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A numerical solution of the problem concerning the diffusion-
controlled process of growth and coalescence of new-phase particles
in the mean field approximation is discussed. The model allows
one to investigate the main stages of the decay (the stage of
independent growth, intermediate stage, and coalescence), as
well as transitions between them, in detail. It is shown that the
size dispersion of new-phase particles at the stage of independent
growth decreases. It is obtained that, in the framework of the mean
field approximation, one can observe the self-saturation effect at
the initial stage of coalescence. Self-saturation is characterized by
the “inverse” behavior of saturation, namely by the increase of the
concentration of dissolved atoms corresponding to a new phase, as
well as by the “inverse” behavior of the mean and critical radii of
new-phase particles – their decrease. The amplitude of this effect
is small and depends on both the volume fraction of the new phase
and the initial supersaturation. The result was verified for various
initial size distributions of particles. The self-saturation effect can
be considered as a criterion (indicator) of the beginning of the
coalescence stage.

1. Introduction

A special role in the production of composite
materials, protective coatings, integrated circuits in
microelectronics, powder alloys, and high-temperature
semiconductors is played by the reaction diffusion, i.e.
the diffusion accompanied by the appearance and the
competitive growth of particles of a new phase. In theory
and experiments, one distinguishes four successive stages
of alloy decay: nucleation, stage of independent growth
of new-phase particles, intermediate (transient) stage,
and coalescence (Ostwald ripening stage) [1–4].

At the first stage, a metastable homogeneous
alloy becomes two-phase and heterogeneous after the
nucleation. At the second one, the volume of the new
phase increases, and nuclei grow independently until
the diffusion regions of different new-phase particles
start to overlap. Then the intermediate stage of weak
diffusion long-range interaction comes. The last stage
of the alloy decay, the coalescence, is described by the
Lifshits–Slezov (LS) analytic solution in the space of

relative sizes, where the growth of large particles of
the new phase at the expense of small nuclei is taken
into account. The LS theory is constructed within the
model of mean field approximation for the concentration
field [5, 6]. It determines the law of growth of nuclei
and results in a unified size distribution function of
new-phase particles. At the same time, the problem
of description of the decay at initial stages remains
unsolved and urgent [7]. The development of computer
technique allows one to use methods of numerical
simulation of the processes with phase transformations
and to obtain results that improve the understanding of
the processes of decay and give a detailed description of
the indicated problem.

The given paper is aimed at the investigation of the
influence of the initial size distributions of new-phase
particles on the kinetics of initial decay stages by means
of numerical simulation. In our paper, we won’t consider
the first stage, namely the stage of nucleation. Therefore,
the alloy is considered to be two-phase (containing the
nuclei of a new phase) from the very beginning. We’ll
see that the approximation of mean concentration field
can give the result (unknown till now) that consists in
the possibility of the self-saturation of a system at the
intermediate stage of decay before coalescence.

2. A Model of Mean Field Approximation

Let’s consider the supersaturated solid solution of a
binary alloy with the initial composition Cα (the atomic
concentration of B component in the initial alloy). We
suppose that nuclei of the new phase are spherical and
located at such a distance from one another that their
concentration fields don’t overlap at the beginning. This
situation can be reached if the initial supersaturation
Cα and the volume fraction of the new phase are
specified as small. Under such conditions, the probability
of the fluctuation appearance of new particles of the
new phase is low. In this approximation, the entry of a
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substance to a new-phase particle is determined by both
the equilibrium concentration C̄ far from the nucleus
and thermodynamic parameters of the system, i.e. it is
controlled by volume diffusion [6, 8].

The balance equation of a substance at the mobile
boundary of a new-phase nucleus can be presented in
the form

{Cn − Cα,n (Ri)}∂Ri (t)
∂t

= D
∂C

∂r

∣∣∣∣
r=Ri(t)

. (1)

Here, Cα,n (Ri) denotes the equilibrium concentration in
the solution at the interface of the i-th nucleus and the
alloy (Fig. 1), r and C ≡ C (r) stand for the variable
radius and concentration in the neighborhood of the
i-th nucleus, respectively, Cn is the concentration of
atoms of B sort in new-phase particles (the same for all
nuclei), i is the number of particles (changes from unity
to the general number of nuclei existing at a certain time
moment), Ri(t) represents the radius of the i-th new-
phase particle, and D is the diffusion coefficient for B
atoms in the solution.

