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The existence conditions of asymptotic quasistationary states are
found for a one-dimensional open system of inelastic particles.
The influence of initial and external conditions on the structure
of such states and transitions between them is investigated. The
theoretical and numerical calculations are compared to the data
of the direct physical experiment. The possibilities to apply the
methods of statistical physics to the study of open systems
(in particular, granulated materials) close to the discovered
quasistationary states are discussed.

1. Introduction

During approximately two recent decades, the scientific
community shows a heightened interest in the
investigation of complex open systems where the
energy dissipation results in the initiation of essentially
nonlinear dynamic processes. Among such systems, one
undoubtedly rates the so-called granulated materials
(GMs). GMs consist of a large number of particles
(granules) with complex surface morphology and size
dispersion. The interaction between granules takes place
only due to collisions of inelastic character. That is,
GMs represent the example of an open system that
particularly does not obey the law of conservation of
energy.

An interest in the investigation of GMs is caused
by the prospects of their application in many branches
of production. They are also distributed in quantity in
the environment. As an example, it’s enough to mention
ordinary sand.

GMs manifest unusual properties that differ from
those of typical liquids, gases, and solids. They result,
for example, in such phenomena as inelastic collapse,
thread-like clusterization, compactization, segregation,
fluidization of the type of the avalanche-like draining
of a thin GM layer, the Brasil nut and arc effects
(the latter results in the pressure saturation under
a GM column in vertical containers), anisotropic

clusterization, formation of patterns (defects), etc. [1–
15].

The complexity of processes taking place in GMs
stimulates their preliminary investigations with the help
of studying the dynamics of simple model systems, where
particles interact inelastically with one another, whereas
the energy dissipation is compensated due to its supply
from outer boundaries. Direct physical experiments
with GMs (see Section 5) testify to the possibility for
asymptotic stationary states to exist in them, which
opens, in turn, possibilities for the application of the
methods of statistical mechanics to their study.

In the case of studying both the structure and the
dynamics of GMs, the role played by contacts between
particles-granules is the leading one. For example,
the stresses in a static granulated medium or the
deformation waves in the case of the dynamic behavior
of granules mainly appear and develop exactly within
interparticle contacts or contacts between particles and a
substrate. It is worth adding that the dissipative energy
losses that represent one of the basic attributes of GMs
also occur almost solely within interfaces.

In a certain sense, one-dimensional models of
dissipative systems can facilitate a better understanding
of physical processes in such interface structures
and should be interpreted as the first step to
the investigation of realistic and undoubtedly more
complicated three-dimensional systems.

In what follows, we consider a trivial but rather
evident model of a 1D system of inelastic particles in
a gravitational field. The chief aim of the study of
such systems consists in the direct demonstration of
the existence of asymptotic quasistationary states in
them, as well as the examination of their existence
criteria and properties by means of the comparison
of theoretical results with data of numerical and
direct physical experiments. The existence of asymptotic
quasistationary states in excited GMs (we certainly
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mean stationary states with a more complicated
structurization) is confirmed by some recent experiments
[7,15]. That is why the investigation of separate
peculiarities of their formation even using the simplest
models (in particular, low-dimensional ones) attracts
interest.

2. Postulated Stationary States in a Vertical
1D System of Inelastic Particles in a
Gravitational Field (Theoretical
Determination)

Let us consider a system of N structureless particles of
equal mass located vertically in vacuum (in the absence
of friction) in the field of gravity forces −→g . The energy
losses due to binary collisions between particles can be
compensated at the expense of the reflection of the lower
particle from the horizontal “hot” solid substrate which
represents, thus, an energy source for the system. In
the case where such a reflection is absolutely elastic,
the system is practically closed. In contrast, in the case
where the hot substrate is able to supply an arbitrary
(but definite) energy to the system, the latter is open.

