
AGS and SPS data [7] by introducing a smaller hard-
core radius for pions Rπ than for all other hadrons
R0. However, the resulting values of radii are quite
large, R0 = 0.8 fm and Rπ = 0.62 fm. On the other
hand, a reasonable fit of SPS data has been obtained
in [8] only for a distinctly smaller pair of hard-core
radii.

However, the excluded volume models used in [6, 8]
are not correct in the case of different hard-core radii.
As will be shown in Sect. 2, these models correspond to
a system where the components are separated from each
other by a mobile wall and hence cannot mix.

A more realistic approach requires a two-component
partition function including a term for the repulsion
between particles of different hard-core radii. In the case
of two components, however, the VdW approximation
is not uniquely defined. The simplest possibility yields
the Lorentz–Berthelot mixture, which was originally
postulated by van der Waals for binary mixtures,
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see [9–12]. Another VdW approximation was recently
proposed in [13]. These two formulations contain a
suppression of particle densities similar to the one-
component van der Waals gas, which is reduced
to different extent for each formulation. In the
present work, we will study and apply both of these
formulations.

There is yet another cause for a reduced excluded
volume suppression. Particles are considered to be rigid
spheres in the VdW model. At high energies as achieved
in nuclear collisions, however, relativistic effects cannot
be neglected [14]. Within the logic of the VdW model,
it is necessary to take the Lorentz contraction of hard
spheres into account. The inclusion of the Lorentz
contraction is not only required by special relativity
which forbids the existence of hard bodies, but it is
also demanded by the practical necessity to describe the
properties of hadrons above the cross-over transition.
The lattice quantum chromodynamics simulations [15,
16] predict the coexistence of usual hadrons and quark-
gluon plasma for the temperatures of about 2 to 3
values of the cross-over temperature at zero value of the
baryonic chemical potential. Therefore, to describe the
strongly interacting matter properties above the cross-
over region within the phenomenological approach [17],
the Lorentz contraction should be accounted not only
for pions, but also for kaons, ω and ρ mesons, and
even for heavier hadrons, if they do not melt at higher
temperatures.

For this purpose, we will use an approach developed
in [18] providing approximative formulae for relativistic
excluded volumes: naturally, they decrease with rising
temperature, and the effect is stronger for lighter
particles. At high temperatures, consequently, it is not
possible to use a one-component VdW description (i. e. a
common excluded volume for all particle species) for a
system of species with various masses. Since different
masses cause different reductions of the excluded
volumes at a given temperature, a multicomponent VdW
description is required.

To illustrate the influence of different excluded
volumes, we will restrict ourselves in this work to
the simplest ’multicomponent’ case, the two-component
case. The crucial extension from the one- to the two-
component case is to include the repulsion between
particles of two different hard-core radii. As it will be
illustrated, a generalization to the multicomponent case
is straightforward and will yield no essential differen-
ces [19].

In the next section, a derivation of the one-
component canonical partition function with (constant)

excluded volumes is presented. The generalization to the
two-component case is made, and two possible VdW
approximations are analyzed: the Lorentz–Berthelot
mixture [12] and the recently proposed approximation
in [13]. The corresponding formulae for the grand
canonical ensemble are derived and discussed in Sect. 3.
Relativistic excluded volumes are introduced in Sect. 4,
and the corresponding equations of state are presented
for both models. In Sect. 5, a fit of particle yield ratios [6]
is re-evaluated for both approximations, with constant
and with relativistic excluded volumes. The conclusions
are given in Sect. 6.

The Appendices A–C give a detailed analysis and a
comparison of the two approximations in the canonical
and grand canonical ensembles, respectively. In App. B,
a general proof of the thermodynamical stability of the
non-linear approximation is given.

2. Canonical Treatment

First we will derive the canonical partition function
(CPF) for the one-component VdW gas by estimating
the excluded volumes of particle clusters. Then this
procedure will be generalized to the two-component case.

For simplicity, the Boltzmann statistics are used
throughout this work. The deviations from quantum
statistics are negligible as long as the density over
temperature ratio is small. This is the case for the hadron
gas at temperatures and densities typical of heavy ion
collisions, see e. g. [6].

Note that, in this work, we will use the term VdW for
the van der Waals excluded volume model, not for the
general van der Waals model which includes attraction.

2.1. The Van der Waals excluded volume model

Let us consider N identical particles at temperature T
kept in a sufficiently large volume V , so that finite
volume effects can be neglected. The partition function
of this system (~ = c = kB = 1) reads

Z(T, V,N) =
φN

N !

∫

V N

d3x1 · · · d3xN exp
[−UN

T

]
. (1)

Here, φ ≡ φ(T ; m, g) denotes the momentum integral of
the one-particle partition

φ(T ; m, g) =
g

2π2

∞∫

0

dk k2 exp
[
−E(k)

T

]
, (2)

where E(k) ≡ √
k2 + m2 is the relativistic energy and

g = (2S + 1)(2I + 1) counts the spin and isospin
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degeneracy. For a hard-core potential UN of N spherical
particles with radii R, the potential term in Eq. (1) reads

exp
[−UN

T

]
=

∏
i<j≤N

θ(|~xij | − 2R) , (3)

where ~xij denotes the relative position vector connecting
the centers of the i-th and j-th particles. Hence one can
write
∫

V N

d3x1 · · · d3xN exp
[−UN

T

]
=

∫

V N

d3x1 · · · d3xN×

× ∏
1≤i<j≤N

θ(|~xij | − 2R) =
∫

V

d3x1

∫

V

d3x2 θ(|~x12| − 2R)×

× · · ·
∫

V

d3xN

∏
1≤i≤N−1

θ(|~xi,N | − 2R) ≡

≡
∫

V

d3x1

{~x1}∫
d3x2 · · ·

{~x1...~xN−1}∫
d3xN . (4)

Here,
{~x1...~xj}∫

d3xj+1 denotes the available volume for
~xj+1, which is the center of the particle with number
j+1, if the j other particles are configurated as
{~x1 . . . ~xj}. We will show now that this volume is

estimated by
{~x1...~xj}∫

d3xj+1 ≥ (V − 2b j), where 2b ≡
4π
3 (2R)3 is the excluded volume of an isolated particle
seen by a second one. Then, 2b j estimates the total
volume which is excluded by all particle clusters occuring
in the configuration {~x1 . . . ~xj}.

It is sufficient to prove that the excluded volume
of a cluster of k particles is less than the excluded
volume of k isolated particles. A group of k particles
forms a k-cluster, if, for any of these particles, there is
a neighbouring particle of this group at a distance less
than 4R. The exact excluded volume of a k-cluster, v(k),
obviously depends on the configuration of k particles. If
one considers two isolated particles, i. e. two 1-clusters,
and reduces their distance below 4R, their excluded
volumes will overlap. They form now a 2-cluster with
the excluded volume v(2) = 4b− 1vov, where vov denotes
the overlap volume.

Evidently, one can construct any k-cluster by
attaching additional particles and calculate its excluded
volume by subtracting each occuring overlap volume
from 2b k. It follows that v(k) < 2b k is valid for any k-
cluster, and this inequality leads to the above estimate.
Obviously, its accuracy improves with the diluteness of
the gas.

Using these considerations, one can approximate the
r. h. s. of Eq. (4) : starting with j +1 = N , one gradually

replaces all integrals
{~x1...~xj}∫

d3xj+1 by (V − 2b j). One
has to proceed from the right to the left, because only the
respective rightmost of these integrals can be estimated
in the described way. Hence one finds

Z(T, V,N) ≥ φN

N !

N−1∏
j=0

(V − 2b j) . (5)

In this treatment, the VdW approximation consists
of two assumptions concerning Eq. (5). Firstly, the
product can be approximated by

N−1∏
j=0

(
1− 2b

V j
) ∼= exp

[
−∑N−1

j=0
2b
V j

]
=

= exp
[− b

V (N − 1)N
] ∼=

(
1− b

V N
)N

, (6)

where exp [−x] ∼= (1− x) is used for dilute systems, i. e.
for low densities 2bN/V ¿ 1. The second assumption is
to take the equality instead of the inequality in Eq. (5).
Then the CPF takes the VdW form,

ZVdW(T, V, N) =
φN

N !
(V − bN)N

. (7)

As usual, the VdW CPF is obtained as an approximation
for dilute systems, but, when used for high densities, it
should be considered as an extrapolation.