In this case, the concentration distribution in the
matrix (not far from the i-th particle) at any time
moment is determined from the diffusion equation

∂C

∂t
=

∂

∂r

(
D

1
r2

∂C

∂r

)
,

where C is the concentration of atoms of B sort in the
solution in the neighborhood of new-phase particles. The
solution of the last equation for the decay process limited
by diffusion can be found with regard for the condition
for the process to be quasistationary: ∂ C

∂t = 0. In the
spherical coordinate system, by taking the boundary
and limiting conditions for the concentration profile
C (r = Ri) = Cα,n (Ri) and C (r →∞) = C̄(t) into
account, the solution has the following form:

C (r) = C̄ (t) +
Cα,n (Ri)− C̄ (t)

r
Ri. (2)

Here, C̄(t) representing the average concentration of
a substance in the solution after the nucleation in
the process of decay is the function of time and
will be determined from the mass conservation law.
Hence, the distribution of the concentration C (r) in the
neighborhood of a nucleus will also vary with time.

The substitution of expression (2) into Eq. (1) will
give the equation of growth of new-phase particles in an
supersaturated alloy with the composition C̄(t):

dRi (t)
dt

=
D

Ri

C̄ (t)− Cα,n (Ri)
Cn − Cα,n (Ri)

. (3)

Fig. 1. Concentration field close to new-phase particles of various
sizes. Cn – concentration in new-phase particles, Cα,n(Ri) –
equilibrium concentration in the solution at the i-th “new-phase
particle – alloy” interface, C̄ – concentration of the substance in
the solution far from the nucleus

For the further investigation, it’s necessary to
determine the quantities Cn and Cα,n (Ri). They
characterize the growth rate (3) and can be determined
knowing the thermodynamic parameters for the alloy
and new-phase particles. Let’s consider the model of
the appearance of a new intermediate phase from an
supersaturated ideal solid solution having the initial
composition Cα. The Gibbs potentials (energy per atom)
for the initial and new phases are defined by the formulas

G = kT (c ln (c) + (1− c) ln (1− c)) + G0,

Gn = ∆G, (4)

respectively, where the solid solution has the
concentration dependence for the Gibbs potential of
the alloy, while the new phase has a strict stoichiometry
of the Cn composition, G0 represents the enthalpy of
the mixing of atoms, k is the Boltzmann constant,
T is the absolute temperature, and Gn denotes the
thermodynamic stimulus of creation of the new phase
(Fig. 2).

With regard for the equilibrium of the phases
existing in the solution, one can find the equilibrium
concentration Cα,n (Ri) at the “solution–new phase”
interface (taking the curvature of the surface of a new-
phase particle with radius Ri into account, we pass to
the simplified notation Cα,n), by using the equality of
the chemical potentials:

Gn −G0 +
2σ

ρRi
− kT

[
Cα,n ln (Cα,n) + (1− Cα,n)×
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Fig. 2. Concentration dependences of the thermodynamic
characteristics of phases: σ – surface tension; 2σ/R – effective
decrease of thermodynamic stimulus (energy per atom) under
condition of the presence of a spherical surface with radius R; Cn

– concentration in new-phase particles, Cα – initial composition
in the solution; and Cα,∞ – equilibrium composition on the plane
“new-phase particle – solution” interface (when 2σ/R →0)

× ln (1− Cα,n) + (Cn − Cα,n) ln
Cα,n

1− Cα,n

]
= 0. (5)

Let’s write the law of conservation of matter under
the conditions of the existence of new-phase particles:

CαVtot = Cn
4
3
π

N(t)∑

i=1

R3
i + C̄ (t)



Vtot − 4

3
π

N(t)∑

i=1

R3
i



.

(6)

Here, Vtot stands for the alloy volume, N(t) is the
number of new-phase particles that changes in time.
The atomic density ρ in new-phase particles and that
in the parent phase are considered to be the same. It’s
worth noting the fact that Eq.(6) doesn’t consider a
change of the concentration C̄(t) caused by the presence
of the concentration profile (Fig. 1) close to a new-
phase particle. According to the performed analysis,
such a specification doesn’t change the generality of the
obtained results and will be presented in a separate work.

Thus, we obtain that conditions (5), (6) and the law
of growth (3) are sufficient to describe the evolution of
the decaying system. Unfortunately, it’s impossible to
find an analytic solution of such a system except for
the case of the zero initial supersaturation and infinitely
large time intervals where the LS theory is applicable.
That’s why we’ll perform a numerical analysis for
various initial supersaturations and try to clarify the
behavior of the basic quantities that describe the decay
in the system.

