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The spherically symmetric solutions of the Einstein equations for
a T -region (T -solutions) are considered. It is known that such
solutions have a set of common unusual properties. It is shown
that, in spite of their community, the T -solutions can be separated
into two different classes which have different physical nature and
admit different geometrical interpretations.

1. Introduction

The spherically symmetric metrics describe the space-
time which may contain, in common case, both R- and
T -regions separated by the event horizon surfaces. For
the metric

ds2 = eν(R,τ)dτ2 − eλ(R,τ)dR2 − r2(R, τ)dσ2, (1)

where dσ2 = dθ2 + sin2 θdϕ2, the event horizon is
determined by the equation

e−ν/2 ∂r

∂τ
= e−λ/2 ∂r

∂R
(2)

or equivalently by

m(R, τ) = r(R, τ), (3)

where the mass function

m(R, τ) = r(R, τ)

(
1 + e−ν

(
∂r

∂τ

)2

− e−λ

(
∂r

∂R

)2
)

.(4)

The coordinate system (1) describes a T -region alone
under the following condition:

e−λ

(
∂r

∂R

)2

= 0. (5)

In this case, ∂r
∂R = 0, so the mass function either

depends on only τ or is constant:

m(τ) = r(τ)

(
1 + e−ν

(
∂r

∂τ

)2
)

. (6)

Correspondingly, for the coordinate systems descri-
bing an R-region alone, ∂r

∂τ = 0, and the mass function
depends on R only:

m(R) = r(R)

(
1− e−λ

(
∂r

∂R

)2
)

. (7)

Thus, the spherically symmetric metric describing a
T -region alone has the following general form:

ds2 = eν(τ)dτ2 − eλ(R,τ)dR2 − r2(τ)dσ2. (8)

In this metric, only the coefficient eλ can depend both
on R and τ . It is possible to change the coordinate system
in (8) into a synchronous one:

ds2 = dt2 −X2(r, t)dr2 − Y 2(t)dσ2. (9)

For the first time, the solution for a single T -region
was obtained by Novikov through the direct solution of
the Einstein equations [1]. This was the solution for the
empty space:

ds2 =
dt2

rg

t − 1
−

(rg

t
− 1

)
dr2 − t2dσ2. (10)

Three years later, Kantowski and Sachs obtained
a T -solution for the dust matter [2]. At present, it is
commonly appropriated to call the metrics describing a
T -region alone as Kantowski–Sachs metrics.

Ruban investigated the general characteristics of T -
models [3]. The T -models possess a number of exotic
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properties like non-statics, homogeneity, time-like si-
ngularity at the center t = 0, finite time extent, non-
Euclidean hypercylindrical structure of spatial sections
t =const, etc.

The interest in T -solutions arises due to the possibili-
ty to use them in studying the early Universe. Nowadays,
there is a collection of new T -models which are proposed
and investigated, for example, in [4–8].

Studying T -solutions, we can separate the manifolds
described by them into two different classes.

2. Manifolds Described by R- and T -solutions

In general relativity, there are such manifolds which can
be described by the metric in curvature coordinates in
the R-region, where all the coefficients depend on only
the spatial coordinate, as well as by the metric with all
the coefficients depending only on time in the T -region.

Let us consider first the solutions with eν = e−λ.
These solutions are, for example, the Schwarzschild
metric [9]

ds2 =
(
1− rg

r

)
dt2 − dr2

1− rg

r

− r2dσ2; (11)

the Reissner–Nordström metric [9]

ds2 =
(R− r1)(R− r2)

r2
dt2−

− r2dr2

(R− r1)(R− r2)
− r2dσ2, (12)

where r1,2 = rg

2 ±
√

r2
g

4 − q2;
the de Sitter solution [9]

ds2 =
(

1− r2

a2
Λ

)
dt2 − dr2

1− r2

a2
Λ

− r2dσ2, (13)

where a2
Λ = 3

Λ , and Λ is the cosmological constant.
The similar properties are inherent in the Köttler [11]
and Reissner–Nordström solutions with the cosmologi-
cal constant.

