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The effect of a measurement time duration on the parameters of
magnetization curves for an ensemble of identical noninteracting
single-domain particles with equally oriented axes under the
uniaxial anisotropy has been specified for different experiment
modes, in particular for the cases of relaxation measurements
and the continuous sweep of a static magnetic field. The relation
between a blocking temperature and experiment characteristics
has been found for these modes. A recursion method to calculate
the magnetization reversal curves for such an ensemble of particles
is proposed. By comparing the results of calculations of the
magnetic properties by the recursion and Monte-Carlo methods,
an algorithm to establish the relation between the equivalent
measurement time and such parameters of the Monte-Carlo
method as the number of steps and the value of aperture is
suggested.

1. Introduction

The problems of the magnetism of nanoparticles have
attracted the attention of scientists for many decades.
More than a half-century ago, the English physicists E.
Stoner and E. Wohlfarth developed a simple model of
magnetization reversal for uniaxially anisotropic single-
domain particles at T = 0 K [1]. According to this model,
during the reversal, all spins in each particle turn in such
a way that they remain parallel to each other all the
time, i.e. the absolute value of the magnetic moment
for each particle remains constant, and only a mutual
orientation of the magnetic moments of various particles
changes. In such a case, the energy of the ensemble of
particles depends only on one collective variable, for
example, on a total magnetization vector. Within the
frame of this model, all the particles constituting a
sample are assumed to have the same shape, volume
V , and orientation of the crystallographic anisotropy
axes. The volume fraction f of these single-domain
particles in a specimen is sufficiently small and, thus, the
interparticle interaction can be neglected. The objects,
whose behavior corresponds to this model, are small
(in order to satisfy the condition for them to be

single domains) magnetic particles (see, for example, [2])
placed in a nonmagnetic metallic or dielectric matrix.

The density of magnetic energy U for a sample can
be represented as the sum of the energy density of
a magnetic anisotropy, which includes the anisotropy
caused by demagnetization fields (a shape-dependent
anisotropy term) and that of the interaction of the
magnetic moment with an external field H. In the
simplest case of a uniaxial anisotropy with regard for the
first anisotropy constant only, the density of magnetic
energy has the form

U =
f

N

N∑

i=1

Ui, (1)

where

Ui = −K cos2(θi − θ1)−mH cos(θi). (2)

Here, Ui is the density of magnetic energy for the
separate i-th particle, N is the number of magnetic
particles in the sample volume, K is the first constant
of the uniaxial anisotropy of a particle, m is its
magnetization, θi is the angle between the magnetic
moment of the i-th particle and the magnetic field
direction, and θ1 is the angle between the easy
magnetization axis of a particle (for all the particles its
direction is assumed to be identical) and the magnetic
field direction. For a sample which resides without an
external magnetic field as long as possible, the total
magnetization M will turn to zero, since the numbers of
particles with the magnetic moments oriented in parallel
and antiparallel to the easy magnetization axis equal
each other. On the contrary, the value of magnetization
becomes finite upon the application of a magnetic field to
the ensemble of particles. Hence, in the case where the
observation duration of such the ensemble is infinitely
long, its behavior will be characteristic of a paramagnet,
in spite of the fact that the particles are ferromagnetic.

Neel [3] and Brown [4] took the fact into
consideration that a drastic removal of the magnetic field
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from the ensemble of single-domain particles results in a
time decay of the residual magnetization M(t) according
to the exponential law:

M(t) = M(0) exp
(
− t

τ

)
, (3)

where M(0) is the magnetization value at the initial
time moment and τ is the relaxation time. The latter
characterizes the thermally activated reversal of the
direction of the magnetic moment of a separate particle
between two possible minima of its potential energy.
The hopping probability obeys the Arrhenius law which
yields

τ =
1

ν0

(
exp

(−Emb−Em1
kT

)
+ exp

(−Emb−Em2
kT

)) , (4)

where k is the Boltzmann constant, T is the temperature,
and Em1, Em2, and Emb are the energies for two
minima and a barrier between them, respectively. The
expressions for these energy values contain the product
of the particle volume V and the corresponding energy
density Ui which is dependent on the relative orientation
of the particle magnetic moment and the field. As a
result, the relaxation time τ strongly depends on the
particle volume, temperature, and the value of the
applied magnetic field. If the magnetic field is zero,
the energy minima are equally deep. The application
of a finite field makes the energy of one of them
increase, while that of another one decrease. In a
strong magnetic field, when the particle’s Zeeman energy
exceeds that of the uniaxial anisotropy, the higher-
energy minimum disappears. For the magnetic particles
under discussion, the typical values of the preexponential
factor ν0 in (4) are between 108 and 1010 s−1. In
the Arrhenius law, this factor is called “the attempt
frequency”. For estimations, its value can be assumed
to equal the precession frequency for the magnetic
moment in an effective magnetic field. Neel named these
materials, which are the independent single-domain
magnetic particles, superparamagnets and called their
quasiparamagnetic behavior as superparamagnetism.

For the superparamagnets, the shape of
magnetization curves strongly varies, depending on
the duration t of the measurement process (measuring
time). For each chosen value t, a blocking temperature
Tb can be introduced, which divides the whole region of
temperatures into two ones with different magnetization
behaviors. For one of them, the hopping, which occurs
during the measuring time, of the particle magnetic
moments between two energy minima should necessarily

be taken into account. But, for the second one, these
effects are not essential and, thus, can be neglected.
It is suitable to choose the temperature, at which the
temperature-dependent relaxation time τ becomes equal
to the measuring time t, as a blocking temperature.
For T À Tb, t À τ , and the magnetic moment of
a particle has enough time to make multiple jumps
between the energy minima. As a result, the populations
of these minima do not differ from the equilibrium ones
and the behavior of such a system of particles will be
close to that of the ensemble of paramagnetic atoms,
which is characterized by the absence of magnetization
hysteresis. In this case, the magnetization of the
ensemble of particles can be described by formula

M(H) = f m(H), (5)

where the time-averaged particle magnetization, which
is identical for all the particles, equals

m(H) =
m

π∫
−π

exp
(−UiV

kT

)
dθi

π∫

−π

exp
(
−UiV

kT

)
cos(θi)dθi.

