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The postulate of a symmetry of formulas used at the derivation
of Lorentz transformations has been used to check other
transformations. To reach a better adequacy between the
experiment and the theory, the method of symmetrization
of classical transformations has been used, and necessary
modifications to the theory dealing with certain problems have
been introduced in such a way. The Lorentz transformations
have been obtained without imposing any confinements upon the
magnitude of velocities of the reference frames and signals. A
modified “a posteriori” theory of the Michelson experiment has
been constructed, and its schematic generalization onto the case
of mechanical signals has been made. The result of this experiment
has been substantiated by means of symmetric transformations
and on the basis of the Fermat principle. It has been demonstrated
that the classical theory, owing to the application of nonsymmetric
transformations, had mistakenly predicted the existence of the
second-order effect, which the experiment had been designed to
seek for.

1. Introduction

In work [1], while deriving the Lorentz transformations,
the requirement of their symmetry has been formulated
as a postulate. The latter demands that the direct
transformations, which describe a transition from the
reference frame K to the reference frame K ′, and the
inverse ones describing the inverse transition K ′ → K
be equivalent. Hence, its realization is a mathematical
background of the kinematic relativity principle. There
are two ways to invert the transformation. The first
one consists in swapping the primed and nonprimed
variables and changing the sign of the transformation
parameter. The second way is a direct solution of

the transformation equations to obtain either primed
or nonprimed variables. The transformations are
symmetric, if the results of both ways of their inversion
are identical.

The postulate of transformation symmetry is
based on the statement that the application of
nonsymmetric transformations does not provide the
sufficient correctness to the theoretical results obtained.
Whence, there emerges an idea that some modifications
have to be made to the existing theory, because
the neglecting of this postulate brought about a
disagreement between the theory and the experiment
[2, 3]. To put this idea into action, the method of
transformation symmetrization is applied; the essence
of the method is that nonsymmetric transformations of
an “old” theory are used to construct new, symmetric
ones. In such a way, we change over to a “new”, modified
theory.

In works [4–8], an attempt was made to demonstrate
how the problems of electrodynamics and optics of
moving bodies can be considered in a different way, by
modifying the formalism of the theory on the basis of
the symmetry postulate. In this work, we have the same
goal in view, but present a more profound substantiation
of the drawn conclusions.

2. Symmetrization of Transformations

1. Let the points O and O′ be the origins of the reference
frames K and K ′, respectively. Let the positions of an
arbitrary point M in those reference frames be given by
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the vectors r = OM and r′ = O′M , respectively. The
corresponding geometric transformation is

r′ = r− s, (s = OO′) (1)

where s is the vector OO′. Similarly to the case
where a transition to the kinematics by means of the
equation s = vt introduces a new variable t into
consideration (this variable is to be transformed in order
that the transformations comprise a complete system of
equations), the use of a new parameter β = s/r instead
of s is accompanied by the introduction of an extra
variable r, the lengths of the vector r. Then, we obtain a
complete system of vector-longitudinal transformations:

r′ = r− βr, r′ =
√

(1 + β2)r2 − 2(βr)r. (2)

Let us symmetrize these transformations in the case
where the vector r′ and its norm are expressed by the
formulas

r′ = kr(n− β), r′2 = k2r2(n− β)2, (3)

where n = r/r, and we introduced a new quantity
k which has the meaning of the similarity coefficient
and, simultaneously, is the factor of transformation
symmetrization, after the latter has been determined
on the basis of the symmetry postulate. Sequentially
inverting the norm of the vector by two ways indicated
above, we obtain r′2 = r2/[k2(n + β)2]. Demanding
that the two latter expressions should be equal, which is
required by the symmetry postulate, we obtain k = Γ,
where Γ = 1/

√
±(1− β2) is an analog of the Lorentz

factor, and the sign plus or minus corresponds to the
case β < 1 or β > 1, respectively.

Let us write down the symmetric transformation
for the length of vector (3) in the polar (spherical)
coordinates (r, θ), by assuming that the polar axis is
directed along the vector s:

r′(θ) = rΓfp(−β, θ),

cos θ′ =
[
(1 + β2) cos θ − 2β

]
f−2

p (−β, θ), (4)

where

fp(−β, θ) =
√

1− 2β cos θ + β2,

and θ is the angle between the vectors s and r. Angular
dependence (4) is known from the problem of light
reflection from a moving mirror (Einstein, 1905). Here,
θ′ can be regarded as a quantity defined by the given
dependence.