3. Basic Quantities That Describe the System

As one can see from Eq.(3), the growth rate of a new-
phase particle essentially depends on its radius. As a
minimal value of the radius Rmin at which this equation
makes sense, one can accept the value for which the
condition Cα,n (R = Rmin) = Cn is satisfied (Fig. 1).
The substitution into Eq.(5) gives

Rmin =

=
2σ

ρkT [Cn ln Cn + (1− Cn) ln (1− Cn)]− ρ (Gn −G0)
.

That’s why we’ll remove any particle having the
radius R ≤ Rmin from the system, while the vanishing
volume will be redistributed in the system due to the
self-consistent conservation law (6).

Let’s define the critical radius Rcr as such a value
of the radius of a new-phase nucleus, at which the
rate of growth in expression (3) changes the sign and
equals zero: Cα,n (Rcr) = C̄. Particles whose radius is
lower than the critical one will decrease in the indicated
deterministic model up to the minimum acceptable
value, whereas particles whose radius is higher than the
critical one will increase in size. We can write

Rcr = 2σ/

{
ρkT

[
C̄ ln C̄ +

(
1− C̄

)
ln

(
1− C̄

)
+

+
(
Cn − C̄

)
ln

C̄

1− C̄

]
− ρ (Gn −G0)

}
.

The following characteristic parameter is the mean
radius R̄ (t) of new-phase particles that can be
determined by means of arithmetic averaging: R̄ (t) =
N(t)∑
i=1

Ri(t)/N(t). It’s worth noting that, in the process of

evolution of the system, all values of Ri (t) and N (t)
change. In addition, if the dimensions of nuclei Ri (t)
are known, the total volume of new-phase particles will

be presented as Vn (t) =
N(t)∑
i=1

4
3πR3

i (t), whereas the

volume fraction of the new phase will have the form
Ṽ = Vn(t)/Vtot.

The numerical solution of problem (3)–(6) also
allows one to observe the energy parameters that
characterize the stability of the system. For example,
one can calculate the surface energy of all nuclei: Es =

σ
N(t)∑
i=1

4πR2
i . The volume energy of the alloy with regard
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for the part of nuclei will be determined as EV =
{Vtot − Vn (t)}ρG

(
C̄

)
+ Vn (t) ρGn. The total energy of

the system will be derived by means of summation:
E = EV + Es.

In addition to the above-mentioned integral
characteristics, the described model allows one to
construct the size distribution of new-phase particles
and to investigate the behavior of the particle size
distribution function f(R), where f(R)dR is the
number of particles whose sizes lie between R and
R + dR at the time moment t. The results obtained
for the distribution function f (R) at the last stage
(coalescence) will be compared with the results of the
LS theory. The latter uses the space of mean values,
where the parameter is presented by the ratio of
the radius of the particle Ri (t) to the mean radius
R̄ (t) rather than the particle radius itself. That’s why
we’ll consider the relative radius of the i-th particle:
ui (t) = Ri (t)

/
R̄ (t). Respectively, the distribution

function in such a space f (ui) ≡ f (ui (t) , t). We’ve
constructed it in the form of bar charts and normalized
in such a way that f(ui) represents a part of the general
number of new-phase particles with sizes from ui to
ui + dui.

For the obtained distribution, the variance (DR or
Du), slope (Sku), and peak sharpness (Kru) of the
distribution function are determined by the formulas

DR =

√√√√√
N(t)∑
i=1

(
Ri − R̄

)2

N (t)
, Du =

√√√√√
N(t)∑
i=1

(ui − 1)2

N (t)
,

Sku =

N(t)∑
i=1

(ui − 1)3

N (t) (Du)3
, Kru =

N(t)∑
i=1

(ui − 1)4

N (t) (Du)4
− 3. (7)

Hereinafter, R̄ ≡ R̄ (t), ū = 1 represents the mean size
in the space of relative sizes ui (t). The slopes Sku and
the peak sharpnesses Kru of the distribution function in
the spaces of common sizes and relative sizes coincide:
(SkR=Sku, KrR=Kru).