(6)

The short-time measurements, for which t < τ ,
correspond to T < Tb. In this case, there is no enough
time for the transitions between the energy minima to
occur, and the equilibrium populations for the states
with different orientations of the magnetic moments of
particles are not achieved during the measuring time.
The system is in a metastable state and the curves
of magnetization reversal display the hysteresis. The
coercivity Hc depends on the measuring time, anisotropy
energy, and temperature. For the ensemble of uniaxial
single-domain particles, Neel and Brown suggested a
simple formula which connects these three parameters:

Hc(T ) = Hc(0)

{
1−

[
kT ln(t/t0)

E0

]1/α
}
, (7)

where t0 = ν−1
0 , E0 = KV is the height of the energy

barrier between the two minima at H = 0, and the
exponent α is the parameter which depends on the
orientation of a magnetic field relative to the easy axis of
magnetization. For the case of the ensemble of uniaxial
particles, whose easy axes are aligned along the magnetic
field, α = 2. For an arbitrary, but identical for all the
particles, orientation of easy axes (with respect to the
magnetic field direction), α is given as (see [5])

α = 0.86 + 1.14
(
(cos2/3(θ1) + sin2/3(θ1))−3/2

)
. (8)
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If the directions of the particles’ easy axes are uniformly
distributed over the space, α = 4/3.

In the literature sources, for the case of α = 2, one
can often find a representation of formula (7) in the form

Hc(T ) = Hc(0)
(
1−

√
T/TNB

b

)
, (9)

where

TNB
b =

KV

k ln(t/t0)
(10)

is the blocking temperature in the Neel–Brown
approximation. It is worth noting that, depending on
the form of the anisotropy energy definition in the above
expressions, the anisotropy constant K can appear with
a factor of 2. In spite of a relative simplicity, formulas
(7) – (9) successfully discribe experimental results.

As was shown in work [6], formulas (7) – (9) can
be supplemented with the expression accounting for
the dependence of the particle saturation magnetization
on temperature. This will result in a deviation of
these expressions from the power dependence for
the temperatures which are too close to the Curie
temperature of ferromagnetic particles. The further
improvements are reduced to the account of the
distribution of particles over sizes or anisotropy
values or the account, in various approximations,
of a magnetic dipole-dipole interaction between the
particles.

However, the analytical calculation of the
magnetization hysteresis curves for the systems under
consideration meets serious difficulties even for a
minimal number of independent parameters. At the
same time, the power of modern computer systems
makes it possible to carry out such calculations by
numerical methods. One of the difficulties, which arise
when one carries on the numerical calculations and tries
to compare their results with experiment, is related to
the correctness of the identification of a measuring time
t, which appears in calculations, with a real duration of
experiment. This implies that a relevant “protocol” of
measurements should be taken into account.

In modeling the properties of the ensembles of
magnetic nanoparticles, the method of Monte–Carlo
(MC) [7–12] has gained a significant popularity.
However, this method does not include the “real”
measuring time. Instead of it, the MC method contains
such parameters as the number of mathematical
iterations (MC steps) and the magnitude of angular
aperture used to update the magnetization direction.
At the same time, the literature sources known to

us do not contain an explicit relation between these
parameters of the MC method and the equivalent
measuring time, which corresponds to these calculations.
In a few works (see, for example, [10, 13]), to
correlate the number of MC steps with the measuring
time, the results of MC calculations are compared
with the data of actual magnetostatic measurements.
The conclusions of these works are reduced to that
the number of MC steps, being optimal from the
viewpoint of the likelihood of the results obtained and
the reasonable duration of calculations, corresponds
to unrealistically short measuring times in real
experiments, even for the calculations carried out with
the use of high-performance modern computers. Though
a number of papers devoted to this problem has been
published for the last decade, the methods how to
establish the correspondence between the equivalent
measuring time and MC simulation parameters remain
ambiguous.

It should be noted that the calculation, which would
be able to account for the mode of carrying out the
experiment, of the magnetization curves for the ensemble
of single-domain particles has remained a problem, for
a solution of which various approaches continue to be
proposed (see, for example, [14, 15]).

A method developed in this work for the modeling of
the magnetization curves doesn’t suffer from the above
disadvantage. In what follows, we call it a recursion
method (RM). In the literature sources, we haven’t met
any examples of the use of such a method. Its adequacy
is grounded on the favorable outcome of the comparison
of its results with those of both the MC simulations and
basic formulas of the Neel–Brown model [3,4] described
above. Basing on such comparison, we will be able
to establish a specific relation between the parameters
of MC simulation (the number of MC steps and the
magnitude of angular aperture) and the measuring time
which corresponds to these parameters. The method we
offer is suitable for the analysis of the magnetization
curves for superparamagnetic systems consisting of
uniaxially anisotropic particles and comprises the cases
where the anisotropy axes are either parallel to each
other or randomly oriented. There are no restrictions on
its utilization to the modeling of the behavior of uniaxial
systems with a nonzero second anisotropy constant and
even the systems with a cubic anisotropy. However, to
simplify the analysis, the modeling is carried out, in what
follows, for the ensemble of uniaxial particles, whose axes
are aligned in parallel to the magnetic field direction
(θ1 = 0) with regard for only the first anisotropy
constant.
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2. Dependence of Blocking Temperature
on Measuring Time for Various
Measurement Protocols

Consider an ensemble of identical noninteracting
spherical single-domain particles, each of which has
volume V and is characterized by the uniaxial
crystallographic anisotropy. We assume that the easy
axes of particles are aligned in parallel to the external
magnetic field, i.e. we choose θ1 = 0. We take only the
first anisotropy constant into account. Let us rewrite
formula (2) in terms of dimensionless units by carrying
out a division of its left and right parts by the anisotropy
constant K

Ured = cos2(θ)− 2h cos(θ), (11)

where h = Hm/(2K) is the dimensionless magnetic
field. Here and below, the index i in the notations of
the energy density for a separate particle and the angle
characterizing the direction of its magnetic moment will
be omitted. The parameter Tred = kT/(KV ) is used
as a dimensionless temperature. Let us also give the
definition of the dimensionless measuring time tred =
tν0, where ν0 is the parameter which has a frequency
dimension [see expression (4) for the probability of
the thermally activated reversal of particle magnetic
moments] and t is a real measuring time in seconds.