Finally, one obtains the well-known VdW pressure
formula from the thermodynamical identity p(T, V,N) ≡
T ∂ ln[Z(T, V,N)]/∂V ,

pVdW(T, V, N) =
T N

V − bN
, (8)

using the logarithm of the Stirling formula.
Now let us briefly investigate a system of volume

V containing two components with different hard-
core radii R1 and R2 which are separated by a wall
and occupy the volume fractions xV and (1 − x)V ,
respectively. According to Eq. (8), their pressures read

pVdW(T, xV, N1) =
T N1

xV −N1b11
, (9)

pVdW(T, (1− x)V, N2) =
T N2

(1− x)V −N2b22
, (10)

where the particle numbers N1, N2 and the excluded
volumes b11 = 16π

3 R 3
1 , b22 = 16π

3 R 3
2 correspond to

components 1 and 2, respectively.
If the separating wall is mobile, pressures (9) and

(10) must be equal. In this case, the fraction x can be
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eliminated, and one obtains the common pressure of the
whole system

pVdW(T, xV,N1) = pVdW(T, (1− x)V, N2) =

= p sp(T, V,N1, N2) ≡ T (N1 + N2)
V −N1b11 −N2b22

. (11)

Since the components are separated in this model
system, it will be referred to as the separated model [19].

The pressure formula (11) corresponds to the
Boltzmann approximation of the commonly used two-
component VdW models of [6, 8] as will be shown in
Sect. 5. It is evident that p sp (11) does not describe the
general two-component situation without a separating
wall. Therefore, it is necessary to find a more realistic
model, i. e. an approximation from a two-component
partition function. This will be done in the following.

2.2. Generalization to the two-component case

Recall the simple estimate (4)–(7) which gives a
physically transparent derivation of the one-component
CPF in the VdW approximation. Let us use it now for
a two-component gas of spherical particles with radii R1

and R2, respectively. It is important to mention that
each component may consist of several particle species
as long as these species have one common hard-core
radius, i. e. the number of necessary VdW components is
determined by the number of different excluded volume
terms bqq. In the case of two radii, the potential term
(3) becomes

exp
[
−UN1+N2

T

]
=

∏
i<j≤N1

θ(|~xij | − 2R1)×

× ∏
k<`≤N2

θ(|~xk`| − 2R2)
∏

m≤N1
n≤N2

θ(|~xmn| − (R1 + R2)) . (12)

The integration is carried out in the way described
above; e. g. firstly over the coordinates of the particles
of the second component, then over those of the first
component. For the estimation of the excluded volume
of a k-cluster, two different particle sizes have to be
considered. One obtains

Z(T, V, N1, N2) ≥ φN1
1

N1!
φN2

2

N2!

{
N1−1∏
i=0

(V − 2b11 i)
}
×

×
{

N2−1∏
j=0

(V − 2b12 N1 − 2b22 j)

}
∼= φN1

1

N1!
φN2

2

N2!
×

×V N1+N2 exp
[
−N 2

1 b11+2N1N2b12+N 2
2 b22

V

]
, (13)

where it is φq ≡ φ(T ; mq, gq), and 2bpq ≡ 4π
3 (Rp +

Rq)3 denotes the excluded volume of a particle of
the component p seen by a particle of the component
q (p, q = 1, 2 hereafter). Approximating the above
exponent by exp[−x] ∼= (1 − x) yields the simplest
possibility of a VdW approximation for the two-
component CPF,

Z nl
VdW(T, V, N1, N2) ≡ φN1

1

N1!
φN2

2

N2!
×

×
(

V − N 2
1 b11 + 2N1N2b12 + N 2

2 b22

N1 + N2

)N1+N2

=

=
φN1

1

N1!
φN2

2

N2!

(
V −N1b11 −N2b22 +

N1 N2

N1 + N2
D

)N1+N2

,

(14)

where the non-negative coefficient D is given by

D ≡ b11 + b22 − 2 b12 . (15)

This approximation will be called the non-linear
approximation as the volume correction in (14) contains
non-linear terms in N1, N2. The corresponding pressure
follows from the thermodynamical identity

p nl(T, V,N1, N2) = p nl
1 + p nl

2 ≡

≡ T (N1 + N2)
V −N1b11 −N2b22 + N1 N2

N1+N2
D

. (16)

This canonical formula corresponds to the Lorentz–
Berthelot mixture (without attraction terms) known
from the theory of fluids [12]. It was postulated by van
der Waals [9] and studied as well by Lorentz [10] and
Berthelot [11].

The crucial step from the one- to the two-component
gas is to include bpq terms (p 6= q) additionally to the
bqq ≡ b|R=Rq terms. For the multicomponent gas, no
further essential extension is necessary. Consequently,
the generalization of the above procedure to the
multicomponent case, i. e. an arbitrary number of
different hard-core radii, is straightforward [19].

In [13] a more involved approximation has been
suggested for the two-component VdW gas. This follows
from splitting the exponent in the CPF (13) by
introducing two generalized excluded volume terms b̃12

and b̃21 (instead of a single and symmetric term 2 b12)
for the mixed case,

Z(T, V,N1, N2) ∼= φN1
1

N1!
φN2

2

N2!
V N1+N2×
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× exp
[
−N 2

1 b11+N1N2(b̃12+b̃21)+N 2
2 b22

V

]
, (17)

which leads to an alternative two-component VdW CPF

Z lin
VdW(T, V,N1, N2) ≡ φN1

1

N1!

(
V −N1b11 −N2b̃21

)N1 ×

× φN2
2

N2!

(
V −N2b22 −N1b̃12

)N2

. (18)

Since the particle numbers N1, N2 appear solely linearly
in the volume corrections, these formulae will be referred
to as the linear approximation. In this approximation,
the pressure is given by the formula [13]

p lin(T, V,N1, N2) = p lin
1 + p lin

2 ≡

≡ T N1

V −N1b11 −N2b̃21

+
T N2

V −N2b22 −N1b̃12

. (19)

The choice of the generalized excluded volume terms
b̃pq is not unique in the sense that all choices which
satisfy the basic constraint b̃12 + b̃21 = 2b12 are
consistent with the second-order virial expansion [13].
Therefore, additional conditions are necessary to fix
these generalized excluded volumes. In [13], they were
chosen as

b̃12 ≡ b11
2 b12

b11 + b22
, b̃21 ≡ b22

2 b12

b11 + b22
. (20)

For this choice, the linear approximation reproduces a
traditional VdW gas behavior, i. e. one-component-like,
in the two limits R2 = R1 and R2 = 0, as readily
checked. The factor 2b12/(b11 + b22) = 1−D/(b11 + b22)
is always smaller than unity for R1 6= R2, consequently,
the b̃pq terms are smaller than the corresponding terms
bpp. Note that there are many possible choices for b̃12 and
b̃21, e. g. additionally dependent on the particle numbers
N1 and N2, whereas the non-linear approximation (14)
contains no such additional parameters.

The formulae of the linear approximation are
generally valid for any choice of b̃12 and b̃21 satisfying
the constraint b̃12+b̃21 = 2b12. In the following, however,
we will restrict our study to the special choice given in
Eqs. (20). The canonical (and grand canonical) formulae
for the multicomponent case are given in [13].

2.3. Comparison of both two-component VdW
approximations

As the VdW approximation is a low density
approximation, it is evident that the linear and

non-linear formulae are equivalent for such densities.
Deviations, however, occur at high densities, where any
VdW approximation generally becomes inadequate.

The differences between both approximations result
from the fact that the linear pressure (19) has two
poles, v lin

1 = V and v lin
2 = V , whereas the non-

linear pressure (16) has solely one pole, v nl = V . For
constant volume V , these poles define limiting densities,
e. g., n̂1 = max(N1/V ) as functions of n2 = N2/V ,

v lin
q (N1, N2) = V Ã n̂1(n2) ≡ n̂ lin

1,q(n2) (21)

or

v nl(N1, N2) = V Ã n̂1(n2) ≡ n̂ nl
1 (n2) , (22)

which represent the domains of two pressure formulae in
the n2–n1-plane. The explicit fomulae are discussed in
App. A.

In Fig. 1,a, an example of these limiting densities
is shown for R2/R1 = 0.4. It is clearly seen that the
non-linear domain (below the solid line) is larger than
the linear domain (below both dashed lines), which
is generally the case for R2 6= R1. Especially for
R2 ¿R1, the non-linear domain is distinctly larger for
high densities of the large component, n1b11 > n2b22,
whereas both domains are similar for high densities of
the small component, n2b22 > n1b11.

The linear approximation is constructed in the
traditional VdW spirit; the densities n lin

q achieved in
this approximation are below the maximum density of
the corresponding one-component VdW gas max(n oc

q ) =
1/bqq, which is defined by the pole of p oc

q ≡
pVdW(T, V, Nq; bqq) from Eq. (8).