Thus, the algorithm of simulation of the decay
kinetics of a binary alloy will be as follows: а) the
initial composition Cα and thermodynamic parameters
of the phases are specified; b) at the first stage, we
imitate the nucleation and introduce new-phase particles
with the general number N(t = 0) and their initial
sizes Ri(t = 0), which determines the distribution
function f (ui) and the initial volume fraction of the
new phase; c) the composition in the alloy after the

nucleation stage C̄ (t = 0) is determined by formula
(6); d) the sizes of particles at further time moments
Ri(t > 0) are found by formula 3); e) with the obtained
values, we investigate all the indicated characteristics of
the ensemble of new-phase particles and the quantities
describing the decay. Then the procedure c)–e) is
repeated.

The numerical solution presented in the given
paper was realized by means of programming in the
Borland С++ builder 6.0 programming environment
with the help of Euler’s method with automatic time-
step variation.

4. Simulation Results

When simulating the nucleation, we set various initial
size distributions of new-phase particles f(R). Here, we’ll
restrict ourselves to the consideration of only two types
of distributions (namely four Gaussian distributions and
an exponential one) emphasizing the new result. The
parameters of the distributions considered in the given
paper are presented in Table 1.

As an example for the further discussion, let’s
consider alloy (b) from Table 1, where all nuclei of the
new phase after the simulated nucleation stage were
supercritical. Experimentally, such a situation can be
created by means of the rapid overcooling of an alloy.
The evolution of the distribution function of the chosen
system is depicted in Fig. 3, while the evolution of its
thermodynamic parameters is presented in Fig. 4.

The analysis testifies to the presence of all basic
stages of the evolution of the system during the decay,
namely the stage of independent growth, intermediate
stage, and coalescence. In addition, one can trace the
behavior of the basic quantities during the transitions
from one stage to another in detail.

4.1. Stage of independent growth

In this case, at first C̄ (t) ≈ const, and the growth
equation (3) acquires the form

dRi

dt
=

D

Ri

C̄ (t)− Cα,∞ − γ
Ri

Cn − Cα,∞ − γ
Ri

≈ D

Ri

C̄ (t)− Cn,∞
Cn − Cn,∞

≈ const
Ri

.

(8)

This means that: a) at the stage of independent growth,
nuclei grow following the parabolic law (8); b) the rates
dR2

i /dt of change of the areas of particles of different
sizes are the same; c) for two particles of different sizes
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Fig. 3. Evolution of the size distribution function of new-phase particles following the variation of their sizes (bar charts are obtained
numerically) and its comparison with the LS function (solid curve): а – initial distribution after nucleation, b – end of the stage of
independent growth, the beginning of the intermediate stage, c – end of the intermediate stage, d – beginning of the coalescence stage

T a b l e 1. Initial distributions and parameters of the systems under consideration

Parameters Gaussian distributions Exponential
Alloy (а) Alloy (b) Alloy (c) Alloy (d) distribution

(Gn −G0)/kT −7 −4 −9 −4 −5
σ, J·m−2 0.3 0.3 0.3 0.3 0.3
D, m2·s−1 10−10 10−10 10−10 10−10 10−10

ρ, m−3 7×1028 7×1028 7×1028 7×1028 7×1028

T , K 700 700 700 700 700
Cα(t = 0) 0.002 0.05 0.002 0.02 0.02

Cn 0.9999 0.900 0.999 0.9999 0.98
Vtot, m3 4.78×10−16 3.29×10−16 4.35×10−16 3.2×10−14 2.38×10−15

Rmin, m 1.27×10−10 2.41×10−10 9.86×10−11 2.22×10−10 1.79×10−10

Rcr(t = 0), m 9.44×10−9 7.85×10−10 1.26×10−9 1×10−8 8.33×10−10

R̄(t = 0), m 1.27×10−8 2.41×10−8 1.48×10−8 1.11×10−8 1.33×10−8

C̄(t = 0) 0.001 0.041 2.4×10−4 0.020 0.019
N(t = 0) 50000 50000 50000 50000 800000
Ṽ (t = 0) 0.001 0.01 1.75×10−3 1×10−5 1.25×10−3