Let us find transformations which would be more
convenient than Eqs. (4). Making use of both an
expression for r′, which can be derived from Eq. (3) in
form (2), and the formula r′ cos θ′ = rΓ(cos θ − β), we
obtain the transformation

r′(θ′) = ±rΓfq(∓β, θ′), θ = θ′, (5)

where

fq(β, θ′) =
√

1− β2 sin2 θ′ + β cos θ′,

and θ′ is the angle between the vectors s and r′.
It is worth noting the equivalence between lengths

(4) and (5), as well as the condition of its validity,

r′(θ) = r′(θ′), cos θ′ = (cos θ − β)f−1
p (−β, θ). (6)

2. Now, consider the issue concerning the
symmetrization of transformations expressed in
rectangular coordinates. Let the axes x, y, z (the
reference frame K) and x′, y′, z′ (the reference frame
K ′) be relatively oriented in such a manner, that the
transformations of transverse coordinates (y = y′,
z = z′) are symmetric. By projecting Eqs. (2) onto
the axes of the reference frames, we obtain a complete
system of coordinate-longitudinal transformations. Into
the nonsymmetric expressions for x′ and r′, we introduce
the symmetrization factor (we continue to designated
it, as it was above, by the symbol k); afterwards, we
find the corresponding inverse expressions. The result
of inversion made following the first way is evident.
The inversion by the second method brings about the
equations

x = ±Γ2(x′ ± βr∗)/k, r = Γ2(r∗ ± βx′)/k. (7)

Here, there spontaneously appeared an analog of the
Lorentz factor Γ which was introduced above, and the
length

r∗ =
√

r′2 − β2(r′2 − x′2). (8)

The latter, in comparison with the length r′ of the vector
r′, is an incompletely defined quantity in that sense
that the r∗-magnitude does not represent the length of a
definite Euclidean vector. Therefore, we did not manage
here to find the symmetrization factor k, having the
inverse transformations obtained by two ways.

Difficulties associated with the determination of
the symmetrization factor in the case where the
transformations are expressed by means of rectangular
coordinate systems, can be overcome, if we confine
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ourselves to the approximation of affine transformations.
Being satisfied with the variable r∗ instead of r′, we can
symmetrize system (7) in the case β < 1 and obtain a
geometric analog of Lorentz transformations. Now, we
will deduce these transformations for the cases β < 1
and β > 1, making use of formula (8) written down in
the form

r∗2 = k2[(x− βr)2 ± Γ−2(y2 + z2)]. (9)

We take advantage of the equation r∗2 = x′2± (y′2 +
z′2), which – from the viewpoint of affine geometry –
describes either an ellipsoid or a two-sheet hyperboloid
of revolution in the K ′-system, depending on the selected
plus or minus sign, respectively. The transformation of
the latter expression to Eq. (9) is ensured by the affine
coordinate transformations

x′ = k(x− βr), y′ = kΓ−1y, z′ = kΓ−1z. (10)

The longitudinal transformation, according to Eq. (9),
looks like

r∗ = ±k(x− βr). (11)

By symmetrizing, in Eqs. (10) and (11), the transfor-
mations of transverse coordinates and, separately, the
system of two remained equations, we obtain k = Γ.
While writing down the transformations, we use the
notation k for the symmetrization factor in order to
involve the cases where these transformations belong to
either the classical (“old”) theory (k = 1) or the modified
one (k = Γ).

3. Now, let us deduce kinematic transformations
from geometric ones. In the case of transformations
(1), we put s = vt. We have the spatial Galilean
transformations. Together with the equality t′ = t,
they constitute the complete system of transformations.
In the cases of transformations with the parameter β,
besides the equation of motion of the system K ′, we use
the equation r = ct and either the equation r′ = ct′

or r∗ = ct′. The first equation is a formal definition
of a certain velocity on the basis of the length r and
the time. This equation is used to obtain the kinematic
parameter β = v/c. The second equation defines the
transformation of the variable t on the basis of the
transformed length. If c is the speed of light in vacuum,
the kinematic transformations obtained from Eqs. (10)
and (11) in the case β < 1 are the Voigt space-time
transformations (Voigt, 1887) if k = 1, and the Lorentz
transformations if k = Γ.