In the non-linear approximation, however, the
possible densities of the larger particles n nl

1 can exceed
1/b11 due to the occurence of negative partial derivatives
of the pressure, ∂p nl/∂N2 < 0. In this context,
it is necessary to state that this behavior does not
lead to a thermodynamical instability of the non-
linear approximation as proven in App. B. The linear
approximation shows no such behavior, it is always
∂p lin/∂N1 > 0 and ∂p lin/∂N2 > 0.

The condition ∂p nl/∂N2 = 0 defines the boundary
n̂ nl, bd

1 (n2) of the region of negative partial derivatives
of the non-linear pressure. In Fig. 1,a, this boundary is
shown by the dotted line for R2/R1 = 0.4; the values of
∂p nl/∂N2 are negative above this line.

Densities larger than n nl
1 = 1/b11 can only occur, if

R2 is smaller than a critical radius,

R2 < R2, crit(R1) = ( 3
√

4− 1) R1 ≈ R1/1.7 . (23)
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Fig. 1. a – domains of the linear and non-linear approximations for R2/R1 = 0.4: limiting densities n̂1 (isobars for pq(n1, n2) = ∞) and
the lower boundary n̂ nl, bd

1 to the region of negative partial derivatives of the non-linear pressure. The dashed lines correspond to the
two poles of the linear pressure, and the solid line corresponds to the pole of the non-linear pressure. For given n2, the possible densities
n lin

1 are below both dashed lines, whereas the possible densities n nl
1 are below the solid line. Negative derivatives ∂p nl/∂N2 < 0 occur

only above the dotted line. b – pressure profiles in dimensionless units for R2/R1 = 0.4 as in (a) at fixed n1b11 = 0.9. The dashed
lines show the partial pressures of the linear approximation p lin

1 and p lin
2 , while the solid line shows the total pressure of the non-linear

approximation p nl with initial decrease due to negative ∂p nl/∂N2

Then, the boundary n̂ nl, bd
1 (n2) starts inside the non-

linear domain, see App. A for details.
The reason for this behavior is the ratio of the

amounts of small and large particles. There are much
more small than large particles in the system for
densities n1, n2 along the boundary n̂ nl, bd

1 (n2) at
high densities n1: here, the fewer large particles are
surrounded by many small particles. Therefore, the
excluded volume interaction of the large particles in the
non-linear pressure (16) is governed not by the simple
term b11 but by the mixed term b12 which is distinctly
smaller than b11 for R2 ¿ R1. The maximum density
achieved in the non-linear approximation max(n̂ nl

1 ) =
4/b11 is obtained for R2 → 0 and N2 À N1, i. e. these
formulae go far beyond the traditional VdW results in
the corresponding situation.

An example of pressure profiles for p lin
1 , p lin

2 and p nl

for n1b11 = 0.9 is shown in Fig. 1,b, where it is R2/R1 =
0.4 as in Fig. 1,a. The non-linear pressure (solid line)
firstly decreases as the densities n1, n2 correspond to the
region of negative partial derivatives, see Fig. 1,a. The
partial pressures of the linear approximation are shown

by dashed lines. The non-linear domain is seen to be
larger, since it is one of the linear partial pressures which
diverges first for increasing n2.

We conclude that the linear and non-linear
approximations show drastically different behaviors for
high values of the large component’s density n1. In
the linear approximation (19), the possible density
values are below 1/b11 and 1/b22, respectively, and
the derivatives ∂p lin/∂Nq are always positive. Whereas,
in the non-linear approximation (16), higher densities
n1 > 1/b11 are possible due to the occurence of negative
derivatives ∂p nl/∂N2 < 0. This may be considered as
pathological – or used as an advantage to describe special
situations, e. g., densities 1/b11 < n1 < n̂ nl

1 for R2 ¿ R1

(see App. A).

However, the use of any VdW approximation is in
principle problematic for densities near 1/bqq. For low
densities, the non-linear and linear approximations are
practically equivalent, and the non-linear approximation
is preferable, since the formulae are essentially
simpler.
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3. Grand Canonical Treatment

Since the number of particles is not conserved in
relativistic statistical mechanics, it is more appropriate
to use the grand canonical ensemble (GCE). The grand
canonical partition function is built using the CPF,

Z(T, V, µ1, µ2) =

=
∞∑

N1=0

∞∑
N2=0

exp
[

µ1N1+µ2N2
T

]
Z(T, V, N1, N2) , (24)

whereas the chemical potentials µ1 and µ2 correspond
to components 1 and 2, respectively. The usual way
to evaluate the GCE partition (24) to use the Laplace
transform [20] or Laplace–Fourier transform [21] for
infinite or finite systems, respectively. However, for the
VdW CPF (14) or (18), one use the less complicated
method by noting that there are limiting particle
numbers N̂1(N2) or N̂2(N1), where each CPF becomes
zero. For this reason, the above sum contains only
a finite number of terms. Then it can be shown
that, in the thermodynamical limit, (i. e. in the limit
V →∞ for Nq/V = const) the grand canonical pressure
p(T, µ1, µ2) ≡ T ln[Z(T, V, µ1, µ2)]/V depends only on
the maximum term of the double sum (24), where
N1 =N1 and N2 = N2. One obtains

p(T, µ1, µ2) =

= lim
V→∞

T

V
ln

[
exp

[
µ1N1+µ2N2

T

]
Z(T, V,N1,N2)

]
, (25)

wheras N1 and N2 are the average particle numbers.

3.1. Two VdW approximations

For the non-linear VdW approximation (14), the last
expression takes the form

p nl(T, µ1, µ2) = lim
V→∞

T

V
ln

[
A
N1
1
N1!

A
N2
2
N2!

×

×
(
V −N1b11 −N2b22 + N1N2

N1+N2
D

)N1+N2
]

, (26)

where Aq = A(T, µq; mq, gq) ≡ exp[µq/T ] φq.
The evaluation of both maximum conditions for the

grand canonical pressure

0 !=
∂

∂Nq

{
ln

[
A
N1
1
N1!

A
N2
2
N2!

×

×
(
V −N1b11 −N2b22 + N1N2

N1+N2
D

)N1+N2
]}

, (27)

yields a system of two coupled transcendental equations,

ξ nl
1 (T, µ1, µ2) =

= A1 exp
[
−(ξ nl

1 + ξ nl
2 ) b11 + ξ nl

2
2

ξ nl
1 +ξ nl

2
D

]
, (28)

ξ nl
2 (T, µ1, µ2) =

= A2 exp
[
−(ξ nl

1 + ξ nl
2 ) b22 + ξ nl

1
2

ξ nl
1 +ξ nl

2
D

]
, (29)

where ξ nl
1 and ξ nl

2 are defined as

ξ nl
1 ≡ N1

V −N1b11 −N2b22 + N1N2
N1+N2

D
, (30)

ξ nl
2 ≡ N2

V −N1b11 −N2b22 + N1N2
N1+N2

D
. (31)

In the thermodynamical limit, the average particle
numbers N1 and N2 are proportional to V as Nq =
n nl

q V . Then the volume V disappears in the definitions
of ξ nl

1 and ξ nl
2 given by Eqs. (30) and (31), and they can

be solved for either the density n nl
1 or n nl

2 ,

n nl
1 (T, µ1, µ2) =

ξ nl
1

1 + ξ nl
1 b11 + ξ nl

2 b22 − ξ nl
1 ξ nl

2
ξ nl
1 +ξ nl

2
D

, (32)

n nl
2 (T, µ1, µ2) =

ξ nl
2

1 + ξ nl
1 b11 + ξ nl

2 b22 − ξ nl
1 ξ nl

2
ξ nl
1 +ξ nl

2
D

. (33)

The ξ nl
q = ξ nl

q (T, µ1, µ2) are the solutions of the coupled
equations (28) and (29), respectively.

Hence, pressure (26) can be rewritten in terms of ξ nl
1

(28) and ξ nl
2 (29),

p nl(T, µ1, µ2) = T
(
ξ nl
1 + ξ nl

2

)
, (34)

supposed that Eqs. (32) and (33) are taken into account.
If definitions (30) and (31) are used for ξ nl

1 and ξ nl
2 ,

the pressure formula (34) coincides with the canonical
expression (16) for N1 = N1 and N2 = N2.