All the listed coordinate systems are incomplete and
possess the coordinate singularity. The Schwarzschild
solution for r > rg describes the R-region of a mani-
fold, and, for r < rg, there is the T -solution obtained in
[1]. The same situation is observed for the other metrics
(12) and (13).

For solution (12) with real r1 and r2, there is a R-
solution for r > r1 and r < r2 , and a T -solution is
available for r1 > r > r2 .

In the de Sitter solution (13), there are an R-solution
for r < aΛ and a T -solution for r > aΛ.

Both the curvature coordinate system and the T -
system are incomplete, because they do not describe
the whole manifold. But, for the metrics under consi-
deration, it is possible to turn to a synchronous coordi-
nate system which is the complete system for the
Schwarzschild and Reissner–Nordström solutions.

For the de Sitter solution, the complete coordi-
nate system will be one of three known synchronous
systems. The embedding of the de Sitter manifold
into a flat 5-dimensional space-time represents a
hyperboloid of rotation. R- and T -solutions describe
only parts of this hyperboloid, as well as incomplete
synchronous hyperbolic and parabolic systems do [12].
The complete coordinate system which describes the
whole hyperboloid is the elliptic one:

ds2 = dτ2 − a2
Λe2τ/aΛ(dχ2 + sin2 χdσ2). (14)

The transformation from the curvature coordinate
system to the synchronous one,

ds2 = A(r)dt2 −B(r)dr2 − r2dσ2 =

= dτ2 −
(

∂r(R,τ)
∂τ

)2
AB

f2(R)dR2 − r2(R, τ)dσ2,
(15)

can be obtained from the equations
(

∂r(R, τ)
∂τ

)2

=
f2(R)
AB

− 1
B

, (16)

where f(R) is an arbitrary function. For the metrics with
A = B−1, one has
(

∂r(R, τ)
∂τ

)2

= f2(R)−A(r). (17)

T -solutions of the class under consideration do not
describe a new manifold, but only a part of the known
one. In some sense, these solutions make our idea of the
known manifold to be more profound.

Nevertheless, there is a lot of works, where such T -
solutions are treated as new models. We mention, for
example, work [13], where the Einstein equations are
solved for metric (8) with the equation of state ε+p = 0.
In this metric, all the coefficients depend only on the ti-
me. In this case, the solution obtained has the form

ds2 = dτ2 − a2
Λ sinh2 τ

aΛ
dr2 − a2

Λ cosh2 τ

aΛ
dσ2. (18)

Further, we will analyze properties of this metric.
We draw conclusion that solution (18) turns eventually
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into the de Sitter one. In reality, the simple replacement
t = aΛ cosh τ

aΛ
transforms (18) into the de Sitter solution

ds2 =
dt2(

t2

a2
Λ
− 1

) −
(

t2

a2
Λ

− 1
)

dr2 − t2dσ2. (19)

For t > aΛ, this solution describes a T -region, and,
for t > aΛ, a R-region appears, and the solution coinci-
des with (13). Solution (18) cannot pass to the de Sitter
one in the course of time, because it describes the de Si-
tter manifold given by (13), and (19) is concerned with
only a part of the whole manifold.

By the replacement r = aΛ sin ρ
aΛ

in the de Sitter
solution (13), one can pass to the coordinate system

ds2 = cos2(
ρ

aΛ
)dt2 − dρ2 − a2

Λ sin2 ρ

a2
Λ

dσ2 (20)

which includes system (18), the coordinate singularities
being inherent in the coordinate system but not in the
manifold described by the de Sitter solution. We note
that solution (20) turns into (18) after the replacement
ρ = π

2 aΛ − ıτ, t = r.
Similarly for the Schwarzschild, Köttler, and

Reissner–Nordström metrics, it is possible to find soluti-
ons in the form (9) which describe parts of the
corresponding manifolds. The singularities of these
solutions will remain the same as those of the original
ones.

Thus, we have considered the case where, for soluti-
ons in the curvature coordinate system, the equation
eλ = e−ν takes place. We now consider the case where
eλ 6= e−ν .