The proposed model is constructed in such a way
that, at arbitrary velocities of collision of an incident
particle with the substrate, the velocity at the time
moment of reflection also has the same constant value
(let it be ω0). Generally speaking, ω is the quantity
distributed with some weight Φ (ω). In our model, the
initial velocity after a collision with the substrate obeys
the distribution in the form of the Dirac delta-function
Φ (ω) = δ (ω − ω0).

Due to the binary character of collisions, the
velocities of the particles before a collision (ω1, ω2) and
after it (ω′

1, ω′
2) satisfy the following relations:

ω′
1 = ω1 − 1 + ε

2
ω12, ω′

2 = ω2 +
1 + ε

2
ω12, (1)

where ω12 = ω1 − ω2; ε denotes the inelastic loss
coefficient (at ε = 1, collisions are absolutely elastic
and the summary kinetic energy conserves; at ε < 1,
dissipative energy losses take place).

In the postulated stationary state, the periods of
motion of the particles between collisions are equal to
some constant TN .

Taking into account the uniformly accelerated
character of motion of particles between collisions, we
obtained the following expression for the oscillation

period TN [5]:

TN =
2ω0

g

[
N +

(1 − ε)
3 (1 + ε)

(N − 1) (2N − 1)
]−1

. (2)

Thus, as follows from (2), the period of the oscillatory
motion of the N -th particle in the stationary state in
the constructed model system depends on all parameters
of the model ω0, g, and ε and reaches its maximal or
minimal values in the limits of absolutely elastic (ε = 1)
and inelastic (ε = 0) collisions, respectively.

The stationary motion in such a model system must
have form of the vertical stratification (i.e. layering) of
the system into a sequence of intervals, within which the
corresponding particles participate in a simple periodic
motion. In this case, collisions of each pair of particles
occur at some corresponding fixed heights.

The dimensions of the system, where the described
stationary motion takes place, can be found with the
help of the formula

L =
gT 2

8

(
1 + 4

N−1∑
i=1

A

(1 + A)2
(1 + 2 (N − i))

)
, (3)

where

A =
(1 + 2ε) − (1 − ε) (N − i)
(2 + ε) + (1 − ε) (N − i)

denotes the ratio of the time, during which the i-th
particle moves upward, to the time, during which it
moves in the opposite direction. Each separate term
in (3) specifies the size of the corresponding region,
where the i-th particle performs its periodic motion.
The condition, where at least one of these terms
becomes negative, determines the criterion of decay of
the stationary state:

ε ≥ εc =
N − 2
N + 1

. (4)

It follows from relation (4) for the critical value of
the inelastic loss coefficient εc that, for systems that
include only one or two particles, the stationary states
are formed for arbitrary values of ε. If the number of
particles in a system exceeds two, then the stationary
states exist under condition of the limitation of the
coefficient of inelastic energy losses due to interparticle
collisions.

Thus, the asymptotic states cannot exist in a
model with strongly inelastic collisions. The specified
stationary state does not exist at sufficiently large N , i.e.
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in the case of systems with large dimensions or many-
particle systems.

The obtained results testify to the fact that, in
large-scale systems or systems with strong dissipation,
the supply of energy to the system from outside is
insufficient for the creation of the existence conditions
for stationary states (the dissipative and external energy
flows cannot compensate one another).

3. Stationary States in a 1D Horizontal
System of N Inelastic Particles

The problem of existence of stationary states in the case
of one-dimensional systems, where inelastic particles
collide in the absence of gravitational forces will be
investigated by the example of the system considered
in Section 1, by locating it horizontally. As in the
previous case, the further analysis will be performed by
postulating the existence of stationary stats in such a
system.