Since the formulation is thermodynamically self-
consistent, the identity nq ≡ ∂p(T, µ1, µ2)/∂µq leads to
Eqs. (32) and (33) as well. The grand canonical formulae
of the linear approximation [13] are obtained exactly as
presented for the non-linear case in Eqs. (26)–(34). In the
linear case, the two coupled transcendental equations are

ξ lin
1 (T, µ1, µ2) = A1 exp

[
−ξ lin

1 b11 − ξ lin
2 b̃12

]
, (35)

ξ lin
2 (T, µ1, µ2) = A2 exp

[
−ξ lin

2 b22 − ξ lin
1 b̃21

]
, (36)
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with the definitions

ξ lin
1 ≡ N1

V −N1b11 −N2b̃21

, (37)

ξ lin
2 ≡ N2

V −N2b22 −N1b̃12

. (38)

The expressions for the particle densities are found by
solving Eqs. (37) and (38) for either n lin

1 or n lin
2 ,

n lin
1 (T, µ1, µ2) =

=
ξ lin
1 (1 + ξ lin

2 [b22 − b̃21])
1 + ξ lin

1 b11 + ξ lin
2 b22 + ξ lin

1 ξ lin
2 [b11b22 − b̃12b̃21]

, (39)

n lin
2 (T, µ1, µ2) =

=
ξ lin
2 (1 + ξ lin

1 [b11 − b̃12])
1 + ξ lin

1 b11 + ξ lin
2 b22 + ξ lin

1 ξ lin
2 [b11b22 − b̃12b̃21]

. (40)

For the linear approximation, pressure (25) can be
rewritten in terms of ξ lin

1 (35) and ξ lin
2 (36),

p lin(T, µ1, µ2) = T
(
ξ lin
1 + ξ lin

2

)
, (41)

if Eqs. (39) and (40) are taken into account, like in the
non-linear case.

3.2. Comparison of both approximations

Let us briefly return to the usual VdW case, the
one-component case. The corresponding transcendental
equation is obtained from either Eqs. (28), (29) or (35),
(36) by setting R1 = R2 ≡ R and A1 = A2 ≡ A,

ξ oc(T, µ) = A exp [−ξ oc b] , (42)

whereas b ≡ b11 = b22. The transcendental factor
exp[−ξ oc b] has the form of a suppression term, and the
solution ξ oc ≡ p oc/T of this transcendental equation
evidently decreases with increasing b for constant T
and µ. Then, in turn, the corresponding particle density
n oc = ξ oc/(1 + ξ oc b) is suppressed in comparison
with that of the ideal gas due to the lower ξ oc

and the additional denominator. Thus, the suppressive
transcendental factor corresponds to the suppression of
particle densities.

Now it can be seen from Eqs. (28), (29) and
(35), (36) that the transcendental factors of both
two-component approximations contain as well this
usual one-component- or VdW-like suppressive part
exp[−(p/T ) bqq]. But since D ≥ 0 and b̃pq < bpp,
respectively, there is furthermore the attractive part in
each corresponding transcendental factor.

In a non-linear approximation, the attractive part
can even dominate the suppressive part for the smaller
component, e.g., in Eq. (29) for R2 < R1. Then the
larger component can reach densities n nl

1 higher than
1/b11 analogous to the CE. A detailed discussion is given
in App. C.

High densities in the canonical treatment correspond
to large values of the chemical potentials in the grand
canonical treatment. In the limit

µ1/T →∞ (T, µ2 = const.) or ξ nl
1 →∞, (43)

the solution of Eq. (29), ξ nl
2 , can be enhanced for

increasing ξ nl
1 instead of being suppressed, if R2

is sufficiently small. This may be called the non-
linear enhancement. The behavior of the non-linear
approximation in limit (43) depends only on the ratio of
two radii R1/R2 and is characterized by the coefficient

a2 ≡
√

D/b22 − 1 . (44)

A negative a2 is related to the suppressive transcen-
dental factor in Eq. (29). For equal radii R2 = R1,
a2 = −1, and the suppression is evidently not reduced
but VdW-like. For −1 < a2 < 0, this suppression is
reduced, the most strongly for a2 ≈ 0.

In the case a2 = 0, the suppression for ξ nl
2 (29)

disappears in limit (43), and one has ξ nl
2 → A2 = const.

This case provides the critical radius R2, crit (23).
For a2 > 0 or R2 < R2, crit, the non-linear

enhancement of ξ nl
2 occurs for increasing ξ nl

1 ; it is the
stronger the larger is a2. Then n nl

1 (32) can exceed
max(n oc

1 ) = 1/b11, whereas n nl
2 (33) does not vanish

(see App. C for the explicit fomulae). The density
max(n̂ nl

1 ) = 4/b11 is achieved for a2 →∞ or R2 → 0.
The suppression in the transcendental factor of ξ nl

1

(28) is generally reduced for R2 < R1, the more strongly
the smaller R2 is, but there is no enhancement possible
in limit (43).

4. Relativistic Excluded Volumes

In this section, we will investigate the influence of
relativistic effects on the excluded volumes of fast
moving particles by accounting for their ellipsoidal shape
due to the Lorentz contraction. In [18], a quite simple
ultra-relativistic approach has been made to estimate
these effects: instead of ellipsoids, two cylinders with
the corresponding radii have been used to calculate
approximately the excluded volume term bpq for a two-
component mixture. The resulting relativistic excluded
volumes depend on the temperature and contain the
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radii and the masses as parameters. The simple non-
mixed term reads [14]

bqq(T ) = αqq

(
37π

9
σq

φq
+

π2

2

)
R 3

q , (45)

where σq ≡ σ(T ; mq, gq) denotes the ideal gas scalar
density,

σ(T ; m, g) =
g

2π2

∞∫

0

dk k2 m

E(k)
exp

[
−E(k)

T

]
. (46)

The expression for the mixed case can be derived
similarly from [18],

b12(T ) = α12

{(
σ1
φ1

f1 + π2

4
R2
R1

)
R 3

1 +

+
(

σ2
φ2

f2 + π2

4
R1
R2

)
R 3

2

}
, (47)

whereas the abbreviations f1 and f2 are dimensionless
functions of both radii,

f1 = π
3

(
2 + 3R2

R1
+ 7R 2

2
6R 2

1

)
, f2 = π

3

(
2 + 3R1

R2
+ 7R 2

1
6R 2

2

)
.

The normalization factors

α11 = α22 = 16
37
3 + 3π

2

, (48)

α12 =
2π
3 (R1+R2)

3

�
f1+

π2

4
R2
R1

�
R 3

1 +

�
f2+

π2

4
R1
R2

�
R 3

2

(49)

are introduced to normalize the ultra-relativistic
approximations (45) and (47) for T = 0 to the
corresponding non-relativistic results. For the hadron
gas, however, these Boltzmann statistical formulae will
only be used at high temperatures, where effects of
quantum statistics are negligible.

Note that it is not appropriate to consider
temperature dependent hard-core radii Rp(T ) or Rq(T ),
since the bpq(T ) terms give the Lorentz-contracted
excluded volumes and are involved functions of
T, mp,mq, Rp and Rq. However, for a given value of
bpq(T ), the necessary hard-core radii Rp and Rq will
obviously depend on the temperature.

It is evident that formulae (45) and (47) suffice
already for the multicomponent case, because even a
multicomponent VdW formulation contains only bpq

terms.
For both approximations, the expressions for

pressure (34) or (41) and the corresponding particle
densities (32) and (33) or (39) and 40) remain

unchanged. However, due to the temperature depen-
dence of the relativistic excluded volumes, the entropy
density is modified:

s(T, µ1, µ2) ≡ ∂

∂T
p(T, µ1, µ2) ≡

≡ snrel + srel(∂T b11, ∂T b22, ∂T b12) . (50)

The additional term srel depends on the temperature
derivatives of relativistic excluded volumes, ∂T bpq ≡
∂bpq/∂T , which represent their thermal compressibility.

Furthermore, the term srel generates additional
terms for the energy density, according to e ≡ Ts −
p + µ1n1 + µ2n2. In the non-linear approximation, one
obtains

e nl(T, µ1, µ2) = n nl
1

ε1
φ1

+ n nl
2

ε2
φ2
− (n nl

1 + n nl
2 ) T 2×

×
(
ξ nl
1 ∂T b11 + ξ nl

2 ∂T b22 − ξ nl
1 ξ nl

2
ξ nl
1 +ξ nl

2
∂T D

)
, (51)

and the linear approximation yields

e lin(T, µ1, µ2) = n lin
1

ε1
φ1

+ n lin
2

ε2
φ2
−

−n lin
1 T 2

(
ξ lin
1 ∂T b11 + ξ lin

2 ∂T b̃12

)
−

−n lin
2 T 2

(
ξ lin
2 ∂T b22 + ξ lin

1 ∂T b̃21

)
, (52)

whereas εq ≡ ε(T ; mq, gq) denotes the ideal gas energy
density

ε(T ; m, g) =
g

2π2

∞∫

0

dk k2 E(k) exp
[
−E(k)

T

]
. (53)

The additional terms in the entropy density (50) and
in the energy density (51) or (52) which contain the
temperature derivatives do evidently not occur in the
case of the usual non-relativistic, i.e. constant, excluded
volumes.