As follows from (7), e−λ
R = m

r + 1 for a R-region in
the curvature coordinates. For a T -region in the Novikov
coordinates, e−ν

T = m
r − 1, where r plays the role of the

time coordinate. If the mass function has the form such
that the coefficient e−λ can be zero, then one will obtain
the coordinate system describing both R- and T -regions
by the coordinate transformation from the curvature
system to the synchronous one according to (16). It is
possible to turn to the T -solution with e−ν

T = e−λ
R . But

the rest metric coefficients (eν
R and eλ

T ) will be different
because the equation of states is changed in the T -region.

For example, for the inner Schwarzschild solution in
the curvature coordinates, e−λ = 1 − r2

a2 , the energy
density ε = 3

a2 =const, and the pressure is a function of
r. For the T -region in the Novikov coordinates, we have

ds2 =
(

t2

a2
− 1

)
dt2 − eλ

T dr2 − t2dσ2. (21)

The energy density for the T -solution depends on the
time, whereas the pressure is constant: p = 3

a2 .

For the class of manifolds under consideration, the
mass function has the same form for the whole mani-
fold both in the R- and T -regions independently of the
coordinate system used for their description. So the mass
function for the de Sitter solution m = r3

a2
Λ
, where r2 is

the metric coefficient of the spherical part dσ2, as well as
the mass function for the Schwarzschild solution m = rg,
remains the same both in R- and T -regions. The situati-
on is similar for all the metrics of the first class. These
metrics describe only a part of the manifolds containing
R- and T -regions, but there is the possibility to find a
complete coordinate system which would describe the
whole manifold.

3. Kantowski–Sachs Models

The Kantowski–Sachs solution [2] for the dust matter
is an essentially new T -solution which cannot exist in a
R-region at all and completely belongs to a T -region.

To better understand the physics of the model, let us
consider the Tolman–Bondi solution for the dust matter
in general relativity [15] in the elliptic case (f2(R) < 1):

ds2 = dτ2 −
(

∂r

∂R

)2 1
f2(R)

dR2 − r2(R, τ)dσ2, (22)

τ − τ0(R) = m(R)
2(1−f2(R))3/2 (α− sin α),

r = m(R)
1−f2(R) sin2 α

2 .
(23)

Solution (22) contains three arbitrary functions of
integration: m(R), f(R), andτ0(R), where m(R) is the
mass function which is the total mass of the dust includi-
ng the gravitational interaction:

∂m(R)
∂R

= εr2 ∂r

∂R
, (24)

where ε(R, τ) is the dust energy density. The dust
matter mass itself (excluding the gravitational interacti-
on) is

∂µ(R)
∂R

= e
λ
2 r2ε, (25)

where f(R) is the total energy of dust particles in a shell
of radius R:

f2(R) = eλ

(
∂r

∂R

)2

. (26)

ISSN 0503-1265. Ukr. J. Phys. 2008. V. 53, N 2 109



M.P. KORKINA, E.M. KOPTEVA, V.S. KAZEMIR

We note that
∂m(R)

∂R
=

∂µ(R)
∂R

f(R). (27)

Let’s consider the special case f(R) = 0. It follows
from (26) that, in the case under consideration, ∂r

∂R = 0,
i.e r = r(τ). According to (24), the mass function is
constant. So we assume it to be m = rg, where rg is the
gravitational radius. From (23), we have

r = rg sin2 α

2
, τ = rg(α− sin α). (28)

If the energy density ε = 0, then solution (24) has
the form

ds2 = r2
g sin2 α

2
dα2 − ctg2 α

2
dR2 − r2

g sin2 α

2
dσ2 (29)

which can be turned into the Novikov solution for the
empty space by a coordinate transformation.

In the case of nonzero energy density ε 6= 0, the Ei-
nstein equations yield the expression for eλ. Finally, one
obtains the Kantowski–Sachs solution as

ds2 = dτ2 − eλdR2 − r2dσ2, (30)

where r(τ) is given by (28), and

eλ = ctg
α

2
+

∂µ(R)
∂R

(1− α

2
ctg

α

2
). (31)

The metric coefficient eλ is the function of both the
spatial and time coordinates. The energy density is also
a function of R and t. Thus, the Kantowski–Sachs model
can be considered as the limit case of the Tolman–Bondi
solution [15], but not of the Friedman one.