Let us assume that two arbitrary particles move after
a collision in the opposite directions. The corresponding
stationary mode will have form of a simple periodic
(oscillatory) motion of the particles of the system with
the same period T . In addition, particle i in the
stationary state of the 1D system moves within the
interval xi that satisfies the relation

L =
N∑

i=1

xi, (5)

where L is the size of the whole system.
In the specified stationary state, the velocity of any

particle in the case where it moves from left to right will
be denoted by vr

i and in the case where it moves in the
opposite direction – by vl

i. The absolute values of the
velocities of the particles immediately before and after
the chosen collision are equal to [see (1)]

vl
i = vr

1 − (i − 1)v12 + (i − 2)
1 + ε

2
v12, (6)

vr
i = vr

1 − (i − 1)
ε − 1

2
v12, (7)

where v12 = vi,i+1 = vr
i − vl

i+1 is the relative
velocity in the pair of particles which varies only during
the collisions, for which the inelastic loss coefficient
ε =const. For the postulated type of a horizontal
stationary (periodic) motion (without a gravity), it is
set constant.

The size of the region xi of the system, within which
the i-th particle performs periodic oscillations with

the corresponding constant amplitude in the stationary
state, can be found with the help of the relation

xi =
vr

i vl
i

vl
i − vr

i

T. (8)

The period T of the stationary motion that satisfies
conditions (5) and (8) is equal to

T =
L

N∑
i=1

vr
i vl

i

vl
i−vr

i

. (9)

Thus, it follows from (9), (6), and (7) that, in order
to determine the period T , it is necessary to determine
the relative velocity of the particles v12 and specify the
conditions of their reflection at the boundaries of the
system. Now let us consider several examples, where
energy is supplied to the system from outside (which
ensures the maintenance of a specified stationary state
of the dissipative system).

In the case where the energy is supplied from both
boundaries of the system (i.e. the particles are reflected
from the left and the right boundaries of the 1D system
with some definite constant velocities vr

1 and vl
N ), v12

can be derived with the help of (6) as

v12 =
2v1N

(1 − ε)N + 2ε
, (10)

where v1N = vr
1 − vl

N .
If the energy is supplied to the system only from one

boundary (for example, the left one), let us suppose the
interaction of the N -th particle (the nearest to the right
wall of the system) with its boundary to be absolutely
elastic. That is, its reflections from the boundary are
specular and do not result in energy losses: vr

N = −vl
N .

With regard for (7), one can express vl
N in terms of v12.

Namely, using (10), we obtain

v12 =
4vr

1

2(1 − ε)N + 3ε − 1
. (11)

Thus, we have obtained the analytic solution of the
constructed model.

It is worth noting that the period T of a specified
stationary state depends on the size of the system L and
the inelastic loss coefficient ε, as well as on the energy
obtained by the system from outside.

Now let us consider such a kind of motion in a two-
particle system, where one particle has no time to get
to the nearest wall after a collision, while the other
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one reflects from the opposite boundary and overtakes
the particle which is “late”. At the following step, the
particles exchange the roles. In this case, one collision
of the particle with the wall corresponds to its two
collisions with the other particle. Let us demonstrate
that, in this case, the stationary mode is also possible in
principle.

The velocity of the particle nearest to the “hot” wall,
from which the energy is supplied, will be denoted by
v, while the velocity of the other one – by w. Let the
velocities of the particles after their first collision v1 and
w1 be distributed in such a way that the first particle
will be “late”.

After an elastic reflection from the wall, particle 2
overtakes particle 1, and they collide again. In this case,
the kinetic energy is lost (this process is determined
by the coefficient ε), and the velocities of the particles
after the collision will satisfy relation (1). Let us denote
the velocities obtained by the particles after the second
collision by v2,i and w2,i (here, index i specifies the
number of the corresponding two-collision mode).

At the following stage, the other particle is late.
Moreover, particle 1 moves much faster and, reflecting
from the “hot” wall with the velocity v0, overtakes
particle 2 before it has time to reflect from the “cold”
wall. After the collision, the velocities obtained by
the particles again satisfy the relation of type (1).
Let us denote these velocities by v1,i+1, w1,i+1. At
this step, the specified two-collision cycle comes to the
end.