Let us now study the hadronic equation of
state generated by each of the two-component
VdW approximations and their modifications due to
relativistic excluded volumes. When used to describe
hadronic particles, the hard-core radii Rq should be
considered as parameters rather than particle radii. We
identify the first component as nucleons (m1 ≡ mn =
939 MeV, µ1 ≡ µn = µB and g1 ≡ gn = 4 for symmetric
nuclear matter) and the second as pions (m2 ≡ mπ =
138 MeV, µ2 ≡ µπ = 0 and g2 ≡ gπ = 3). Quantum
statistical effects other than the degeneracy factors gq

are neglected. To reproduce experimental data, however,
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Fig. 2. Temperature dependence of the relativistic excluded volume terms for m1 = mn, m2 = mπ , R1 = 0.6 fm. a – relative values
for R2 = 0.3 fm: b11(T )/b11, b12(T )/b12, b22(T )/b22 and D(T )/D (solid line, dotted line, short and long dashes, respectively). The
relativistic excluded volume of light species (b22(T )/b22) is affected more strongly by temperature. b – the characteristic coefficient
of the non-linear approximation a2(T ) = (

p
D(T )/b22(T ) − 1) for various R2 = 0.25, 0.3, and 0.4 fm. The non-linear enhancement

(a2(T ) > 0) becomes stronger due to a decrease of the relativistic excluded volumes with increase in the temperature

it would be necessary to consider all hadrons and
hadronic resonances as well as the contributions from
hadronic decays into daughter hadrons.

For some examples, the temperature dependence of
the relativistic excluded volumes is shown in Fig. 2,a,
given in units of the corresponding non-relativistic
terms, bpq = bpq(0). The solid line and the short dashes
show the basic excluded volumes b11(T ) and b22(T ),
respectively. In these relative units, the decreases of
b11(T ) and b22(T ) depend only on the corresponding
masses. It is apparent that the pion excluded volume
b22(T ) is affected much stronger than the excluded
volume of nucleons, b11(T ). The dotted line shows the
mixed volume term b12(T ), and the long dashes show
the compound volume term D(T ) ≡ b11(T ) + b22(T ) −
2b12(T ). These two terms depend obviously on both
masses and both radii.

The curves for the generalized excluded volume terms
of the linear approximation b̃12(T ) and b̃21(T ) behave
similarly to b12(T ).

Introducing the relativistic excluded volumes bpq(T ),
however, has two effects. First, the maximum densities
become larger, since 1/bqq(T ) > 1/bqq generally, as
seen in Fig. 2,a. Furthermore, the balance between the
lighter and the heavier species is changed because the

lighter species is affected more than the heavier ones
at the same temperature. For the above parameters,
b22(T )/b22 ≤ b11(T )/b11.

In the non-linear approximation, this balance is
characterized by the coefficient a2 defined by Eq. (44).
In Fig. 2,b the temperature dependence of a2(T ) ≡
(
√

D(T )/b22(T ) − 1) is shown for three different
values of R2. The relativistic coefficient a2(T ) increases
with T , i. e. the non-linear enhancement becomes
stronger for higher temperatures. For some values of
R2, e. g., R2 = 0.4 fm, a primary suppression a2(0) ≡
a2 < 0, turns into an enhancement a2(T ) > 0, when
the temperature is sufficiently high. For temperature
dependent excluded volumes, R2, crit looses its meaning;
here, only a2(T ) > 0 is the valid condition for the
occurrence of the non-linear enhancement or densities
n nl

1 > 1/b11(T ).
The linear coefficient, ã2(T ) = −2b12(T )/(b11(T ) +

b22(T )), is not strongly affected by the temperature for
the above choice of hadronic parameters: it increases
slightly with T but remains negative. Hence, changes in
the balance between the lighter and the heavier species
play a minor role for the linear approximation.

Particle densities for nucleons and pions in units of
n0 = 0.16 fm−3 vs. µ1/m1 ≡ µn/mn are shown in
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Fig. 3. Comparison of the model predictions for the nucleon (a) and pion (b) densities nn and nπ , respectively, vs µn/mn (R1 = 0.6 fm,
R2 = 0.3 fm and T = 185 MeV, densities in units of n0 = 0.16 fm−3). In both figures, two upper lines correspond to relativistic excluded
volumes bpq(T ) and two lower lines to non-relativistic excluded volumes bpq. The results of the linear and non-linear approximations
coincide – only for extremely large µn/mn, the non-linear results lie slightly higher than the corresponding linear results. The deviations
due to relativistic excluded volumes are significant

Figs. 3,a and b for T = 185 MeV. The linear and
non-linear results are shown for constant excluded
volumes with short dashes and solid lines, respectively,
and further, for relativistic excluded volumes, with
dotted lines and long dashes, respectively. At this high
temperature, the relativistic results are significantly
higher than the non-relativistic one. A difference
between the linear and non-linear approximations due
to the non-linear enhancement becomes noticeable only
for high µn/mn > 0.8. Thus, for Rn = R1 = 0.6 fm
from above, the linear and non-linear approximations
are practically equivalent for nucleon densities below
nn ≈ 0.8 n0, i. e. for densities below about n1 ≈ 1/(2 b11).
On the other hand, due to the strong decrease of
b22(T ) with increase in the temperature, the influence
of the relativistic excluded volumes is essential for
temperatures of the order of T ≈ mπ.

The presence of the additional terms containing
the temperature derivatives in the energy density (51)
or (52) makes it impossible to convert a VdW gas
with relativistic excluded volumes into a gas of free
streaming particles. Therefore, it is problematic to use
these formulae for the post-freeze-out stage. For the
latter, the quantities of free streaming particles without

any interaction should be used, see the discussion in
[22,23] and references therein. However, these equations
of state may be used to describe the stage between
chemical and thermal freeze-outs, i.e. the pre-freeze-out
stage in terms of [22,23]. This is examplified in the next
section.

5. Hard-core Radii from Particle Yield Ratios

As a simple application of the above-presented equations
of state, let us re-evaluate the thermal model fit
parameters for particle yield ratios of [6], namely the
hard-core radii of pions Rπ and other hadrons R0. A two-
component VdW excluded volume model has been used
there to explain the pion abundance in (A+A)-collisions
by a smaller hard-core radius for pions than that for the
other hadrons. The ratios has been fitted to BNL AGS
(Au+Au at 11 AGeV) and CERN SPS (Pb+Pb at 160
AGeV) data [7] within a thermal model, including all
resonances up to 2 GeV and using quantum statistics.

The applied model, however, corresponds to the
incorrect separated model as pointed out in Sect. 1. For
convenience, we give these formulae in the Boltzmann
approximation. Within the previously defined notation,
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the two coupled transcendental equations read

ξ sp
1 (T, µ1, µ2) = A1 exp [−(ξ sp

1 + ξ sp
2 ) b11] , (54)

ξ sp
2 (T, µ1, µ2) = A2 exp [−(ξ sp

1 + ξ sp
2 ) b22] , (55)

wheras p sp(T, µ1, µ2) = T (ξ sp
1 + ξ sp

2 ). In this context,
A1 represents a sum over the contributions of all hadron
species but pions, while A2 corresponds to pions only.

The expressions for the particle densities are
obtained from n sp

q ≡ ∂p sp/∂µq,

n sp
1 (T, µ1, µ2) =

ξ sp
1

1 + ξ sp
1 b11 + ξ sp

2 b22
, (56)

n sp
2 (T, µ1, µ2) =

ξ sp
2

1 + ξ sp
1 b11 + ξ sp

2 b22
. (57)

Solving these equations for ξ sp
1 and ξ sp

2 , one recovers the
canonical pressure formula of the separated model (11)
as announced in Sect. 2.

Due to the separation of both components in this
model, there is no excluded volume term b12 for the
interaction between different components at all. This is
an essential difference to both the linear and non-linear
approximations. Note that the separated model is not a
two-component VdW approximation because it cannot
be obtained by approximating the CPF (13).

The transcendental factors of formulae (54)
and (55) exhibit a constant VdW-like suppression
exp[−(p/T ) bqq]. There is a reduction of this suppression
in the linear and non-linear approximations, as discussed
in Sect. 3. The VdW-like suppression is reduced, if
b12 appears in the corresponding formulae since b12 is
smaller than b11 for R2 < R1. It is evident that the
deviation of the linear and non-linear approximationa
from the separated model is the larger, the more R1 and
R2 differ from each other.

In the first step of the fit procedure of [6], only the
hadron ratios excluding pions have been taken to find
the freeze-out parameters. T ≈ 140 MeV, µB ≈ 590
MeV for AGS and T ≈ 185 MeV, µB ≈ 270 MeV for
SPS have been obtained. In the second step, a parameter
introduced as the pion effective chemical potential µ ∗π
has been fitted to the pion-to-hadron ratios. Using the
Boltzmann statistics, it can be shown that the pion
enhancement is thoroughly regulated by the value of
µ ∗π [6]; one has obtained µ ∗π ≈ 100 MeV for AGS and
µ ∗π ≈ 180 MeV for SPS data, respectively.