For the fields h ∈ (−1, 1), the solutions of the
equation ∂Ured

∂θ = 0 give us the coordinates of two energy
minima: θm1 = π and θm1 = 0. The barrier between
these minima is observed at θb = arccos(−h). The
reduced energies corresponding to these angles are E1 =
(−1 + 2h), E2 = (−1 − 2h), and Eb = h2. Substituting
these quantities into formula (4), the expression for the
dimensionless relaxation time τred, which characterizes
the thermally activated jumps between these minima,
can be written as

τred =
1

exp
[
− (1− h)2 /T red

]
+exp

[
− (1 + h)2 /T red

] .

(12)

As was noted above, the blocking temperature Tb

depends on the measuring time tred. It is seen that the
use of the condition tred = τred(Tred = T r

b ) for the
determination of the relaxation time leads to the relation

T r
b = 1/ ln(2tred). (13)

Here, T r
b is the blocking temperature in a zero magnetic

field taken in the dimensionless form defined above. This

expression doesn’t coincide with that for the blocking
temperature in the Neel–Brown approximation, T r

b∗ (a
reduction of TNB

b determined from expression (10) to a
dimensionless unit results in T r

b∗ = 1/ ln(tred)). Thus,
the Neel–Brown approximation corresponds to neither
the condition t = τ(T = Tb) (with expression for τ in
the form (4)) nor this relation.

Actually, formula (9) along with expression (10) for
TNB

b can be obtained from the following considerations.
In the case of high fields and low temperatures, i.e. when
h/Tred À 1, we can neglect the second exponential term
in (4) (or in a dimensionless expression (12)). Let us
take into account only the time, which is necessary for
the thermally activated reversal of a particle magnetic
moment from a metastable to the basic state, and ignore
the backward jumps. In this case,

τ∗red ≈
{
exp

[−(1− h)2/Tred

]}−1
. (14)

A formal extrapolation, which is not strictly
accurate, of this expression to the zero magnetic field
and its equating with a measuring time leads to a
definition of the effective blocking temperature T r

b∗ in
this approximation as

T r
b∗ = 1/ ln(tred), (15)

i.e. to the formula which was obtained by means of
reduction of (10) to the dimensionless units. It is seen
that T r

b (see (13)) and T r
b∗ (see (15)) are connected by a

simple relation (T r
b∗)

−1 = (T r
b )−1 − ln(2).

The most important point in the approximation
[3, 4] is probably the expression for the temperature
dependence of coercivity [see (7) and (9)]. At low
temperatures, the criterion h/Tred À 1 can already
be fulfilled for a coercive field (h = hc) and, thus,
approximation (14), along with the definition, which
follows from it, of the blocking temperature, i.e. T r

b∗

becomes justified.
Consider the question as to which type of

experimental data and measurement mode corresponds
the Neel–Brown approximation in more details.
Expression (9) with definition (10) [or (12) in
dimensionless units] for a blocking temperature can be
obtained proceeding from the assumption that the field
which corresponds to coercivity is the one, for which
τred(h = hc) = tred. Then the relation

tred ≈
{

exp

[
− (1− hc(Tred))2

Tred

]}−1

(16)
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will be valid for the low temperature region of the
coercivity vs temperature dependence. After taking the
logarithm on both left and right parts of (16), we
obtain the expression for the temperature dependence
of coercivity:

hc(Tred) = 1−
√

Tred ln (tred). (17)

Defining a blocking temperature as that, at which
the extrapolation of a low temperature part of the
temperature dependence of coercivity with either
formula (9) or (17) reaches zero value for a preset
measuring time, we can write the expression for the
temperature dependence of coercivity as

hc(Tred) = 1−
√

Tred/T r
b∗ , (18)

where T r
b∗ is determined from formula (15).

However, one should keep in mind that, to derive
Eq. (18), we had to use assumption (16) which is
not completely accurate in the strict sense. Moreover,
it should be remembered that, to obtain (15), we
used one more approximation which consisted in the
extrapolation of the low-temperature high-field part of
the τ∗red vs h dependence to the zero field. In fact, the
measuring time, which goes into these equations, can be
interpreted as the time, during which the system relaxes
from the magnetosaturated state after the instantaneous
switching-on of the given field. Such a definition
of the measuring time is related to the relaxation
measurements. For the relaxation experiments under
consideration, the time dependence of the magnetization
is given as

M(h, tred) = Mequ(h) + (M0sign(hsatur)−

−Mequ(h)) exp
(
− tred

τ(h, Tred)

)
. (19)

Here, Mequ(h) is the equilibrium magnetization in a
field h, which for the system under study is determined
as Mequ(h) = M0 tanh(2h/Tred), sign(hsatur) is the
sign of the saturation field, and M0 is the saturation
magnetization. At the same time, the coercivity is
determined from the condition M(hc, tred) = 0 which
differs from the condition tred = τred(hc, Tred). The
latter, perhaps, might be used as an approximate
condition. At low temperatures and sufficiently high
coercivities (when hc/Tred À 1, which is a criterion
of the applicability of approximation (14)), it is
either a relation exp [−tred/τred(h, Tred)] ≈ 1/2 or

tred = τred(hc, Tred) ln(2) that would better satisfy the
requirement M(h, tred) = 0. Thus, we will use them
instead of (16). The utilization of such an approximation
makes it possible to obtain the equation for the
temperature dependence of coercivity. This equation has
the same form as formula (9), in which the effective
blocking temperature T r

b∗ is substituted by T r
b∗∗ . The

latter coincides with neither (10) nor (15); it equals

T r
b∗∗ =

1
ln [tred/ ln(2)]

=
1

ln(tred)− ln[ln(2)]
. (20)

It is seen that (T r
b∗∗)

−1 = (T r
b∗)

−1 − ln[ln(2)] =T r
b −

ln(2)− ln[ln(2)].
To correctly determine Tb and obtain the expression

for the coercivity vs T dependence, one should not only
find the measuring time, but also take the measurement
protocol for the magnetic characteristics of a system of
particles into account.