In the stationary state, the corresponding values of
the velocities and coordinates for each particle must be
periodically reconstructed during the time interval equal
to one period. Under these conditions, we obtain the
following relations with the help of (1):

w1 = v0
1 + ε

2
, v1 = v0

1 − ε

2
, v2 = −εv0, w2 = 0.

(12)

The determination of the coordinates x1 and x2 that
specify the points of collisions of the particles gives

x1 = x2 = L. (13)

From relations (12) and (13), one can see that, in
the postulated state of the system, particle 1 moves in
the whole bulk of the system, while particle 2 looks as if
being stuck to the “cold” wall. Thus, the latter becomes
effectively inelastic in the sense of its interaction with
particle 1.

The period T of the specified kind of motion in the
system can be expressed in the form

T =
(

1 +
1
ε

)
L

v0
. (14)

The substitution of ε = 0 into (14) results naturally
in the motion with an infinite period. This result can be
explained by the coalescence of the particles with each
other due to an absolutely inelastic collision, after which
particle 1 will never come back to the “hot” wall (except
the case where it returns coalesced with particle 2).

Relation (14) can be obtained with the use of
formulas (5)–(11). For this purpose, one should consider
a one-particle system under the assumption that the
interaction of the particle with the “cold” boundary takes
place with the loss of the kinetic energy in the same
way as in the case of collisions of particles of equal
masses.

4. Non-Stationary States in a Horizontal 1D
System of Inelastic Particles

Now let us consider the problem of stability of a
stationary state by the example of a one-dimensional
system consisting of two inelastic particles. The hot
boundary of the system is specified in such a way that
the particle nearest to it (let it be the first one) always
reflects from it with the same constant velocity v0. The
reflection of the second particle from the opposite side is
performed absolutely elastically, i.e. without any energy
losses.

Let us consider the motion of particles in the
constructed model that occurs according to the following
scenario:
– the first particle with the velocity v0 collides with the
second one that moves toward the first particle with the
velocity w2 which is much lower;
– after the collision, the first particle goes on moving in
the same direction with the lower velocity v1, whereas
the second particle changes the direction of motion to
the opposite one and starts to move faster than the first
particle with the velocity w1;
– when the second particle reaches the boundary of the
system L, it reflects and moves toward the first particle
with the velocity −w1;
– after the following collision of the particles, their
velocities are distributed in such a way that the second
particle moves in the initial direction but with the lower
velocity w2, while the first particle changes the direction
of its motion, and its velocity v2 exceeds the velocity of
the second particle;
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Fig. 1. Results of numerical calculations by formulas (21) and (22).
Dependence of the collision coordinate of particles 1 and 2 on the
number of their collisions at the following parameters (determined
from the boundary and initial conditions): L = 1, v0 = 1, ε = 0.5,
v1 = 0.0250, w2 = 0.675, x = 0.0632

– after that the described scenario repeats.
In addition to the number of particles, we will also

distinguish their velocities with the help of the number
of the period of motion (p) described by the above-stated
scheme.

Taking into account the laws of inelastic collisions,
one can find the corresponding velocities of the particles:

w2,j+p = εpw2,j , v2,j+p = −εv0, (15)

v1,j+p =
1 − ε

2
v0 +

1 + ε

2
w2,jε

p−1, (16)

w1,j+p =
1 + ε

2
v0 +

1 − ε

2
w2,jε

p−1. (17)

It follows from (15)–(17) that

lim
p→∞w2,j+p = 0, v2,j+p = const, (18)

lim
p→∞ v1,j+p =

1 − ε

2
v0, lim

p→∞w1,j+p =
1 + ε

2
v0. (19)

Thus, it turns out that the described system passes
exactly to a stationary mode of motion after a series
of collisions. Generalizing (15)–(19), we obtain the
following recurrent relation for the velocity:

vk+p = εp (vk − v∞) + v∞, (20)

where v∞ is the velocity of a particle that corresponds
to its motion in the stationary mode.