The pion effective chemical potential depends
explicitly on the excluded volumes but also on the
pressure. The pressure itself is a transcendental function
depending solely on the excluded volumes, since T and
µB are already fixed by step one. In [6], the formula

µ ∗π ≡ (v0 − vπ) p(v0, vπ) has been obtained for the
separated model, where vπ ≡ b22 and v0 ≡ b11 are the
excluded volumes corresponding to the hard-core radii of
pions Rπ ≡ R2 and other hadrons R0 ≡ R1, respectively.
Thus, the µ ∗π values for AGS and SPS data define
two curves in the Rπ–R0-plane. The main conclusion
of [6] is that the intersection point of these two curves
(Rπ = 0.62 fm, R0 = 0.8 fm) gives the correct pair
of hard-core radii for pions and for the other hadrons,
i. e. the AGS and SPS data are fitted simultaneously
within the applied model.

In [8], these values of R0 and Rπ have been criticized
for being unreasonably large. There, a complete fit of
solely SPS data has been performed within a separated
model. The best fit has been obtained for equal hard-
core radii, Rπ = R0 = 0.3 fm, motivated by nucleon
scattering data. Good agreement has been found as well
for a baryon hard-core radius, RBar = 0.3 fm, and a
common hard-core radius for all mesons, RMes = 0.25
fm, choosen in accord with the above ratio of radii,
R0/Rπ = 0.8/0.62. Larger hard-core radii, especially
those of [6], are quoted as giving a distinctly worse
agreement.

Assuming the validity of the Boltzmann statistics, we
have re-calculated the R0(Rπ)-curves for the above µ ∗π
values; firstly in the separated model (54)–(57), i. e. as
presented in [6]. The resulting curves shown as thin lines
in Fig. 4,a naturally match the results of the underlying
fit of [6] which are indicated by markers.

Then we have considered the linear and non-linear
approximations. Due to the occurence of b12 terms
in these two cases, both functional forms of µ ∗π are
essentially different from those in the separated case.
Consequently, the shapes of the R0(Rπ)-curves are
different as well. We find distinct deviations from the
separated model, especially for Rπ → 0, and the values
for the intersection point are slightly lower; see thin
lines in Fig. 4,b for the linear exrapolation. The non-
linear approximation gives identical results for this
purpose because the hadron densities are too small for a
noticeable non-linear enhancement.

The crucial point is now to turn on the relativistic
temperature dependence of the excluded volumes. To
keep the analysis simple, we treat only pions this way
since they give the strongest effect.

Although the other hadrons are assumed to have
equal hard-core radii, their relativistic excluded volumes
would be different for T > 0, according to their different
masses. To check the influence of relativistic excluded
volumes for all particles, we have used one average mass
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Fig. 4. Fits of particle yield ratios for the AGS and SPS data [7] with the separated model and the linear approximation. The thin
lines show the fits for the separated model (a) and the linear approximation (b); the non-linear approximation gives identical results
for the latter case. The thick lines in (a) and (b) show the corresponding curves for relativistic excluded volumes vπ = b22(T ): there is
no intersection for either of the three models. In both plots, the results of the fit from [6] for the AGS and SPS data are indicated by
circles and crosses, respectively

of 1 GeV for all other hadrons. The corresponding change
in the R0-values are below 5%.

The results of the fit for relativistic excluded volumes
for pions are shown in Figs. 4,a and b as thick lines.
Though this approach is more realistic, there is no
intersection point for any of the three models even for
very large radii R0, Rπ À 0.5 fm. For the approximated
case of a single averaged hadron mass, there is no
intersection either. Because of the different freeze-out
temperatures for AGS and SPS, the vπ(T ) ≡ b22(T )
values are changed differently in both cases, and so are
the scales for the corresponding Rπ.

Due to the errors in experimental data, one ought to
obtain a corridor instead of a curve for each set of data.
Consequently, the particle yield ratios can be reproduced
well by e. g., R0 ≈ 0.4 fm, Rπ ≈ 0.2 fm or larger values
for any of the models with relativistic excluded volumes.
Therefore, we conclude that the fit procedure proposed
in [6] is not suitable to find a unique pair of hard-core
radii for pions and other hadrons, as long as a best fit is
searched for just two sets of the data on particle yield
ratios. The use of a relativistic excluded volume for pions
along with a correct approximation reduce the value
of the necessary nucleon hard-core radius essentially
towards more realistic values.

6. Summary

In the present work, several equations of state for the
two-component van der Waals excluded volume model
are derived and investigated. We have discussed two
essentially different formulations, the linear and non-
linear approximations.

The non-linear approximation is the simplest
possibility. Here, the large component can reach higher
densities n1 than the usual limiting VdW density 1/b11,
if the other component has a suffiently small hard-core
radius, R2 < R2, crit. In the linear approximation, the
densities cannot exceed the usual limiting VdW densities
1/b11 and 1/b22, but generalized excluded volume terms
have to be introduced.

For both approximations, the suppression factors
of the grand canonical formulae contain a VdW-like
term proportional to exp[−(p/T ) bqq] which is reduced
non-trivially, however. In the linear case, there is a
slight reduction, whereas this reduction can turn the
suppression even into an enhancement for the smaller
component in the non-linear case, which leads to
the exceeding of 1/b11 for the density of the larger
component n1.
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The commonly used formulae of the separated model
are shown to be not suitable for the two-component
case, because they correspond to a system, where both
components are separated from each other and cannot
mix. In this model, the grand canonical suppression
factor is just VdW-like and has no reduction of the
suppression.

Furthermore, relativistic, i.e. Lorentz-contracted,
excluded volumes have been introduced. Naturally, the
relativistic excluded volume per particle decreases with
increase in the temperature. This effect is the stronger,
the lighter the particle species is. The suppression of
the particle densities in VdW models is lower for a
component of smaller excluded volume in comparison
with a component of larger excluded volume. Therefore,
the temperature dependence of the relativistic excluded
volumes causes a reduction of the suppression of particle
densities.

The full equations of state have been presented, for
both the linear and non-linear approximations, with
constant and with relativistic excluded volumes. For
the entropy density and the energy density, there are
additional terms containing the temperature derivatives
of the relativistic excluded volume terms due to their
’thermal compressibility’. In comparison with the non-
relativistic case, the expressions for the pressure and the
particle densities remain unchanged, but the possible
range of values is obviously wider, since, generally,
1/b11(T ) ≥ 1/b11 and 1/b22(T ) ≥ 1/b22.

As an application of the derived formulations, a fit
of particle yield ratios for SPS and AGS has been re-
evaluated. In [6], this fit had been done in the separated
model by adjusting the hard-core radii for pions Rπ

and for other hadrons R0. The results of the new fit
are essentially different from those in the separated
model but coincide for both the linear and non-
linear approximations. The picture changes drastically,
however, if relativistic excluded volumes are adopted for
pions. The basic idea of the fit – one pair of hard-core
radii suffices to fit the AGS and SPS data simultaneously
– does not lead to a result anymore. This is the case
for the separated model and for both approximations,
linear and non-linear. Experimental uncertainties lead
to a region of possible values in the R0–Rπ-plane; one
could describe the data for Ro ≥ 0.4 fm and Rπ ≥ 0.2 fm.

We conclude that there are two causes of an
enhancement of particle densities, e.g., the thermal
pion abundance, in VdW descriptions: First, the
density suppression is generally lower for the smaller
component in two-component models. Second, there is
a further reduction of the density suppression due to the

relativistic excluded volumes. The latter are essentially
smaller for light hadron species than for heavy species,
especially for temperatures T À 50 MeV.

When applied to the hadron gas, the linear and
non-linear results almost coincide for nucleon densities
up to n0 ≈ 0.16 fm−3 (for R0 ≤ 0.6 fm), since
the non-linear enhancement does not appear there,
but the deviation from the incorrect separated model
is distinct. However, the formulae of the non-linear
approximation are essentially simpler than these of the
linear approximation.

The influence of relativistic effects on the excluded
volumes becomes indispensable for the temperatures
typical of heavy ion collisions. Therefore, it is necessary
to include a correct two- or multicomponent VdW
approximation – linear or non-linear – as well as
relativistic excluded volumes in future calculations.
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discussions and St. Hofmann for valuable comments.
The research made in this work was supported in part
by the Program “Fundamental Properties of Physical
Systems under Extreme Conditions” of the Bureau of
the Division of Physics and Astronomy of the National
Academy of Science of Ukraine.