As far as r is a function of only the time, the arbitrary
function τ0(R) = 0 equals zero. There are only two arbi-
trary functions: the mass of the dust distribution µ(R)
and the mass function m = rg. It is worth noting that,
in the general solution (22), µ(R) defines the type of
motion through f(R). If the mass function m(R) grows
with R more slowly than the dust mass µ(R), the elliptic
type of motion takes place. In the limit (f = 0), the mass
function is constant, while the dust mass is growing.

For the dust matter and a trapped magnetic field,
the T -solution also belongs to the considered class of
solutions.

In the synchronous coordinates, this solution has the
form [16]

ds2 = dτ2 − eλ(τ)dR2 − r2(τ)dσ2, (32)

where the coordinate R is directed along the magnetic
field. We have
τ = rg(α− b sin α), r = rg

2 (1− b cos α),

b2 = 1− 4q2

r2
g

,
(33)

where b =const. The metric coefficient

eλ/2 =
b sin α

1− b cosα
(1− α

2
∂m(R)

∂R
) +

+
∂m(R)

∂R

1
2b

(1 +
1− b−1 cos2 α

1− b cos2 α
), (34)

and µ(R) is still the dust matter mass.
As far as r = r(τ) and ∂r

∂R = 0, then it follows from
(24) that m = m(τ). Thus, the mass function depends on
τ only. For metric (32), relation (4) yields the expression
for the mass function as

m(τ) = r(τ)(1 + (
∂r

∂τ
)2) = r(τ)(

rg

r
− q2

r2
). (35)

The total mass of the dust matter is constant, as it
is true for the dust without magnetic field. The second
term in formula (35) is caused by the presence of a
magnetic field. The function f(R) also equals zero. In
the limit of zero magnetic field (q = 0), solution (34)
turns into the Kantowski–Sachs solution (30).

Besides the rest mass and the kinetic energy of the
dust matter, the mass function for the dust distribution
includes the negative gravitational potential energy. For
the Tolman–Bondy dust models, the difference in the
behaviors of the active mass m(R) and the dust mass
µ(R) defines the type of the dust distribution motion.
In case of the T -dust, the active mass is constant during
the infinite growing of the dust mass µ(R) because of
the negative gravitational potential binding energy [3].

The mass function for the second class of solutions
coincides in the R-region with the corresponding mass
function of the empty space. For example, the mass
function for the dust T -configuration in the R-region is
equal to the Schwarzschild one, and the mass function
for the dust T -configuration with a trapped magnetic
field is the same as that for the Reissner–Nordström
solution (35).

4. Conclusions

The spherically symmetric solutions of the Einstein
equations with dσ2 depending on time only are consi-
dered. These solutions characterize the T -region only. It
is shown that they may describe the essentially different
geometric manifolds. These solutions can be separated
into two different classes.
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The solutions of the first class are ones described by
incomplete coordinate systems (all the metric coeffici-
ents depend only on time, including eλ). It is shown that,
for these solutions, it is possible to turn by a coordinate
transformation to another incomplete coordinate system
describing the R-region or to find such complete coordi-
nate system which would describe both the R- and T -
regions. For the manifolds of this class, the mass function
has the same form for the whole manifold in any coordi-
nate system and hence both in the R- and T -regions.

The second class of solutions characterizes the T -
region only. The configurations described by these soluti-
ons cannot exist in the R-region, and there is no
Newtonian limit for them. The mass function for the
considered models of this class is found.

It is shown that the mass function for the second
class of solutions coincides in the R-region with the mass
function of the empty space. This also confirms the fact
that such configurations can exist in the T -region only.
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T -МОДЕЛI I МОДЕЛI КАНТОВСЬКОГО–САКСА

М.П. Коркiна, Е.М. Коптєва, В.С. Каземiр

Р е з ю м е

Розглядаються сферично-симетричнi розв’язки рiвнянь Ейн-
штейна для T -областi (T -розв’язки). Вiдомо, що такi розв’язки
мають ряд загальних нетривiальних властивостей. Показано,
що, незважаючи на їх єднiсть, T -розв’язки можуть бути роздi-
ленi на два рiзних класи розв’язкiв, котрi мають рiзну фiзичну
i геометричну iнтерпретацiю.
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