Let xp be the coordinate of the collision of the
particles in the above-stated type of motion. During
the time interval equal to one period, there occur two
collisions of the particles with one another at different
points of space. The lower index p determines the
number of the mode with periodic motion. Supposing
that the particles move with constant velocities between
collisions, xp can be presented as

xp = x0

p∏
k=1

Bk−1 + L

p∑
l=1

Al−1

p−l∏
m=1

Bl+m−1, (21)

where x0 is the coordinate of the first collision of
particles 1 and 2, L is the size of the system;

Aj =
2v1,j

v0 − w2,j
, Bj =

v1,j − w1,j

w2,j − v0
. (22)

Using formulas (21) and (22), we can demonstrate
that lim

p→∞xp = L. On the basis of (18), (19), and

(21), (22), we can conclude that the considered system
asymptotically tends to the stationary state with the
period determined by formula (14). Figure 1 presents
the results of a numerical simulation of the behavior
of the considered system of inelastic particles that
obviously confirm the conclusions made above. Some
kinetic processes taking place in GMs are determined
with the help of the so-called order parameter [14]. Let
us determine the order parameter ϕ (p) of the considered
system in the following way:

ϕ (p) =
vk+p/v∞ − vk/v∞

1 − vk/v∞
. (23)

Using (20), we obtain the formula for ϕ (p) which
depends only on p and ε:

ϕ (p) = 1 − εp. (24)

Under the conditions p � 1 and ε �= 1, expression
(24) can be presented in the exponential form

ϕ (p) = 1 − e−p(1−ε). (25)

It is known [14] that, in some processes with GMs
(for example, the radial size segregation of particles),
the time dependence of the correspondingly determined
order parameter ϕ that specifies the system is described
exactly by the exponential law:

ϕ (t) = 1 − e−
t

τ0 , (26)

where τ0 is the relaxation time of the order parameter.
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Comparing (25) and (26) and taking p ∼ t into
account, we can estimate the characteristic relaxation
time τ0 of the order parameter in the above-considered
model:

τ0 =
1

1 − ε
. (27)

It follows from (27) that, with increase of the
coefficient of inelastic energy losses ε, the time τ0

of the relaxation of the system to the asymptotic
quasistationary state increases. At ε → 1, τ0 → ∞, so
that the system does not tend to a quasistationary state
even asymptotically. The made conclusions completely
agree with the data of numerical experiments performed
with the help of the methods of molecular dynamics,
as well as with the results of calculations by formula
(21) obtained by means of analytical solutions. This
dependence is also confirmed experimentally [15].

5. Motion of the Center of Mass of a
Horizontal 1D System of N Inelastic
Particles

Let us consider again a 1D system of N inelastic particles
located between the “hot” and “cold” boundaries. We
suppose that the velocities of all particles except the
first one are equal to zero in the initial state. Obtaining
a certain portion of energy from the “hot” boundary,
the first particle moves with the velocity v0 toward the
rest of particles. After the first collision with the nearest
particle, the velocity of the k-th particle amounts to
vk = v0

(
1+ε
2

)k−1, after the second collision – vk =

v0

(
1+ε
2

)k−1 1−ε
2 (here, k is the number of the particle).

In the case of the weak dissipation during collisions in the
system (i.e. at ε ≈ 1), one can consider that the velocity
of the k-th particle after the second collision decreases
almost up to zero vk ≈ 0. In this case, it is easy to
imagine the character of motion of the particles after the
reflection of the N -th particle from the absolutely elastic
boundary of the system. Namely, after the first collision,
we obtain: uk = −v0

(
1+ε
2

)(N−1)+(N−k). After the

second one – uk = −v0

(
1+ε
2

)(N−1)+(N−k) 1−ε
2 (where

uk is the velocity of the k-th particle on its way from
the N -th to the 1-st particle). Similarly to the previous
case at ε ≈ 1, one can consider that uk ≈ 0 after the
second collision of the k-th particle.