APPENDIX A: Two VdW Approximations in the CE

In what follows, we will study the differences between the linear
and non-linear approximations: the total excluded volumes vq =
vq(N1, N2) of the corresponding partial pressures. In the linear
pressure formula (19), each component has its own total excluded
volume given by

v lin
1 ≡ N1b11 + N2b̃21 , v lin

2 ≡ N1b̃12 + N2b22 , (58)

whereas, in the non-linear pressure formula (16), there is the
common total excluded volume for both components

v nl
1 = v nl

2 = v nl ≡ N1b11 + N2b22 − N1 N2
N1+N2

D . (59)

It can be readily checked that it is either v lin
1 ≤ v nl ≤ v lin

2
or v lin

1 ≥ v nl ≥ v lin
2 , i. e. the pole corresponding to the non-

linear pressure always lies between both poles corresponding to
the linear pressure. Hence, there are values N1, N2, where the
non-linear pressure is still finite, but the linear pressure formula is
yet invalid since one of the partial pressures has already become
infinite. Consequently, the domain of the non-linear approximation
is larger.

For given V , the two domains can be expressed by the
limiting densities (21) and (22), which are defined by the poles
vq(N1, N2) = V for the corresponding pressure. In the linear
approximation, one obtains the expressions

n̂ lin
1,1(n2) =

1− b̃21n2

b11
, n̂ lin

1,2(n2) =
1− b22n2

b̃12
. (60)

For given n2, therefore, the domain of p lin (19) is

0 ≤ n lin
1 < min

n
n̂ lin

1,1(n2), n̂ lin
1,2(n2)

o
. (61)
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In the non-linear approximation, there is solely one limiting
density

n̂ nl
1 (n2) =

1−2 b12n2+
√

(1−2b12n2)2+4b11n2 (1−b22n2)

2 b11
. (62)

Consequently, for given n2, the domain of p nl (16) is

0 ≤ n nl
1 < n̂ nl

1 (n2) . (63)

In the non-linear approximation, there is furthermore a region,
where the pressure has negative partial derivatives with respect
to the smaller particles’ number, ∂p nl/∂N2 < 0. The condition
∂p nl/∂N2 = 0 defines the boundary of this region

n̂ nl, bd
1 (n2) =

=
1−2 (b12−b22) n2+

√
(1−2 (b12−b22) n2)2+8 (b11−b12) n2

4 (b11−b12)
. (64)

For given n2, a negative derivative ∂p nl/∂N2 < 0 occurs only at
a density n1 > n̂ nl, bd

1 , while the derivative ∂p nl/∂N1 is always
positive for R2 ≤ R1, as readily checked.

In Fig. 1,a, the functions n̂1(n2) are presented in dimensionless
variables n̂1b11 and n2b22. The properties of these dimensionless
functions depend only on the ratio of two radii R2/R1. The smaller
this ratio is, the higher is the maximum value of n̂ nl

1 , while the
region of negative derivatives ∂p nl/∂N2 becomes narrower. The
straight line n̂ lin

1,1(n2) starts always at 1/b11, but its slope decreases
for smaller R2/R1, whereas n̂ lin

1,2(n2) ends at 1/b22 and its slope
increases. The pressure of the separated model (11) would yield
one straight line from n1b11 = 1 to n2b22 = 1 in Fig. 1,a, for any
ratio of the radii R1 and R2.

For very small ratios R2/R1, i. e. for R2 → 0, one finds from
Eq. (59) that v nl → N1b11 [1 − 3

4
N2/(N1 + N2)]. This yields

the maximum density max(n̂ nl
1 ) = 4/b11 for N2 À N1. Thus,

n̂ nl
1 exceeds the maximum density of the linear approximation

or of the corresponding one-component VdW gas, max(n̂ lin
1,1) =

max(n oc
1 ) = 1/b11, by a factor of four in this case.

Note that the value 4/b11 appears in the linear approximation
as well: For v lin

2 → V , it is max(n̂ lin
1,2) = 4/b11 at n2 = 0, but

this density cannot be achieved because p lin
1 (n1, n2) is infinite for

n1 ≥ 1/b11.
Let us consider now the consequences of negative derivatives

∂p nl/∂N2 < 0 in the non-linear approximation. If a negative
∂p nl/∂N2 occurs for a density n ′1 = const. at n2 = 0, the pressure
p nl(n ′1, n2) has a minimum at a certain density n2, min > 0

which is determined by the boundary n̂ nl, bd
1 (n2). For increasing

n1 along the boundary, consequently, the non-linear pressure is
always lower than that for increasing n1 at fixed n2 = 0. Hence,
higher densities can be achieved along the boundary, in particular,
n1 > 1/b11.

Therefore, exceeding n nl
1 = 1/b11 requires that the boundary

starts inside the the non-linear domain at n2 = 0. Thus, the
condition n̂ nl, bd

1 (0) < 1/b11 provides the critical radius R2, crit

(23),

b11 < 2b12 Ã R2, crit(R1) = (
3√

4− 1) R1 . (65)

On the other hand, the boundary starts at n1 = 8/(14 b11) for
R2 → 0 at n2 = 0, i. e., for any density b11n1 ≤ 8/14 ≈ 1/2,
negative values of ∂p nl/∂N2 do not occur for any radii.

Although it is pathological that the non-linear pressure firstly
decreases for high densities n1, if particles of the second and

smaller component are added to the system, there is a reasonable
explanation for the lowered pressure along boundary (64) for small
radii R2 < R2, crit.

Consider, for instance, n1b11 = 0.9 in Fig. 1 (a). Since it is
R2/R1 = 0.4, the dimensionless density of the small particles at
the boundary n̂ nl, bd

1 (n2) nearly vanishes, n2b22 ≈ 0.05, whereas
the absolute amounts of the small and large particles are about
equal. For the excluded volume interaction of the large particles
in the pressure formula (16), therefore, the influence of the mixed
term b12 becomes comparable to that of the distinctly larger non-
mixed term b11.

For R2/R1 ¿ 1, one obtains n2 À n1 near the boundary
at n1b11 = 0.9, i. e. the large particles are completely surrounded
by the smaller particles and interact mostly with these but hardly
with other large particles anymore. In this situation, consequently,
the excluded volume interaction of the large particles is governed
by the essentially smaller b12 and not by b11 ≤ 8 b12.

One might interpret this behavior as an effective attraction
between small and large particles, but it is rather a strong
reduction of the large particles’ excluded volume suppression.

As VdW approximations are low-density approximations, they
coincide for these densities, but they evidently become inadequate
near the limiting densities: both the discussed formulations do
evidently not match the real gas of rigid spheres there.

For high densities, the linear approximation behaves natural,
i. e. it is ∂p lin/∂Nq > 0 always. However, one has to introduce the
additional terms b̃12 and b̃21. For choice (20), these terms provide
a one-component-like behavior in the limits R2 = R1 and R2 = 0,
but they have no concrete physical meaning.

In the non-linear approximation, there occur pathologic
pressure derivatives ∂p nl/∂N2 < 0 for R2 ¿ R1. However, the
non-linear formulae may be used for special purposes, e.g., for
n1 > 1/b11 at intermediate n2b22, where the linear approximation
is yet invalid.

APPENDIX B:
Stability of the Non-linear Approximation

The non-linear enhancement in the GCE or the occurence of
negative values for ∂p nl/∂Nq in the CE suggests a further
investigation concerning the thermodynamical stability of the non-
linear approximation.

One can readily check that, in the CE, ∂p nl/∂V < 0 generally,
so there is no mechanical instability. To investigate whether there
is a chemical instability [24], it is necessary to study partial
derivatives with respect to the particle numbers, ∂/∂Nq , of the
chemical potentials

µp(T, V, N1, N2) ≡ −T ∂
∂Np

ln[Z(T, V, N1, N2)] . (66)

Partial derivatives of the pressure with respect to the particle
numbers ∂p/∂Nq have no relevance here.