Consider the relaxation experiments where the
saturating magnetic field, which acts on the system, is
instantaneously (or rapidly enough in real conditions
so that t ¿ τ) transformed into some other field
h, after which the system relaxes with time. In this
case, let the measurements of the magnetization be
continuously carried out during a time interval tred.
Consider the ways of the determination of both T r

b [see
(13)] and the effective blocking temperature T r

b∗ [see
(18)] to make it possible to specify the temperature
dependence of coercivity. It is pertinent to take a
temperature at which τred(h = 0) = tred [with regard
for (12] for τred) as T r

b . If this condition is fulfilled,
the zero-field magnetization (the so-called remanent
magnetization) has to be e times less than the saturation
magnetization (here and below, the number e means
the base of the natural logarithm). To measure the
coercivity according to this method and to determine
the blocking temperature from the hc(Tred) dependences,
it is necessary at each measurement temperature and
at a certain field which has the opposite sign relative
to the initial saturation field, to record a time point,
at which the magnetic relaxation curve crosses the zero
value. The corresponding field will equal the coercivity
at the given values of temperature and measuring time.
At low temperatures, it will correspond to the solution
of the equation

tred =
[
exp

(
− (1− hc(Tred, tred))2

Tred

)
+
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Fig. 1. Temperature dependences of coercivity calculated for
different measuring times: tred = 4, 10, 103, and 107 for the pairs of
curves 1, 2, 3, and 4, respectively. Dashed and solid lines represent
the solutions of Eq. (21) and M(hc, tred) = 0, respectively

+exp

(
− (1 + hc(Tred, tred))2

Tred

)]−1

· ln 2. (21)

Then, for each value of tred, one should plot the
dependence hc(Tred)|tred and find T r

b∗∗(tred) from the
approximation of its low temperature part by formula
(18), in which T r

b∗∗ substitutes for T r
b∗. A solution of

Eq. (21), which describes the temperature dependence of
coercivity, can be found only numerically. As was noted
above, it gives a correct criterion for the determination
of hc(Tred, tred) only for the temperatures lower than
T r

b∗∗. To find the temperature dependence of hc over
the whole range of temperatures, it is necessary to solve
the equation M(hc, tred) = 0 with the use of expressions
(12) and (19) for τred and M(h, tred), respectively. It
should be noted that the hc(Tred) dependence found in
such a way doesn’t exhibit a sharp break by turning
into zero at the blocking temperature. On the contrary,
it diminishes smoothly over a certain temperature range
above the blocking temperature.

Figure 1 shows the temperature dependences of
coercivity for various measuring times tred calculated
by means of the numerical solution of Eq. (21) and
the equation M(hc, tred) = 0 with the components
described above. The quantities

√
Tred/T r

b∗∗(tred) =√
Tred · {ln(tred)− ln [ln(2)]} are taken as the units of

the abscissa axis.
As is seen from the figure, all the curves coincide

with each other at low temperatures. Extrapolation of
the low temperature branches to higher x values gives

√
Tred/T r

b∗∗(tred) = 1. However, the real curves do
not follow the extrapolated one. On the contrary, they
diverge to different sides in the vicinity of the effective
blocking temperature. The curves obtained from Eq.
(21) turn into zero below T r

b∗∗, while those obtained from
the condition M(hc, tred) = 0 diminish smoothly above
T r

b∗∗. For very great values of tred (tred > 105), the curves
remain linear practically to T r

b∗∗. It should be noted that,
taking ν0 ≈ 108÷ 1010 s−1 into account, only such values
of tred are characteristic of real measurements. The
shorter the measuring time, the lower is the temperature,
at which the curves start to deviate from the linear law
which corresponds to formula (18) where the effective
blocking temperature equals T r

b∗∗. At the same time,
both the temperature smearing of a sharp transition in
the vicinity of hc = 0 and the transition retention to the
temperatures above the blocking temperature disguises a
deviation of the blocking temperature from T r

b∗∗ at short
(almost unlikely in practice) measuring times. For this
reason, if one employs the relaxation method to measure
a coercivity, the deviation from formula (18), in which
T r

b∗∗ serves as the effective blocking temperature, will
appear only in the form of the aforementioned smearing.
The temperature smearing of the transition, which is
observed as hc tends to zero, seems to be natural, since
the hysteresis is a manifestation of the metastability at
a finite measuring time. Such a hysteresis will occur, to
a greater or lesser extent, at any finite temperatures. It
is worth noting that the coercivity, even being negligibly
small at T > Tb, doesn’t turn into zero.

In principle, the relaxation measurement protocol
considered above is used in practice. However, the
protocol of the continuous sweep of a magnetic field
(CSMF) with certain rate is more often used for
magnetostatic measurements. In the course of its
implementation, the relaxation of the magnetization to
its equilibrium value occurs in a magnetic field, which
continuously changes. The case where the sweeping
rate is infinitely small corresponds to the infinitely
great measuring time. In this case, the system is in
an equilibrium state, and such a case corresponds to
Tb → 0. For the regions where superparamagntism
becomes clearly apparent and Tb 6= 0, the sweeping rate
becomes comparable with the relaxation time τ . Under
these conditions, the concept of a measuring time should
be made more specific and related to the experiment
conditions and the blocking temperature definition.

In the case of the CSMF studies, the simplest
and natural way to analyze and describe the system
properties may be the analysis of a hypothetical protocol
of measurements, in which the whole range of the field
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sweep is divided into equal intervals. In this case, the
magnetic field sweep can be regarded as a series of
jumps, each of which being characterized by a specific
waiting time tw after the previous jump. In this case,
the magnetization for each field point will relax during
tw from the value at the previous point. Such a method
can be called as recursive, since, in order to describe
the magnetization relaxation at the n-th field point, one
should reconstruct a successive series of magnetization
relaxations for all n − 1 previous points. In the limit
where the interval between successive points tends to
zero, we obtain the CSMF protocol. It is appropriate to
define the measuring time as a sweep time for the unit
field interval (taken in dimensionless units), i.e. to define
tred as the quantity which is reciprocal to the sweep rate
averaged over the whole intervals.

Figure 2 shows the dependences of the blocking
temperatures defined in different ways on 1/ ln(tred):
T r

b was obtained from expression (13), while T r
b−scan

was calculated numerically by means of the RM for
different values of n, where n is the number of intervals,
into which the unit field interval ∆h = 1 was divided.
In calculations, the T r

b−scan was regarded as a value
of the reduced temperature, at which the remanent
magnetization was e times less than the saturation
magnetization.