DR(t = 0) 2.55×10−9 4.84×10−9 2.95×10−9 2.23×10−9 1.34×10−8

Du(t = 0) 0.2 0.2 0.2 0.2 1.005
Sku(t = 0) 0.005 0.027 0.002 0.013 1.947
Kru(t = 0) −0.004 −0.004 −0.016 −0.023 5.177
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Fig. 4. Evolution of the basic parameters of the chosen system [alloy (b) in Table 1] at all stages: a – volume fraction of the new phase
Ṽ (t); b – mean R̄ (t) (solid curve) and critical Rcr(t)) (dashed curve) radii of new-phase particles; c – mean concentration of the substance
in the alloy C̄(t) (t∗ – the time moment of maximal saturation), d – the fraction of vanished new-phase particles N(t)/N(t = 0). The
time interval 0< t <1 s characterizes the stage of independent growth, the interval 1 s< t < 1.05 s corresponds to the intermediate
stage, and the stage of Ostwald ripening comes for t > 1.05 s

R1 > R2, the rates of growth dR1/dt<dR2/dt. Thus,
particles with the least size will have the maximal rate
of growth. As a result, in the process of independent
growth of supercritical new-phase particles, their size
distribution function will get narrow, while the radii
of particles will tend to the highest possible size. It is
just the behavior discovered by the numerical solution
of the system of equations (3)–(6) at the beginning
of the given stage (Fig. 3,a,b). The total number of
particles N(t) doesn’t change at this stage. All nuclei
grow, as all of them are supercritical. One distinguishes

conditionally three steps of the stage of independent
growth: 1) the beginning of the stage with constant
concentration and rapidly decreasing dispersion; 2) the
step with minimal dispersion of new-phase particles and
decreasing composition; 3) the last step of rapid growth
of the critical radius Rcr getting equal to the average size
R̄ (t) (Fig. 4). In general, the stage is characterized by
the following behavior of the basic characteristics: а) the
volume fraction of the new phase rises; b) the mean
and critical radii increase; c) the mean concentration of
the substance in the solution gradually decreases; d) the

ISSN 0503-1265. Ukr. J. Phys. 2008. V. 53, N 1 55



A.S. SHIRINYAN, M.P. KUDIN

number of particles of the new phase remains constant.
The details of the above-described behavior can be seen
in Fig. 4. The completion of the stage is observed at the
time moment t1 = 1 s for the indicated parameters of
the system presented in Table 1, alloy (b).

It’s worth paying attention to the fact that, at
this stage, an essential decrease of the size dispersion
of new-phase particles can result in the distribution
function similar to the Dirac delta-function. Only in the
case where the critical radius reaches the mean one,
the dispersion stops to decrease, and the intermediate
stage of the decay comes (Fig. 3,b,c, the time interval
1 s < t <1.05 s in Fig. 4).

4.2. Intermediate stage

According to the result obtained in this paper, in the
previous publications of other authors, and in models
based on other approximations, the mean radius at the
intermediate stage remains constant and equal to the
critical one [3].

In our numerical experiment, one can mark out at
least two steps of this stage: 1) the step of a slow
growth of the size dispersion of particles at almost
constant mean sizes R̄ (t) = Rcr (t) ≈ const; 2)
the unknown before step of effective self-saturation of
the alloy, essential reconstruction of the distribution
function, and decrease of the critical and mean radii with
simultaneous increase of the dispersion of particles [9].
The corresponding results are shown in Figs. 3 and 4.

The analysis implies that, with the beginning
of the intermediate stage, the dispersion rises and
the corresponding distribution function broadens
(Fig. 3,b,c). At this stage, there takes place the
essential reconstruction of the size distribution function
of particles from the intermediate state to the form
predicted by the LS theory (Fig. 3,b,с). Moreover, just
at the step of effective “self-saturation”, the distribution
function broadens and acquires the form corresponding
to the LS theory with the well-known values of the
dispersion, slope, and peak sharpness of the particle
size distribution function. A detailed investigation
demonstrates that the nonmonotonicity discovered in
the behavior of the parameters of the system represents
a result of the application of the mean field model rather
than testifies to the incorrectness of the scheme of
numerical solution. This fact was verified by the use
of various distributions, various volume fractions of the
new phase, and various approximations to solve the
key equations, as well as by the changes of steps of
the numerical scheme and the refinement of the law of

conservation of matter (6) with regard for the available
concentration profile near new-phase particles.