For the examination of chemical stability, it is appropriate
to switch from the free energy of the CE, F (T, V, N1, N2) ≡
−T ln[Z(T, V, N1, N2)], to the Gibbs free energy or free enthalpy

G(T, p, N1, N2) ≡ F + p V = µ1N1 + µ2N2 , (67)

where µq(T, p, N1, N2) ≡ ∂G/∂Nq . This requires that
p(T, V, N1, N2) can be solved for V (T, p, N1, N2), which is the case
for the non-linear approximation,

V nl(T, p, N1, N2) = N1+N2
p/T

+ N1b11 + N2b22 − N1 N2
N1+N2

D.
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Further, it is useful to introduce the molar free enthalpy g ≡
G/(N1+N2) = g(T, p, x1) with the molar fractions x1 ≡ N1/(N1+
N2) and (1 − x1) = x2 ≡ N2/(N1 + N2) of components 1 and 2,
respectively. Then the chemical stability of a binary mixture [24]
corresponds to the condition

∂2

∂x 2
1

g(T, p, x1) =
∂µ1(T,p,x1)

∂x1
− ∂µ2(T,p,x1)

∂x1
> 0 . (68)

For the non-linear approximation, one obtains

g nl(T, p, x1) = x1

n
T ln

h
x1
φ1

p
T

i
+ p

�
b11 − (1− x1)2×

×D)

�
+ (1− x1)

n
T ln

h
1−x1

φ2

p
T

i
+ p

�
b22 − x 2

1 D
�o

, (69)

and thus condition (68) is satisfied:

∂2

∂x 2
1

g nl(T, p, x1) = T
x1

+ T
1−x1

+ p 2D > 0. (70)

Therefore, the system described by the non-linear approximation
is thermodynamically stable – despite the pathologic behavior
in special cases. Due to the equivalence of the thermodynamical
ensembles, this is true for any representation of the model.

APPENDIX C: Two VdW Approximations in the GCE

In this part, we will study the non-linear and linear approximations
in the grand canonical ensemble. As in the CE, the differences
between the linear and non-linear approximations occur only for
the high densities of larger particles nq which correspond to
large chemical potentials µq in the grand canonical treatment.
Therefore, we will study the limit given by Eq. (43): µ1/T → ∞
for constant T, µ2 and R2 ≤ R1, where ξ1 →∞.

The transcendental exponents of both approximations contain
an attractive part besides the usual VdW-like suppressive part
exp[−(p/T ) bqq ]: In the linear approximation (35) and (36),
the suppression is reduced, but the transcendental exponents
are always negative – whereas the suppression in the non-
linear approximation (28) and (29) is not only reduced, but the
transcendental exponent of ξ nl

2 can even become positive in the
above limit.

To examine the latter, we rewrite the coupled transcendental
equations (28) and (29) as

ξ nl
1 = φ1 exp

�µ1
T

�×

×exp

�
− �ξ nl

1 + ξ nl
2

�
b11

�
1− D/b11

(ξ nl
1 /ξ nl

2 +1)2

��
, (71)

ξ nl
2 = φ2 exp

�µ2
T

�×

×exp

�
− �ξ nl

1 + ξ nl
2

�
b22

�
1− D/b22

(1+ξ nl
2 /ξ nl

1 )2

��
. (72)

If R2 is sufficiently smaller than R1, then D/b22 is larger than
unity, and the transcendental exponent of ξ nl

2 (72) can become
positive,

0 < D
b22

−
�

1 +
ξ nl
2

ξ nl
1

�2

⇐⇒ ξ nl
2

ξ nl
1

< a2 ≡
q

D
b22

− 1. (73)

The coefficient a2 = a2(R1/R2) introduced here is the crucial
combination of excluded volumes in the non-linear approximation.
It characterizes the behavior of this approximation in limit (43),
i. e. for ξ1 →∞.

For equal radii R2 = R1, it is a2 = −1, and one has full VdW-
like suppression, ∝ exp[−(p/T ) bqq ]. Negative a2 indicate the
strength of suppression of ξ nl

2 for increasing ξ nl
1 . For −1 < a2 < 0,

the suppression is reduced, most strongly for a2 ≈ 0. In the
case where a2 = 0, there is no suppression in limit (43) but
ξ nl
2 → A2 = const. for ξ nl

1 → ∞. Thus, the condition a2 = 0
provides the critical radius,

D/b22 = 1 ⇐⇒ R2, crit = (
3√

4− 1) R1 , (74)

which coincides with the canonical result (65).
For positive a2 or R2 < R2, crit, the non-linear enhancement

occurs: ξ nl
2 is enhanced by increasing ξ nl

1 as long as the
second exponent in (72) is positive, i. e. for ξ nl

2 < a2 ξ nl
1 . The

transcendental factor of ξ nl
1 (71) has only a reduced suppression

in this case. According to Eq. (73), one obtains

ξ nl
2 → a2 ξ nl

1 , but also n nl
2 → a2 n nl

1 , (75)

since n nl
2 /n nl

1 = ξ nl
2 /ξ nl

1 due to Eqs. (32) and (33).
Using Eqs. (75) and (73), one obtains for the particle densities

(32) and (33)

n nl
1 → 1

b11−a 2
2 b22

= 1

b11−(
√

D−√b22 )2
, (76)

n nl
2 → a2 n nl

1 → a2
b11−a 2

2 b22
=
√

b22
b22

√
D−√b22

b11−(
√

D−√b22 )2
. (77)

It is clearly seen that the density n nl
1 can exceed 1/b11 for positive

a2. As in the CE, the maximum value, max(n nl
1 ) = 4/b11, is

achieved for R2 = 0 or a2 = ∞. Then, in limit (43), the density of
the second component diverges, n nl

2 → ∞, but its total excluded
volume vanishes, n nl

2 b22 → 0, as seen from Eq. (77).
There is yet another case where condition (73) is fulfilled, the

early enhancement: ξ nl
2 can be enhanced with increasing µ2 for

constant T and µ1, if µ1 is sufficiently large. This enhancement
takes place only at small µ2, and it obviously vanishes when µ2 is
large enough so that ξ nl

2 ≥ a2ξ nl
1 . The early enhancement is the

direct analog to a negative derivative ∂p nl/∂Nq < 0 in the CE.
The coupled transcendental equations of the linear

approximation (35) and (36) may be rewritten similarly to
Eqs. (71) and (72). For choice (20), one obtains, in terms of
D from Eq. (15):

ξ lin
1 (T, µ1, µ2) = A1×

× exp

�
− �ξ lin

1 + ξ lin
2

�
b11

�
1− ξ lin

2
ξ lin
1 +ξ lin

2

D
b11+b22

��
, (78)

ξ lin
2 (T, µ1, µ2) = A2×

× exp

�
− �ξ lin

1 + ξ lin
2

�
b22

�
1− ξ lin

1
ξ lin
1 +ξ lin

2

D
b11+b22

��
. (79)

In this case, the condition for the enhancement of ξ lin
2 for R2 ≤ R1

would be

ξ lin
2

ξ lin
1

< ã2 ≡ − 2b12
b11+b22

. (80)

As ã2 is always negative, the VdW-like suppression is
only reduced in this approximation. Like in the non-linear
approximation, ã2 = −1 corresponds to equal radii R2 = R1
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and the full VdW-like suppresion, whereas ã2 = −1/4 (R2 = 0)
corresponds to the most strongly reduced suppresion in the linear
approximation.

Thus, the densities n lin
q can not exceed the maximum value

1/bqq of the corresponding one-component case. Furthermore, the
density n lin

2 (40) vanishes in the analogous limit to (43), ξ lin
1 →∞,

in contrast to the non-linear behavior.
In the case R1 ≤ R2, one would evidently investigate the

coefficients a1 ≡ (
p

D/b11 − 1) in the non-linear approximation
and ã1 ≡ −(2b12)/(b11 + b22) = ã2 in the linear one, respectively.
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РIВНЯННЯ СТАНУ ДВОКОМПОНЕНТНОГО ГАЗУ
ВАН-ДЕР-ВААЛЬСА З РЕЛЯТИВIСТСЬКИМИ
ВИКЛЮЧЕНИМИ ОБ’ЄМАМИ

Г. Зеєб, К.О. Бугаєв, П.Т. Ройтер, Х. Штьокер

Р е з ю м е

Отримано канонiчну статистичну суму для моделi двокомпо-
нентного виключеного об’єму, яка веде до двох рiзних рiвнянь
Ван-дер-Ваальса. Одне з рiвнянь вiдоме як сумiш Лоренца–
Бертелло, а iнше було запропоновано недавно. Обидвi моделi
проаналiзовано в канонiчному та великому канонiчному ансам-
блях. Пригнiчення щiльностi частинок в цих двокомпонент-
них формулюваннях послаблено порiвняно з моделлю Ван-дер-
Ваальса з однокомпонентним виключеним об’ємом, але дво-
ма iстотно рiзними способами. Багатокомпонентнi моделi, якi
використовуються в наш час, не мають такого послаблення.
Як нами показано, такi моделi неправильнi, якщо використо-
вуються для сумiшей частинок з рiзними радiусами твердого
кора. Для високих температур взаємодiю твердого кора покра-
щено шляхом врахування лоренцева скорочення сферичних ви-
ключених об’ємiв частинок, яке веде до помiтного посилення
внескiв легких частинок в термодинамiчнiй функцiї. Результу-
ючий вплив двох радiусiв твердого кора i лоренцева скорочен-
ня на вихiд пiонiв та нуклонiв детально вивчено на АГС- та
СПС-даних.
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