It is seen that all dependences, which are calculated
with the use of the RM, lie between two curves, one of
which is the curve obtained from (13), while the other is
some limiting curve, to which the calculated results tend
when n goes to infinity. This curve corresponds to the
CSMF case. It is clear that the solution corresponding
to n = 1, i.e. when one point falls on a unit interval,
coincides with that obtained from formula (13). One can
see that the results start to diverge from the limiting
solution already for n ∼ 200.

The dependences hc(Tred) were also calculated for
the case n →∞. Extrapolation of their low temperature
regions to the temperatures where hc → 0 resulted in
the same dependences of T r

b−scan(tred) as those which
were determined from the expression for the remanent
magnetization. For all tred values, except for the shortest
ones (tred < 5), the curves hc(Tred) correspond to Eq.
(18), in which T r

b−scan(tred) substitutes for T r
b∗.

The analysis of the data in Fig. 2 shows that
the CSMF case is the limiting case of relaxation
measurements when the measuring time is reduced.
In fact, in the former case, the system resides in the
saturated state for a considerable part of the sweep time
which falls on a unit field interval. The effective sweep
time from the saturating field to the zero (or coercive)

Fig. 2. The T r
b-scan(tred) dependences calculated by the RM

technique for various numbers of points per unit field interval
(circles). The top solid line corresponds to the limiting case n →
∞. The bottom line shows the T r

b (tred) dependence calculated by
formula (13)

one turns out to be far shortest than tred defined
above for the CSMF protocol. For this protocol, one
can introduce the effective measuring time teffred, at
which T r

b−scan(tred) in the CSMF case will coincide with
T r

b (teffred) in the case of relaxation measurements, i.e. it
will equal 1/ ln(2teffred). It is appropriate to regard such
time as the sweep period for the field, at which the
equilibrium magnetization changes from zero to a certain
value aM0. Then, from the fitting of the limiting curve in
Fig. 2, we should find the optimal value of a (its expected
value is about 2). Such an approach leads to the equation
teffred = tredarctanh(a)/

[
2 ln(2teffred)

]
, whose solution is

teffred(tred, a) =
tred arctanh(a)

2W [tred arctanh(a)]
. (22)

Here, W (x) is the so-called Lambert W -function which
is a reciprocal function to x = W (x) exp[W (x)]. This
function was introduced into mathematical physics
relatively recently [18]. In a number of cases, for
example in a popular program “Mathematics” developed
by “Wolfram Research” company, it is denoted as
“ProductLog”. The examples of the solution of various
tasks of mathematical physics with the use of this
function are presented in [19].

The calculations we carried out have shown that the
expression

T r
b−scan(tred) = 1/ ln

[
2teffred(tred, a = 0.45167)

]
(23)
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approximates the limiting curve of Fig. 2 with a high
precision. Noticeable deviations are observed only for
the smallest tred values (tred < 5), which are of minor
importance from the practical point of view. Thus, this
approximation requires only one fitting parameter a.

Taking into account that the W (x) function is not
widely used in the scientific literature, we also found the
approximation of the limiting curve for T r

b−scan(tred) by
a power series of [ln(2tred)]−1:

T r
b−scan(tred) =

1
ln (2tred)

×

×
(

1 + a0 +
a1

ln (2tred)
+

a2

[ln (2tred)]2
+

a3

[ln(2tred)]3
.....

)

(24)

with four fitting parameters: a0 = 0.01, a1 = 5.197,
a2 = −3.581, and a3 = −1.602. Finally, we note
that, in real CSMF experiments, tred is usually between
1010 and 1014. For this reason, the discrepancies in
the determination of a blocking temperature are almost
unnoticeable for different measurement methods.

3. Recursion Method

Before turning to a description of the calculation method
for magnetic reversal curves for different measuring
times, it should be noted that its implementation, as
also in the case of MC modeling, requires some efforts
in the programming of a calculation procedure. We will
use the same dimensionless parameters as in Section 2:
h = Hm/(2K) is the magnetic field, tred = tν0 is the
measuring time, Tred = kT/(KV ) is the temperature, n
is the number of points per unit field interval, mred =
fm/(fms) = Mred.

The method is based on the following prerequisites.
1. The hysteresis, which is a result of the

metastability, will become apparent at a finite measuring
time only if the state of a system is characterized
by two minima in the dependence of its energy on
the orientation of a particle magnetic moment. The
hysteresis originates from the metastability with regard
to thermally activated jumps over a potential barrier.
In its turn, the metastability appears as a result of the
finiteness of a measuring time.

2. In real magnetostatic measurements, the ratio of
a barrier energy at H = 0 to a thermal energy, at which
the deblocking of a magnetic moment occurs, is near
25. That is why we assume that, even at temperatures
higher than the blocking temperature, the orientation

of a magnetic moment will be localized in one of the
minima, rather than smeared by temperature over a wide
range of angles θ.

3. To determine the magnetization of a system,
the concept of potential well (minimum) populations is
introduced. This concept is based on the distribution
statistics of magnetic moment directions in an infinitely
great ensemble of identical and equally oriented
particles.

4. In dimensionless units, the magnetization of the
system depends only on the coordinates of minima
(θm1, θm2) and their populations (N1, N2): Mred =
N1 cos(θm1) + N2 cos(θm2).

The limits of applicability of this method will be
discussed later on; we will concentrate now only on the
calculation procedure.

We reduce formula (2) for the density of energy of a
separate particle to that in the dimensionless units (the
index i, which refers to the number of a particle, will be
omitted again, as was done in (11)):

Ur = − cos2(θ − θ1)− 2h cos(θ). (25)

Consider the energy profile Ur in the phase space θ ∈
(−π, π] as a function of the magnetic field h. The energy
minimum will correspond to the equilibrium orientation
of the magnetic moment. The number of extrema can be
found by solving the equation ∂Ur/∂θ = 0. Substituting
the roots of this equation into the expression ∂2Ur/∂θ2,
we can find out if a given root corresponds to the energy
minimum or maximum.

The method developed consists of a few successive
steps. At first, the system is assumed to reside in
a saturating magnetic field. Then we sequentially
change the field to smaller values and calculate the
magnetization, to which the system will come during the
time interval which is equal to the period of the system
residence at a certain field point hk. The relaxation time
is determined by the form of the potential in a field
hk. According to this method, the calculations should
start from a negative field, which is high enough so that
the energy displays only one minimum, and finish at
a sufficiently high positive field, for which the energy
again displays only one minimum. Thus, the calculation
procedure can tentatively be divided into three stages.

