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The comparison of the experiments on light scattering in a
fluid subjected to a temperature gradient with the theory of
nonequilibrium hydrodynamic fluctuations, based on a local
equilibrium [18], and with the fluctuating hydrodynamics has
been carried out. It is shown that the local equilibrium theory will
much better be coordinated to experiment.

A fluid subjected to a temperature gradient is a simple
and, consequently, important example of a stationary
nonequilibrium state. To the present time, the certain
progress in a study of fluctuations in similar sorts of
nonequilibrium systems is achieved, in particular due
to experiments on light scattering. The initiator of
studying the light scattering in nonuniformly heated
media was L.I. Mandelstam [1]. The history of the
development of researches in this field is presented
in [2], therefore we do not stop here on it. We
emphasize only the fact that the conventional theory
allowing to determine spectra of light scattering in
a nonequilibrium fluid in the middle of the 1980s,
anyway in West, becomes fluctuating hydrodynamics
[3-16]. Fluctuating hydrodynamics is based on the
use the Landau-Lifshitz fluctuating forces [17] as the
Langevin sources in linear equations describing the
dynamics of fluctuations in a nonequilibrium steady
state.

The basis for a similar approach to nonequilibrium
hydrodynamic fluctuations are the following reasonings.
In the nonequilibrium steady state, we do not know
the ensemble, over which it is necessary to make
averaging. Fluctuations are caused by the molecular
movement. As the nonequilibrium macroscopic scale of
this state is much more than that of the molecular
movement, the nonequilibrium connected, for example,
with a temperature gradient should not render any
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essential influence on molecular sources of fluctuations.
Consequently, for the description of nonequilibrium
fluctuations, it is possible to use the equilibrium
Landau—Lifshitz formulas, having saved the local
dependence of thermodynamic parameters in them on
coordinates.

The objection of this conception formulated in [18]
is that thermal hydrodynamic fluctuations are field
fluctuations and have no relation to the molecular level
of a description. At the hydrodynamic level, the medium
should be examined as continuous. The basic hypothesis
used for nonequilibrium continuous media in addition
to the Onsager regressive hypothesis is the hypothesis
of local equilibrium. Therefore, the ensemble, on which
it is necessary to average, is known. On the contrary,
fluctuating forces for the examined steady state are
unknown. They, however, can easy be determined by
the known local-equilibrium ensemble and the regressive
equations.

Mathematically, the difference between fluctuating
hydrodynamics and the theory developed in [18] is,
as will be seen, the Langevin fluctuation-dissipation
theorem.

For the fluctuations x; of hydrodynamic values with
time-dependent evolution

i = —XijTj, (1)

the Langevin fluctuation-dissipation theorem connects
the intensities @;; of fluctuating forces y;, which should
be added in the right part of (1),

(yi (1) y; (0)) = Qiz0 (1) , (2)

with the matrix A and the average meanings of the
square-law functions of fluctuations x; at the initial time
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moment
Qij = ik (Trzj) + Aj (Trxs) - (3)

According to fluctuating hydrodynamics, the intensities
Qi; in (3) are determined by the Landau-Lifshitz
formulas, and A corresponds to the state under study.
Then it is possible to find (z;z;) from (3), ie. to
determine the ensemble adequate to the examined
nonequilibrium state. In particular, for an unstable mode

such that = —Az with A — 0, it follows from the
fluctuation-dissipation theorem
Q =2x(a%) (4)

that fluctuations of an unstable mode rise: <x2> — 00.

Actually, the hypothesis of local equilibrium means
that (z;x;) are given; therefore, equality (3) should be
read from the right to the left, i.e. it defines a matrix
Q for given X and (z;z;). For an unstable mode, the
conclusion about the growth of fluctuations at a vicinity
of the threshold of stability should be changed to the
conclusion that the fluctuating force intensity of the
unstable mode tends to zero, (Q — 0), together with
its dissipative function [19].

Thus, fluctuating hydrodynamics and the locally
equilibrium theory of nonequilibrium hydrodynamic
fluctuations give different conclusions about the
behaviour of fluctuations. Therefore, it is expedient to
carry out their comparison with experiment. First of all,
this concerns the experiments on Mandelstam—Brillouin
light scattering in a fluid subjected to a temperature
gradient.

For the dynamic structure factor of a fluid with
temperature T' = Ty + 7 ﬁT, fluctuating hydrodynamics
gives [4]

7 DE*
S (k,w> = 2T0p0{ (wQ ~ 02k2)2 n w2D2k4 —

23 D2V T } -
_ e
T [(w2 — 02k2)2 + w2D2k4}

where c is the sound propagation velocity, D = %u + &,
v and & are, respectively, the shear and bulk kinematic
viscosities, and pg is the liquid density. The correction
to an equilibrium spectrum is odd in the frequency,
which reflects the break of time symmetry. The natural
explanation of this breaking is that the number of
phonons coming from areas with greater temperature is
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more than the number of phonons coming from areas
with smaller temperature.