It’s worth paying attention to the fact that the
amplitude of the indicated self-saturation effect isn’t
large and essentially depends on the initial conditions
and parameters of the investigated system, namely on
the ratio between the critical and mean radii and that
between the maximally possible volume fraction of the
new phase under the specified conditions and its initial
volume fraction. The maximally possible volume fraction
of the new phase can be determined from Eq.(6), by
considering that new-phase particles have completely
„obtained” matter from the solution to construct the
phase. In this case, the substance concentration in
the solution reaches its minimal value, whereas the
volume fraction of the new phase – its maximum.
The minimal concentration can be found from the
equilibrium condition for the case of coexistence of one
new-phase particle and the solution, i.e., from the rule of
common tangent (5) to the concentration dependences
of the Gibbs potentials (Fig. 2). Under such conditions,
the second term on the right-hand side of Eq.(6) can be
neglected, becvause it is of the second order of smallness.
Thus, we can write

CαVtot ≈ Cn

N(t)∑

i=1

4
3
πR3

i = CnVn, Ṽmax ≈ Cα

Cn
.

The self-saturation effect for all the initial
distributions (Table 1) is shown in Figs. 5 and 6. It’s
worth noting that, in Figs. 5 and 6 and below, the letter
near the number of the figure coincides with the notation
of the chosen alloy in Table 1.

A small amplitude of the self-saturation effect [for
example for case (b) of Table 1, the relative changes
are as follows: ∆R̄2/∆R̄1 ≈ 4 × 10−2, ∆C̄2/∆C̄1 ≈
2 × 10−4, ∆Ṽ2/∆Ṽ1 ≈ 10−4] complicates the possibility
of experimental verification of the obtained result. At
the same time, we obtain that an increase of the initial
volume fraction of the new phase results in the growth of
the amplitude of the indicated effect, i.e., in an increase
of the relative changes of the concentration, the volume
fraction of the new phase, and the mean radius during
the self-saturation (Table 2).

The mean field approximation has restrictions and,
in the general case, can’t be applied to large volume
fractions of the new phase, where one should take the
diffusion interaction of new-phase particles into account
[10]. Our preliminary analysis demonstrates that the
allowance for the diffusion interaction doesn’t change the
main result concerning the presence of such an effect but
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Fig. 5. Averaged composition of the substance in the solution near new-phase particles for various distributions. Amplitude and duration
of the self-saturation effect for various initial systems: a–d – for alloys a–d in Table 1, e – for the exponential distribution. The self-
saturation effect is absent for distribution (а)
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Fig. 6. Evolution of the mean (solid curves) and critical (dashed curves) radii of new-phase particles. Amplitude, duration, and form of
the self-saturation effect for various initial systems (notations the same as in Fig. 5)
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can essentially influence the distribution function at the
coalescence stage. This questionn will be considered in a
separate work.

4.3. Coalescence stage

As was already noted above, the LS theory determines
the temporal law of growth of particles as well as the
explicit and unified form of the particle size distribution
function. Using the mean field approximation, the LS
theory in binary systems [5, 6] determines the law of
temporal variation of the mean radius of new-phase
particles: R̄ ∼ t

1
3 for asymptotically remote times. The

latter coincides with the law of growth of the critical
radius Rcr (t).

In our numerical experiment, we observe both the
beginning of coalescence and the coalescence stage itself
that follows the LS theory. An early stage of coalescence
can be also reached even at the beginning of the
evolution of the chosen system in the case of the
simultaneous choice of the initial supersaturation of the
system, initial volume fraction of the new phase, and the
distribution function close to that corresponding to the
asymptotic LS function.

One can state that, at the given stage, the behavior
of the obtained parameters of the system is similar to
that described in the LS theory (Fig.3,d; Figs. 4–6).
The parameters of the distribution function agree with
those of the asymptotic distribution function following
the LS theory (Table 3). The mean size and the number
of new-phase particles also change depending on time

similarly to the corresponding functions in the LS theory.
The only exception is the sharpness of the peak of
the distribution function which is very sensitive to the
number of particles of the system.

5. Conclusions and Discussion

In the given paper, the decay of a binary supersaturated
alloy is described using the mean field model and the
diffusion-controlled process of growth of a new phase.
We have described the stage of independent growth,
intermediate and coalescence stages, and transitions
between them. The proposed model and the numerical
analysis allowed us to obtain new results for the initial
and intermediate stages of the decay for a binary
system. In particular, for large initial supersaturations,
it was obtained that the size distribution function of
particles at the stage of independent growth can tend
to the function similar to the Dirac delta-function.
At the intermediate stage, the distribution function is
essentially reconstructed, whereas it acquires the form
known from the LS theory at the coalescence stage.