The first stage is applicable when the field is negative
and the state of the system is characterized by only one
energy minimum. This stage includes:

1. Determination of the total number of extrema in
the range θ ∈ (−π, π] and their separation into minima
and maxima.
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2. If the state of the system is characterized by only
one energy minimum, then N1 = 1 and N2 = 0, and the
magnetization equals Mred = N1 cos(θm1)+N2 cos(θm2).
If there are two minima, we should go on to the second
stage.

3. Recording the magnetization for a given field point
hk, changing the field to hk+1 = hk + ∆, and going on
to item 1.

The second stage is applicable when the state of
the system is characterized by two energy minima and
includes:

4. Determination of the total number of extrema in
the range θ ∈ (−π, π] and their separation into minima
and maxima.

5. If the state of the system is characterized by
a single energy minimum, then we should go on to
the third stage. If there are two minima, a temporal
evolution of N1 and N2 should be considered. This
includes:

a) determination of the equilibrium populations N1∞
and N2∞, i.e. the values of N1 and N2 when the time
interval is infinite:

N1∞ =
1

1 + exp [−(E2 − E1)/T red]
, N2∞ = 1−N1∞,

(26)

where E1 = Ur(θm1) and E2 = Ur(θm2) are the energy
values for the first and second minima, respectively;

b) tracing the relaxation of N1 and N2 for the time
interval tloc = tred/n:

N1t = N1∞ + (N1 −N1∞) exp (−tloc/τred) , (27)

τred =
1

exp [−(Eb − E1)/Tred] + exp [−(Eb − E2)/Tred]
.

(28)

c) recording the new values of N1 and N2:

N1 = N1t, N2 = 1−N1t.

6. Calculation of the magnetization Mred =
N1 cos(θm1) + N2 cos(θm2).

7. Fixation of the magnetization for a given field
point hl, changing the field to hl+1 = hl + ∆, and going
on to item 4.

The third stage is applicable when the field is
positive, and there is no second minimum. This stage
includes:

8. Determination of the total number of extrema
in the range θ ∈ (−π, π] and separation of them into
minima and maxima.

9. If the state of the system is characterized by only
one energy minimum, then N1 = 0 and N2 = 1 and the
magnetization equals Mred = N1 cos(θm1)+N2 cos(θm2).

10. Fixation of the magnetization for a given field
point hm, changing the field to hm+1 = hm + ∆, and
going on to item 8.

The greater n, the more minutely the magnetization
curve will be calculated. At the same time, the real
time interval spent on the measurement of the complete
hysteresis loop ({ − h, h}, {h,−h}) will equal t =
2tred∆h/ν0 s, where ∆h is the interval (taken in
dimensionless units) of the complete sweep of the
magnetic field. If one does not need to model the
partial hysteresis loops, it is enough to carry out the
calculations for the interval { − h, h}, because the
second interval {h,−h} will be symmetric relative to
the coordinate origin (0, 0). To obtain the magnetization
curves for an ensemble which is characterized by a
distribution of some particles’ parameters, it is necessary
to divide the distribution function into sufficiently
small intervals and, having calculated the separate
curves for each of the intervals (i.e. for the average
values of a parameter in this interval), to sum
them.

The inset in Fig. 3 shows the results of the modeling
of magnetization curves for the ensemble of uniaxial
particles, whose easy axes are aligned in parallel to the
magnetic field. The calculations were made for tred =
1.25 × 106 and n = 125. The temperature Tred was
varied from 0 to 0.02. The temperature dependence of
coercivity (squares) is well described by formula (7)
and has a square-root character (α = 2) for the given
orientation of the particle easy axes. The plot of this
curve in the form hc(

√
Tred) (triangles) confirms the

latter fact. Such a dependence is a straight line and its
extrapolation to the intersection with the ordinate axis
unambiguously determines the blocking temperature
T red

b = (0.3± 0.005)2 = 0.09± 0.003. At the same time,
the calculation of T r

b−scan(tred = 1.25×106) according to
formulas (23) and (24) in the case n → ∞ (or, at least,
n ≥ 200) gives 0.0915. Thus, the value of T red

b = 0.09
obtained from Fig. 3 well agrees with that found from
(23) and (24).

The temperature dependence of the remanent
magnetization Mr normalized to the saturation
magnetization exhibits a sharp rise (see Fig. 3, circles)
at temperatures where hc becomes noticeable.

As was expected, the value Tred = T red
b = 0.09

corresponds to a decrease in the remanence by a factor
of 2.718. This means that the plots of the temperature
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Fig. 3. Results of the modeling of the hc(Tred) (solid squares) and
Mr(Tred) (open circles) dependences for tred = 1.25 × 106. The
hc(

√
Tred) dependence is shown by open triangles. The calculations

are carried out for n = 125. The inset shows the magnetization
curves which correspond to these dependences, for Tred = 0.2,
0.1 (anhysteretic curves) and 0.07, 0.03, 0.01, and 0.00 (with a
hysteresis which consecutively widens)

dependences of the coercivity and the remanent
magnetization normalized to the blocking temperature
(see expression (23) or (24)) should coincide. Figure
4,a shows the results of the RM modeling obtained
on the same ensemble of particles, but for different
values of the measuring time. These data replotted in
the coordinates where the abscissa axis is scaled by
T r

b−scan(tred) are presented in Fig. 4,b. It is seen that
almost all the Hc

[
Tred/T r

b−scan(tred)
]
curves overlap one

another. Replotting these curves in the coordinates with
a “rooted abscissa” shows that, at temperatures far lower
than the blocking temperature, they are well described
by formula (9).

A characteristic feature of the Mr

[
Tred/T r

b−scan(tred)
]

dependence is a broadening of the front of the Mr

growth with decrease in tred. All the curves intersect
one another at a point, whose ordinate equals 0.368,
i.e. 1/e. Thus, the simulated magnetization curves,
as well as the Hc(Tred) and Mr(Tred) dependences
obtained from them, are in compliance with the
regularities described in Section 2, which determine
their behavior over a wide range of measuring time
values.