3. Generalized Model and the Theory of
Michelson Experiment

1. The scheme of experiment carried out by Michelson
can be generalized, in particular, owing to the existence
of contemporary acoustic interferometers. Let we have
a system consisting of an optical or sound locator and a
specular reflector of locator signals connected with the
former by a rod. The locator moves in the system K with
a velocity v, and the rod of the length l steadily rotates
around it. In so doing, the total time of the signal motion
to the reflector and back again is determined at various
orientations of the rod with respect to the vector v. Let
us calculate this time in the framework of two methods.
The first is based on the reciprocal relation between the
relative velocity and the time of the signal motion, the
second on the principle of motion independence.

First, consider the case where the rod is oriented
normally to the velocity v. In the first method, the
velocity of the signal motion Vτ along the rod is
determined from the relation V = Vτ +v, where |V| = c
is the velocity of the signal in the system K. Therefore,
Vτ = c

√
1− β2, and the time of the signal motion

forward is

tτ = γt, (12)

where t = l/c and, for β < 1, γ = Γ. In the second
method, the signal itself at v = 0 and together with
the locator at c = 0 shifts independently by the vectors
l = Vt and s = vt, respectively, in the time interval t;
so that the total shift is rτ = l+s and the corresponding
time tτ = t

√
1− β2. The latter, with an accuracy

to the O(β2)-terms, coincides with quantity (12). In
this case (the transverse rod orientation), the use of
the Pythagorean theorem evidently provides practically
identical results in both approaches. The total time of
the signal motion, in accordance with Eq. (12), can be
expressed by the formula

Tτ = 2γl/c. (13)

Now, let the rod be oriented along the direction of
locator motion. In the first method, if the signal moves
to the reflector, the relative velocity V ′ and the time t′

are determined by the expressions

V ′t′ = l, V ′ = kc(1− β), (14)

where the symmetrization factor k was introduced. The
time of the signal motion to the mirror is

t′ = t/k(1− β). (15)
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In the second method, when the signal, freely and
together with the locator, has independent shifts l = ct
and s = vt, respectively, during the time interval t, the
total shift of the signal moving to the reflector equals
r′ = kl(1 + β). Whence, we obtain

t′ = kt(1 + β). (16)

In the first and second approaches, the time of the signal
motion backward is determined from Eqs. (15) and (16)
by substituting β → −β . The total durations of the
motion in these approaches are, respectively,

T ′ = 2γ2l/(kc), T ′ = 2kl/c. (17)

Hence, in the case of the longitudinal orientation of
the rod, the classical theory (k = 1) produces different
results. Thus, it does not satisfy the requirements of
unambiguity of the result obtained and correctness of
the conclusions drawn.

2. Let us demonstrate now that the ambiguity in
the theory of the Michelson experiment originates from
the asymmetry of the transformations engaged. We
are going to find a transformation that is inverse to
expression (15) following the first way and, afterwards,
following the second way, to invert the result obtained.
As a result, instead of transformation (15), which would
have been the final result if transformation (15) had
been symmetric, we obtain expression (16). This fact,
first, substantiates the second method of finding t′ and,
second, proves the asymmetry of transformations (15)
and (16). The symmetry postulate demands that the
symmetrization of transformations be carried out. For
this purpose, by equating those expressions, we find
the condition of their symmetry: k = γ. Provided
this condition, formula (14) and the expression used
for r′ are symmetric, and transformations (15) and
(16), which were obtained with their help, become
identical and symmetric as well. Expressions (17)
now coincide with each other and with expression
(13). The former coincidence proves the equality of
both approaches for the determination of T ′, and the
latter proves the absence of the second-order effect
predicted by the classical theory but not revealed in
the Michelson experiment. The negative result of this
experiment revealed the failure of its classical theory and
demonstrated the necessity of making modifications to
the formalism of this theory.