The velocity of the center of mass Vc can be obtained
with regard for the fact that Vc = Vin + Vout, where

Vin = 1
N

N∑
k=1

vk, Vout = 1
N

N∑
k=1

uk.

Fig. 2. Results of numerical calculations of the motion of the center
of mass in a 1D horizontal system of 10 inelastic particles. Low-
contrast solid line corresponds to the motion of the center of mass
of the system as a whole; contrast solid line describes the motion
of the center of mass of N−1 inelastic particles (except the motion
of the first particle nearest to the “hot” boundary of the system);
ε = 0.95, v0 = 5, dt = 10−5

Correspondingly, Vc has the form

Vc =
2v0

N (1 − ε)

[
1 − 2

(3 + ε)√
8 (1 + ε)

×

×
√

1 + ε

2

(
1 + ε

2

)N−1

+
(

1 + ε

2

)2N−1]
. (28)

For 0 ≤ ε ≤ 1, we have 1 ≤ (3+ε)√
8(1+ε)

≤ 1.06, and the

expression for Vc can be presented in a simplified form

Vc ≈ 2v0

N (1 − ε)

[
1 −

(
1 + ε

2

)N− 1
2
]2

≈

≈ 2v0

N (1 − ε)

[
1 − exp

(
−1 − ε

2

(
N − 1

2

))]2

. (29)

It is worth noting that Vc ≥ 0, i.e. the center of
mass moves toward the “cold” boundary. In truth, the
center of mass cannot permanently move in one direction
because the system has limited dimensions. Thus, the
obtained value of the drift velocity of the center of mass
does not give the complete information on the behavior
of the system. However, this quantity allows one to
estimate the velocity of the center of mass in the limiting
cases of large N and ε.

Near the boundary, where ε → 1 (or N → ∞),
the velocity of the center of mass Vc → 0. Thus, the
velocity of the center of mass of the considered system
is exponentially small in the case of large-scale systems
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Fig. 3. Results of experimental measurements of trajectories in
the vertical system consisting of 12 metallic balls obtained with
the help of a high-speed digital camera. The excitation frequencies
amount to: a – 13.8 Hz; b – 8.93 Hz; c – 5.61 Hz; d – 1.37 Hz

consisting of a large number of particles, as well as in
the case of low inelastic energy losses during collisions.

Figure 2 presents the results of numerical
calculations of the velocity of the center of mass that
obviously confirm the theoretical conclusions made
above.

6. Physical Experiment

The physical experiment aimed at the investigation of
the dynamics of a model 1D granulated system consisted
in the pulse excitation of a vertical column of metal
spherical balls in the vertical direction.

With the help of a high-speed digital camera (500
fps), we determined the trajectories of the particles.
The precision of measurements of the coordinates of the
particles amounted to 0.5 mm. We used 12 metal balls
8.73 mm in diameter located in a glass tube 8.9 mm
in diameter. The mass of each particle was equal to
2.74 g. The inelastic loss coefficient during central binary
collisions is equal to 0.9. The excitation pulse amounts
to 0.16 H · c.

Varying the excitation frequencies from 1 to 14 Hz,
we managed to observe the layering of the system into
subsystems with two qualitatively different patterns of
motion. At the beginning, the particles rest in the state
of direct contact one on another. Due to the excitation,
the upper particle starts to oscillate almost periodically
with respect to the rest of the particles increasing its
amplitude with the frequency. In this case, all the other
particles of the system move as a rather dense group
(cluster). With the further increase of the excitation
frequency, one observes a transition of the second from
above particle to the state of simple periodic motion,
after that – the third one (see Fig. 3).

Thus, we observe that, with increase in the energy
supplied to the system from outside, the system passes
to the asymptotically stationary state (in the form of a
simple periodic motion). It is worth paying attention to
the fact that the particles nearest to the substrate and
almost static practically play a role of a conductor that
transfers the energy to the highest particle of the column
which passes to the stationary mode of motion.