The RM calculations of the magnetization curves
were also carried out for the ensembles of particles
with 3D- and 2D-distributions of easy axes. The results

obtained well agree with the data calculated by the
MC method [1, 6, 7]. The fact that the time of
computer calculations is much less within the RM than
that within the MC method gives us an additional
argument in favor of the method we have proposed
here.

It is worth noting that the method developed
contains a series of approximations, which can lead
to some inaccuracy of the results obtained. The most
important approximation is related to a failure to
consider the thermal fluctuations of a magnetic moment
in the vicinity of an energy minimum . This, in turn,
gives rise to an inaccuracy in the determination of
the magnetization at sufficiently high temperatures
(or for very short values of the measuring time
(tred ≤ 5)). It should be stressed once more that, in
the first place, the RM is used for the calculations
of the ithysteresis loops of the magnetization. To
study the magnetization curves itabove itthe blocking
temperature, it is enough to utilize formula (5). With the
use of this formula, one can also estimate the measure of
inaccuracy for the magnetization calculated by the RM
at temperatures higher than the blocking temperature.
It is obvious that the higher the temperature, the
greater is the inaccuracy. To check the role of this
factor, we calculated the magnetization curves for
tred = 1.25 × 104 and Tred > T red

b (namely, for
Tred = 0.2) by the RM and formula (6). The maximal
error in the determination of the magnetization did
not exceed 1.5%. The measuring times, which are
shorter than the above value, are hardly possible in
practice.

4. Monte–Carlo Method

For the modeling by Monte–Carlo method, the standard
algorithm suggested by Metropolis et al. [16] was used.
It is known that, for a sufficiently great number of
steps NMC, such an algorithm leads to the Boltzmann
distribution. This means that a system comes to the
thermodynamic equilibrium and thus, no metastability
and, respectively, no hysteresis will be observed unless
we introduce some special tricks. In a general case, for a
great number of MC steps, the results will tend to those
which can be obtained with the use of formula (5). To
“catch” the metastability in the process of magnetization
reversal, it is necessary to use a finite number of MC
steps and restrict the generation of a trial random
orientation of the magnetic moment in the vicinity of the
current orientation by a certain not great aperture ∆θ,
instead of the generation over the whole phase space.
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Fig. 4. (a) Families of the Hc(Tred) (solid squares) and Mr(Tred) (open circles) curves calculated for the ensemble of particles, whose
easy axes are aligned along the magnetic field, for tred = 2.5× 1012, 2.5× 1010, 2.5× 108, 2.5× 106, 2.5× 104, and 2.5× 103 (n = 250).
The curves are shifted towards the right side as tred decreases. (b) The same curves replotted in the coordinates where the abscissa axis
is scaled by T r

b−scan(tred)

This trick is one of the standard MC techniques to
model the hysteresis loops [7, 10, 12]. The procedure of
modeling is divided into two stages: a thermalization of
the system and a magnetization reversal process itself.

The system thermalization is regarded as the proce-
dure consisting from tens to hundreds of thousands of
MC steps at high negative fields and sufficiently high
temperatures. This procedure is aimed at bringing the
system to a state which is equivalent to the thermal
equilibrium. To model the magnetization reversal
process, one should give an increment in the magnetic
field and perform a given number of MC steps for
each field point. Such algorithm is widely used, and
we won’t describe it in details (see its description, for
example, in [10,12,17]). Here, we only note that, in
our calculations, we set the aperture value ∆θ = 6◦

(the role of the aperture will be discussed below). The
thermalization procedure was carried out for Tred =
0.5, h = −10, and NMC = 10000. To compare the
efficiency of the MC method and RM, we performed
a series of calculations of the magnetization curves for
various Tred by both methods. To determine the blocking
temperature, we utilized the extrapolation of a low-
temperature region of the hc(

√
Tred) dependence, which

is linear in these coordinates, to its intersection with
the abscissa axis. In both cases, 300 field points fell
on one magnetization curve (−2 < h < 2), which
meant that n was equal to 75. Then we carried out the
calculations of the Hc(Tred) and Mr(Tred) dependences

according to the MC method with NMC = 5 × 106,
a measuring time tred for the RM procedure was
fitted in such a way that the dependences obtained
agreed as much as possible with the results of the MC
modeling.

Figure 5 presents the Hc(Tred) and Mr(Tred) depen-
dences obtained by the MC method (squares and circles)
and RM (solid lines) for the ensemble of particles, whose
easy axes are aligned along the magnetic field. It is seen
from the figure that, in spite of the disadvantages of
the RM, which were formulated in Section 3, both the
methods give almost identical dependences. Since the
duration of the MC calculations was sufficiently long
(it took 46 min to calculate one magnetization curve),
only a small number of particles (5 particles in the
ensemble) was taken for calculations and this resulted in
a noticeable data scattering. On the contrary, it took no
more than a minute to make the RM calculations for one
magnetization curve. In the case under consideration,
the number of MC steps at each field point was 5× 106,
while the RM with a fitting procedure described above
gave tloc = 8 × 103, which means that, for n = 75,
tred = ntloc = 6 × 105. Since the parameter ν0 is of the
order of108 − 1011, the actual measuring time for such
a kind of the MC procedure corresponds to 10−4 − 10−7

s. This is, of course, an extremely small time interval.
At the same time, it is pertinent to specify the
interrelation between the number of MC steps and the
aperture, on the one hand, and the real time interval,

ISSN 0503-1265. Ukr. J. Phys. 2008. V. 53, N 3 271



A.A. TIMOPHEEV, S.M. RYABCHENKO

Fig. 5. Dependences Hc(Tred) (solid squares) and Mr(Tred) (open
circles) obtained by the MC modeling (NMC = 5 × 106, tloc =

8× 103, n = 75) and the RM (solid lines)

which corresponds to the calculation parameters, on the
other hand.

5. Relationship Between the Parameters of
MC Modeling and Real Measuring Time

It is appropriate to assume that, for the MC procedure,
the equivalent real measuring time tred should be
proportional to nNMC. For this reason, the results
obtained in Section 2 were used to search for such a
dependence. At first, the calculations of the blocking
temperature T red

b were carried out by both methods
for different measuring times (different numbers of MC
steps).