3. The Michelson experiment has proved that the
total time, T ′ = Tτ = T , and the path, L = cT , of the
signal motion are constant for all rod orientations. From
the viewpoint of geometric optics, it is the conditions of

tautochronism and stationarity of optical paths of light
in the absolute reference frame K that are obeyed in
the experiment discussed, when light moves between the
start and the return points. This means that the Fermat
principle is realized. As is known, the condition of path
stationarity is satisfied for light that comes to an end
point after having been reflected from a concave specular
surface, the shape of which is an ellipsoid of revolution.
The start and end points for light in the system K are the
foci O1 and O′ of this ellipsoid. While traveling from one
focus to another, the signal becomes reflected at a point
M∗ of a plane mirror in the Michelson device, which
is tangent to the ellipsoid surface at this point. Light
that reaches the point O′ follows the paths O1M

∗ = r∗1
and M∗O′ = r∗. They are the focal radii of the given
ellipsoid; hence, for any position of the point M∗ on the
ellipsoid surface, the total path L = r∗1 +r∗ and the total
time T are constant.

The equations for the Fermat–Michelson ellipsoid
described above can be obtained on the basis of
expression (11) for the length taken from the Lorentz
transformations at β < 1 and k = γ. In terms of (r, θ)-
and (r, θ′)-variables, we obtain the following equivalent
formulas for the right focal radius:

r∗(θ) = kr(1− β cos θ), r∗(θ′) = krγ−2(1 + β cos θ′)−1,
(18)

which are known for k = 1. The equivalency of those
expressions gives a formula for signal aberration (cf.
Eq. (6))

cos θ′ = (cos θ − β)/(1− β cos θ),

which demonstrates that light in the Michelson
experiment deviates from the axis of the device shoulder
in the same manner as from the telescope axis, when
stars are observed.

While describing the scenario of light propagation
in the Michelson experiment, the discovery of the
electromagnetic microwave background radiation (A.A.
Penzias and R.W. Wilson, 1965; the 1978 Nobel Prize in
Physics) is of great importance. This radiation was found
to propagate isotropically in a fixed reference frame
that is unique for the whole Universe. The discovery
of an absolute system proves that every laboratory on
the Earth’s surface is an optically anisotropic system.
The picture of the signal propagation in the Michelson
experiment, which was described above on the basis
of the Fermat principle, agrees with the conclusion
about the existence of a fixed system K, in which light
propagates irrespective of its source motion.
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4. Now, we are going to demonstrate that the
Michelson experiment points out the necessity of making
modifications to the Euclidean metric geometry. We
shall take advantage of formulas for distances, which can
be obtained from transformations (4) and (5), provided
β < 1. In the case Γ = k, we have the expressions

r′(θ) = krfp(−β, θ), r′(θ′) = krfq(−β, θ′). (19)

Let an ellipsoid of revolution be inscribed into the sphere
(0, kr). The focal radii of this ellipsoid can be found in
a regular geometric manner. We impose a restriction

r′(θ) + r1(θ) = 2kr, (20)

where the length r1(θ) is determined by the expression
for r′(θ) with an accuracy to the substitution β → −β.
Using expression (19) for r′(θ) and condition (20), we
obtain the formulas for the focal radii r∗(θ) and r∗1(θ) of
the ellipsoid of revolution inscribed into the given sphere.
The radius r∗(θ) is determined by the first equation in
(18). The Fermat-Michelson ellipsoid is described by this
formula by putting k = γ.

We have shown above that, while calculating the
total signal path in the Michelson experiment for the
case of the transverse rod orientation, one can use
the cosine theorem, which coincides, in this special
case, with the Pythagorean theorem. In the case of the
longitudinal rod orientation, the symmetry postulate
demands that the factor γ should be introduced into
the cosine theorem, in order to provide a concordance
between the theory and the experiment. Owing to
the availability of such a factor in the expression for
r′(θ), formulas (18) are obtained, in which γ is the
similarity factor. The symmetrization of the classical
expressions has, in this case, the meaning of a similarity
transformation.

Let us calculate now the lengths r′(θ′) and r1(θ′) by
the second formula (19). The arithmetic mean value of
those lengths at θ′ = θ (see Eq. (5)) is the function
r∗0 = kr(1 − β2 sin2 θ)1/2, which, at k = γ and
r = const, describes the Fermat–Michelson ellipsoid.
The expressions for lengths, which were used here, are
mutually conjugated in the sense that their product
is a rational expression r′(θ′)r1(θ′) = k2γ−2r2. At
k = 1, this formula illustrates the theorem about the
product of the segments of a chord, which is drawn in
the sphere (O, r) through the point O′ and is divided
at this point by the sphere’s diameter into the given
segments. At k = γ, we obtain an invariant, which has
no illustrative correspondence in geometry, but agrees
with the transformation symmetry postulate.