One of the new obtained results is the “self-saturation
effect” for the case of non-zero initial supersaturations,
where, at the end of the intermediate stage, there takes
place the “inverse behavior” of basic characteristics: the
decrease of the mean size, critical size, and volume
fraction of the new phase and the increase of the
concentration. The amplitude of this effect is small, but
the effect itself is clearly pronounced. This result was

T a b l e 2. Amplitude of the self-saturation effect for various initial parameters of the systems of Table 1

Initial system ∆C̄2
∆C̄1

∆R̄2
∆R̄1

∆Ṽ2
∆Ṽ1

R̄(t=0)
Rcr(t=0)

Ṽ (t=0)

Ṽmax

Ṽ (t∗)
Ṽmax

Distribution (a) – – – 1.344 0.49995 –
Distribution (b) 1.72×10−4 0.04 1.65×10−4 30.714 0.18 0.768
Distribution (c) 3.3×10−4 0.21 3.3×10−4 11.781 0.4995 0.936
Distribution (d) 4.52×10−4 4.08×10−4 4.58×10−4 1.099 0.0005 0.074
Exponential 1.42×10−3 0.179 1.4×10−3 16.005 0.0618 0.678

T a b l e 3. Comparison of the results obtained in the given work with those of calculations performed according to
the LS theory at the coalescence stage

Parameters LS theory Gaussian distribution Exponential
Alloy (а) Alloy (b) Alloy (c) Alloy (d) distribution

t →∞ 4.85 9.43 61.67 29.33 32.51
Cn → 1 0.9999 0.900 0.999 0.9999 0.98
Cα → 0 0.002 0.05 0.002 0.02 0.02

R̄ = Rcr ∼ t0.33333 ∼ t0.3 ∼ t0.32 ∼ t0.31 ∼ t0.34 ∼ t0.31

Ṽ ≈ const ∼ t0.006 ∼ t0.0006 ∼ t0.0003 ∼ t0.015 ∼ t0.0008

N(t) ∼ t−1 ∼ t−0.89 ∼ t−0.96 ∼ t−0.92 ∼ t−1.0 ∼ t−0.97

Du 0.215 0.23 0.228 0.231 0.218 0.242
Sku −0.92 −0.76 −0.738 −0.738 −0.944 −0.558
Kru 0.675 0.5 0.52 0.548 0.728 0.228

max u 1.5 1.456 1.453 1.496 1.372 1.5
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verified by calculations performed for various initial
distributions.

The physical reason of the self-saturation effect lies
in the fact that there takes place the reconstruction of
the size distribution function that acquires finally the
form according to the LS theory, which is explained by
the establishment of the distribution function that is in
equilibrium relative to its form.

In our opinion, the self-saturation effect can be
considered as an indicator of the beginning of the
coalescence stage and as one of the criteria of
applicability of the LS theory to the description of the
decay at the coalescence stage.

The presented mean field model doesn’t take the
change of the concentration caused by the presence of
a certain profile near new-phase particles into account.
Such an analysis can be important at the coalescence
stage for large volume fractions of the new phase, where
one should allow for the diffusion interaction of new-
phase particles.
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ЕФЕКТ САМОНАСИЧЕННЯ СПЛАВУ ЯК КРИТЕРIЙ
ПОЧАТКУ СТАДIЇ КОАЛЕСЦЕНЦIЇ

А.С. Шiрiнян, М.П. Кудин

Р е з ю м е

Обговорюється чисельний розв’язок задачi контрольованого
дифузiєю процесу росту та коалесценцiї частинок нової фази у
наближеннi середнього поля. Модель дозволяє детально дослi-
дити основнi стадiї розпаду (стадiю незалежного росту, пере-
хiдну стадiю, коалесценцiю) i переходи мiж ними. Показано, що
дисперсiя частинок нової фази за розмiрами на стадiї незалеж-
ного росту зменшується. Одержано, що в рамках наближен-
ня середнього поля може спостерiгатися ефект самонасичення
на початковiй стадiї коалесценцiї. Самонасичення характери-
зується “iнверсною” поведiнкою насичення, а саме зростанням
концентрацiї розчинених атомiв, що вiдповiдають новiй фазi,
а також “iнверсною” поведiнкою середнього i критичного ра-
дiусiв частинок нової фази – їх зменшення. Амплiтуда цього
ефекту є малою i залежить вiд об’ємної частки нової фази i по-
чаткового пересичення. Результат був перевiрений для рiзних
початкових розподiлiв частинок за розмiрами. Ефект самона-
сичення може розглядатися як критерiй (iндикатор) початку
стадiї коалесценцiї.
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