Figure 6 shows the dependences obtained along with
a theoretical curve which corresponds to formulas (23)
and (24). To make a comparison of the results to be
more covenient, all the dependences were represented
in the form T red

b [ln(tsys/tfit)], where tsys is the effective
measuring time characteristic of each method (for the
RM and the theoretical dependence, tsys = tred; for
the MC procedure, tsys = nNMC), and tfit is the
fitting parameter specific for each procedure. It turned
out that, for the RM procedure and the theoretical
dependence, tfit = 1. It was also confirmed that, for the
MC procedure, firstly, the equivalent measuring time
is actually proportional to nNMC, and, secondly, the
coefficient of proportionality is about 450. It is seen that
the points calculated by both methods agree well with
the theoretical curve. Based on this, the relation between
the number of MC steps and the equivalent measuring

Fig. 6. Dependences of T red
b on the effective measuring time tsys

(the number of MC steps) for the MC method (triangles) and the
RM (circles). The solid curve corresponds to the calculations by
formulas (23) and (24)

time was obtained in the form

tMC
red ≈ nNMC/450. (29)

One can estimate the number of MC steps which
corresponds to the measuring time tν0 = 1010. It equals
approximately 5 × 1012. Taking into account that one
MC step contains a few tens of operations and that
a modeling is performed for an ensemble of particles,
the necessary computational resources exceed 1014

operations. Thus, it is concluded that the computational
capability of modern computers is not sufficient to carry
out the real time modeling. It is obvious that, for some
calculations, it is more important to deal with a great
number of particles in an ensemble and less important
whether the number of MC steps is great or small.
However, to simulate, for example, the ZFC/FC (zero
field cooling/field cooling) procedure, the value of the
measuring time is likely to be decisive.

Let us discuss the origin of the parameter tfit for
the MC procedure. The only parameter which we have
not yet varied is the generation aperture ∆θ. It was
noted that the MC calculations above were carried out
under the condition that ∆θ = 6◦. Let us start from the
assumption that it is the parameter ∆θ that determines
the tfit value. To make sure of this, we performed the
MC calculations of T red

b (NMC) dependences for various
values of aperture (∆θ = 1.5 ÷ 48◦). Figure 7 presents
the results of this modeling. As is seen from the figure,
for the calculations with a small number of MC steps,
T red

b strongly depends on NMC. As NMC increases, the
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aperture value to a lesser extent affects T red
b . At the same

time, a family of T red
b [ln(nNMC)] dependences can be

well approximated by a function Tb−scan(nNMC/tfit). It
follows from general considerations that tfit(∆θ) should
be dependent on Ur, its derivatives, or its integrals.
However, we have not succeed in finding the precise
analytic dependence. We can only note that, for ∆θ <
45◦, the admissible expression resulted from the fitting
of the data in Fig. 7 is

tfit ≈ 4.9/
[
sin2(∆θ)

]
.. (30)

Thus, we have obtained the final expressions which
answer a question about which measuring time
corresponds to the MC calculations:

tMC
red ≈ sin2(∆θ)

4.9
nNMC, (31)

TMC
b ≈ Tb−scan

[
n

NMC

4.9
sin2(∆θ)

]
. (32)

6. Conclusions

In this work, the recursion method has been developed
for the calculations of the magnetic properties of the
ensemble of single-domain particles. Its applicability
to the system of oriented particles with a uniaxial
anisotropy is demonstrated. There are no hindrances
to apply such a procedure to the case of a cubic
anisotropy, introduce the distribution function for
a certain parameter, make the anisotropy constant
temperature-dependent, or even introduce the dipole-
dipole interaction between the particles of an ensemble.
It is also not difficult to model the ZFC/FC procedure.
In our opinion, the RM results will far better reflect the
real experiments, than the results of the MC modeling.

The relation, which correlates the magnetic
parameters of the ensemble of uniaxially anisotropic
magnetic particles with a measuring time for these
properties in various experimental procedures, is
obtained.

It is shown that, depending on a kind of experiment,
the relationship between the blocking temperature and
the measuring time has somewhat different forms.

The calculations of the magnetization curves for
the ensemble of uniaxial single-domain particles are
carried out for different measuring times. The similar
calculations performed by the Monte-Carlo technique
confirm the adequacy of the method developed here. The
latter method requires far less computational resources

Fig. 7. The T red
b (nMMC) dependences calculated by MC method

for various values of aperture ∆θ = 1.5, 3, 6, 12, 24, and 48◦

(circles). Solid lines are the fitting of the obtained results with the
function Tb−scan(nNMC/tfit)

in comparison with the modeling of an analogous task
by the Monte–Carlo method.

With the use of the new method, we succeeded in
the establishment of the empirical dependence between
the number of MC steps and the generation aperture
of a random direction of the magnetic moment, on the
one hand, and the measuring time, which corresponds
to these parameters, on the other hand. It is shown
that the parameters, which are usually used for the
MC modeling of the behavior of ensembles of magnetic
particles, correspond to unlikely short values of the
measuring time.
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ЗАЛЕЖНIСТЬ НАМАГНIЧУВАННЯ ОДНОДОМЕННИХ
ЧАСТИНОК ВIД ЧАСУ ВИМIРЮВАННЯ У РIЗНИХ
ЕКСПЕРИМЕНТАЛЬНИХ ТА ОБЧИСЛЮВАЛЬНИХ
МЕТОДАХ

А.О. Тимофiєв, С.М. Рябченко

Р е з ю м е

Розглянуто зв’язок характеристик магнiтопольової залежно-
стi намагнiченостi ансамблю iдентичних невзаємодiючих одно-
доменних частинок з однаково орiєнтованими осями одновiс-
ної анiзотропiї вiд часу спостереження в рiзних режимах ви-
мiрювання, зокрема в режимах релаксацiйних вимiрювань i з
неперервною розгорткою статичного магнiтного поля. Знайде-
но спiввiдношення мiж температурою блокування i характери-
стиками експерименту в цих режимах. Запропоновано метод
рекурсiї для розрахункiв кривих перемагнiчування для такого
ансамблю частинок. З порiвняння розрахункiв магнiтних вла-
стивостей такого ансамблю, виконаних рекурсивним методом i
методом Монте-Карло, встановлено спiввiдношення для еквiва-
лентного часу вимiрювання, якому вiдповiдає розрахунок ме-
тодом Монте-Карло з визначеним числом крокiв i визначеною
апертурою.
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