Similarly to the data obtained here, the authors of
[4] discovered that, in a one-dimensional system located
between the “hot” and “cold” boundaries, the majority of
particles represent an almost static cluster formed from
the opposite side of the substrate (i.e. close to the cold
boundary of the system), while the dynamic part of the
system consists of one or several particles. In contrast
to [4], the role of the cold wall in the problem considered
here is played by the gravitational field that restricts
the height, to which the upper mobile particle can
rise, whereas the static cluster is formed near the hot
wall. The difference is caused by different boundary
conditions, while the observed phenomenon results
from the nonlinear character of the dissipative system
controlled by the corresponding parameter Nε.

The theoretical study of the motion of the center
of mass of the investigated system confirms the
experimentally observed behavior consisting in the
layering of the system into an almost motionless cluster
and a group of particles in the state of ballistic
motion. According to the data obtained from the
experimental observations, each upper particle that
passes to the state of simple periodic motion reflects
from the nearest particle (located below) belonging to
the almost motionless part of the column (cluster) with
a constant velocity. Just this criterion is inherent to
the considered theoretical model constructed under the
conditions of density restrictions, weak dissipation, and
weak external excitations. Due to the vertical location
of the particles in the column, as well as to the existence
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of own dimensions of particles and the really weak
dissipation and excitation intensity, the physical model
approximately satisfies the conditions of the theoretical
model.

For a system consisting of particles in the stationary
mode, we numerically calculated the dimensions of
the regions, within which they perform their periodic
motion. The comparison of these values with the
data of the above-described experimental observations
testifies to the fact that the size of the system in the
stationary state of motion is in good agreement with the
theoretically calculated value L [see (3)] if each separate
interval of periodic motion is determined with regard for
own dimensions of particles.

Thus, the asymptotic quasistationary limit of motion
found in the physical experiment can be considered as an
evidence of the existence of the theoretically postulated
stationary states in 1D dissipative open systems.

7. Conclusions

Thus, the one-dimensional model of a system of inelastic
particles in the case of the simplest modes of external
energy supply (by means of the mirror reflection or
a reflection with specified velocity distribution) allows
the possibility for stationary states to exist in the
form of simple periodic motion of each separate particle
within the corresponding intervals of various lengths.
The system passes to the specified state asymptotically
under various ways of the energy supply through its
boundaries. A criterion of the transition arising due
to the condition of balance of the thermalization and
dissipation processes is discovered. The established
criterion [see (4)] depends multiplicatively on the initial
size of the system and the absolute value of the
coefficient of inelastic energy losses. The corresponding
direct physical experiments devoted to the observation
of stationary states in a vertical column of metallic
balls (that represents a model realization of an open
dissipative system excited due to a pulsed excitation of
the substrate) testify to the existence of the theoretically
predicted quasistationary states, to which a 1D open
system of inelastic particles asymptotically tends.
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СТАЦIОНАРНI СТАНИ У 1D СИСТЕМI
НЕПРУЖНИХ ЧАСТИНОК

О.I. Герасимов, Н. Вандевалле, А.Я. Спiвак,
М.М. Худинцев, Г. Люмє, С. Дорболло, О.А. Клименков

Р е з ю м е

В одновимiрнiй вiдкритiй системi непружних частинок знайде-
но умови iснування асимптотичних квазiстацiонарних станiв.
Дослiджено вплив початкових та зовнiшнiх умов на структуру
таких станiв та переходи мiж ними. Теоретичнi та чисельнi ро-
зрахунки порiвнюються з даними проведеного безпосередньо
фiзичного експерименту. Обговорено можливостi застосуван-
ня методiв статистичної фiзики до вивчення вiдкритих систем
(зокрема, гранульованих матерiалiв) поблизу виявлених ква-
зiстацiонарних станiв.
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