If the condition of a small attenuation ck > Dk? is
satisfied, it is easy to reduce (5) to

s (Fw) - Toﬂo{rk2 (1 _G(E’w))+

@ (w — ck)® + D2k

+Fk2 (1 +2e(l€w))} o
(w+ ck)” +T2k4

where I' = %D such that T'k? is the damping coefficient
of sound waves, and

- ¢ k°VT 22Dk
€ (]{,‘7(4}) - Dk2 TO (wg _ C2k2)2 +w2D2k4. (7)

Here, k° is a unit vector in the direction of a vector k.
Thus, the Mandelstam—Brillouin doublet is represented
by two Lorentzians of different height. The peaks at the
frequencies —ck and +ck are named, respectively, the
Stokes and anti-Stokes ones.

The modern experimental equipment does not
allow one to determine enough precisely the frequency
dependence of satellites, however it allows the authentic
determination of the integrated intensity of each of
them. The basic value measured in experiments is the
asymmetry of a spectrum determined by the formula

Is — 1,
€ =
Is—i-Ia’

(8)

where Is and I, are the integrated intensities of the
Stokes and anti-Stokes peaks. After the integration in
formula (6) for the asymmetry given by fluctuating
hydrodynamics, it was found

c k°VT

“Torn, k2 9)

The first experiments carried out for water [20] have
qualitatively confirmed the character of dependence (6)
and, at the same time, have shown that the slope of

the line ecxp (’“Ok#) is equal to 6700 cn 'K ~1!, while
the calculations by formula (9) give 19000 cm~'K~1!.
Thus, the experimental value of the asymmetry is
2.8 times less, though, in the subsequent experiments
[21], a fit was achieved for the “best” results, and
it also was noticed that the possible discrepancy is
connected to the influence of walls and nonlinear effects.
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In work [22] devoted to the Mandelstam-Brillouin
light scattering by capillary waves on a surface of
water subjected to a gradient of temperature along the
surface, the same tendency as in [20] was again
emphasized: the approximately three-fold reduction of
the experimental asymmetry in comparison with the
prediction of fluctuating hydrodynamics [23]. We note
that, in experiments on a surface, neither the walls,
nor nonlinearity are present. About the identical small
experimental asymmetry was reported also in work [24],
where two different types of the container with a fluid,
one of the conventional Rayleigh-Benard type and a
tall cylindrical cell, were used. The latter allows one to
exclude the effect of boundaries. Authors of [24] have
connected the small asymmetry with the nonuniformity
of a temperature gradient along the cell.

From the above-stated, it is possible to conclude
that the experiments on light scattering and the
results following from fluctuating hydrodynamics have
an essential quantitative discrepancy.

Let us write down now the expression for the
structure factor obtained on the basis of the local
equilibrium hypothesis in [18]:

DE* n
(w? — c2k2)2 + w2 D2kA

S (E, w) = 2Tupo

WkVT [(w2 — 02k2)2 — w2D2k4}

+ (10)

2
T, [(wQ — 2k2)? 4 w2D2k4}

Under the same condition ck > D2, this yields formula
(6) with the twice smaller e (E, w) and, accordingly, the

twice smaller asymmetry €, so the slope becomes 9500
cm~'K~!. Though this result exceeds the experimental
value of 6700 ecm 'K~!, it is wholly digestible in
view of the effect of walls, etc. Below, the plots
of the frequency dependences of the equilibrium and
nonequilibrium dynamic structure factors (5) and (10)
under the condition of small attenuation of sound in the
areas of Stokes and anti-Stokes satellites are given in
irrespective units.

Thus, we have demonstrated in the present work that
the theory of nonequilibrium hydrodynamic fluctuations
[18] based on the local equilibrium hypothesis, in
addition to the equivalence of various approaches to
the solution of the problem, gives also the much
better agreement with experiment, than fluctuating
hydrodynamics.
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Dynamic structure factor S E,w as a function of the frequency

+ck

w 1) in an equilibrium liquid (dotted line); 2) in a nonequilibrium
liquid according fluctuating hydrodynamics (dot-dashed line); 3)
in the same nonequilibrium liquid according the local equilibrium
theory [18] (solid line). Owing to the sharpness of peaks, only a

narrow frequency box about w = *ck is plotted

The local equilibrium theory of a light scattering
by capillary waves in the case where the temperature
gradient is subjected along the liquid surface also give
results which have good agreement with experiment and
will be present in a separate work.
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PO3CIAHHSA CBITJIA B PIZIVMHI 3 TPAJIIEHTOM
TEMIIEPATYPH

B.II. Jlecnixos
PezwowMme

IIpoBesieHO TOPIBHAHHS €KCHEPUMEHTIB 3 posciguua Manenb-
mTamMa—BpiIioeHa B piiuHi 3 IpalieHTOM TEMIEPATYPHU 3 TEOPI€o
HEPIBHOBaXKHUX TifipofguHaMidHuX (DJIyKTyalliif, OCHOBaHiil Ha JIO-
KaJIbHIN piBHOBa3i [18], Ta duykryaniiinowo rigpoguaamikoro. ITo-
Ka3aHo, IO JIOKAJIbHO DiBHOBaXXHa TeOPis 3HAYHO Kpalle y3To/-
JKYETbCS 3 €KCIIEPUMEHTOM.
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