The geometry applied here, which was modified
making use of the transformation symmetry postulate,
combines the Euclidean metric geometry and the
geometry of similarity [7].

4. Conclusions

In this work, two – in our opinion, very important –
discoveries were used to consider, from the contemporary
viewpoint, and estimate the known phenomena in
the optics of moving bodies. These are, first, the
postulate about the exclusive meaning of symmetric
transformations and, second, the experimental discovery
of the exclusive reference frame in the Universe. Those
discoveries made it possible to explain the results
of the Michelson experiment, as well as the results
of other experiments of the second order (see works
[3–8]), similarly to the Lorentz’s explanation (1895)
of the negative results of first-order experiments in
the optics of moving bodies. Lorentz put the theory
in agreement with the experiment, by having proved
that effects, which are not observed experimentally,
should not manifest themselves from the theoretical
point of view as well. This statement is known as the
Lorentz’s theorem. Owing to the establishment of the
transformation symmetry postulate and the postulate-
induced modifications made to the formalism of the
theory, it became possible to extend the scope of the
Lorentz’s theorem applicability upon the case of second-
order effects.

From the established fact of illusiveness of the
second-order effects, it follows that illusory are also those
hypotheses and postulates which have been invented for
compensating these, erroneous in their essence, effects.

We saw above that, in the theory, together
with completely defined distances r′, there appear
incompletely defined ones r∗. It turns out that the formal
incorrectness arises even if symmetric transformations
are applied, but the distances defined completely and
incompletely are made use of, without taking into
account the features of the phenomena to be described.
In particular, in the theory of the motion of celestial
bodies, the distances r∗ are used in order to describe –
kinematically – the orbits of these bodies, but it is the
completely defined distances that are used in dynamics
for the determination of gravitational interactions.
Similarly, the Lorentz transformations, which have been
derived on the basis of an incompletely defined distance,
provide an opportunity to obtain correct results in the
optics of moving bodies. But, in electrodynamics (for
instance, in the theory of the field created by a moving
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point charge), they, as well as the classical theory,
bring about the results, the incorrectness of which
has been revealed by the Trouton–Noble experiment
(1903). A disagreement between the theory and the
experiment can be eliminated in this case, if the
Liénard–Wiechert potentials are calculated making use
of the completely defined distance [4, 5, 8]. This fact
testifies that the Lorentz transformations are not
universal.

Concerning the insertion of modifications into the
electrodynamics of moving bodies by using completely
defined distances and making allowance for the
transformation symmetry postulate, we are going to
consider this issue in a separate work.
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ПРО ВНЕСЕННЯ ЗМIН У ФОРМАЛIЗМ ФIЗИЧНОЇ ТЕОРIЇ
У ЗВ ’ЯЗКУ З ВСТАНОВЛЕННЯМ ПОСТУЛАТУ
СИМЕТРIЇ ПЕРЕТВОРЕНЬ ТА ПРОБЛЕМОЮ
ЕФЕКТIВ ДРУГОГО ПОРЯДКУ В ОПТИЦI
РУХОМИХ ТIЛ

А.О. Некрот, Б.А. Некрот

Р е з ю м е

Постулат симетричностi формул, використаний при виведен-
нi перетворень Лоренца, поширено на випадки знаходження
iнших перетворень. З метою досягнення бiльшої вiдповiдно-
стi мiж експериментом i формалiзмом теорiї застосовано метод
симетризацiї класичних перетворень i таким способом внесено
необхiднi змiни в теорiю деяких задач. Одержано перетворен-
ня Лоренца без накладання обмежень на величини швидкостей
систем вiдлiку i сигналiв. Побудовано змiнену апостерiорi тео-
рiю дослiду Майкельсона при схематичному узагальненнi йо-
го на випадки використання механiчних сигналiв. Результат
цього дослiду обґрунтовано за допомогою симетричних пере-
творень та на основi принципу Ферма. Доведено, що класична
теорiя передбачила iснування ефекту другого порядку, що був
шуканий на дослiдi, помилково внаслiдок вживання нею неси-
метричних перетворень.
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