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The influence of pressure gradients on the stationary membrane
potential, which is the most realistic electric rest potential,
has been studied. The dependence of the electric membrane
potential on the pressure gradient has been analyzed taking the
variation of the ultrasonic radiation frequency under non-isobaric
conditions into account. Quantitative estimations of the influence
of barodiffusion effects on the value of electric rest membrane
potential were obtained.

1. Introduction

In a normally functioning cell, there is a lot of various
molecules and ions, the concentrations of which are
considerably lower or much higher than those in the cell
environment. There exists a definite disparity between
the distributions of those particles in the cell and in the
intercellular medium. It is a cell membrane that provides
such a difference [1, 2].

The generation and propagation of electric potentials
belong to the major phenomena in alive cells and
tissues; they form the basis of cell excitation, regulation
of endocellular processes, muscular contraction,
functioning of the nervous system, and so on. Transfer
processes give rise to a potential difference across the
membrane (it is the so-called membrane potential).

The membrane potential in equilibrium (the Nernst
potential), which will be related here, for the sake of
definiteness, to the distribution of K+-ion concentration,
looks like

ϕm = ϕe − ϕi =
RT

F
ln

[K]i
[K]e

, (1)

where ϕm = ϕe − ϕi is the difference between the
electric potentials of external and internal cell media;
[K]i = 392 mmol/l and [K]e = 22.4 mmol/l are the
K+-ion concentrations inside and outside the axon of
a squid, respectively; R is the gas constant; F the
Faraday number; and T the absolute temperature. Since

RT/F = 25.2 mV at the temperature T = 293 K, we
obtain ϕm ≈ −72 mV.

The Goldman–Hodgkin–Katz stationary potential
makes also allowance for the fluxes of other ions and
looks like

φstat =
RT

F
ln

PK[K]i + PNa[Na]i + PCl[Cl]e
PK[K]e + PNa[Na]e + PCl[Cl]i

, (2)

where φstat = (φe − φi)stat is the difference between
the electric potentials of the external and internal media
of the cell; [K]i, [Na]i, and [Cl]i are the concentrations
of the corresponding ions inside the cell; [K]e, [Na]e,
and [Cl]e the corresponding concentrations in the
extracellular solution; and PK, PNa, and PCl are the
cell membrane permeabilities for the corresponding ions.
This potential describes the actual rest potential more
adequately, than the Nernst concentration potential
does. It should be noted that, in the giant axon of a
squid, PK : PNa : PCl = 1 : 0.04 : 0.045 at rest.
Therefore, the main role in the establishment of rest
membrane potential is played by potassium ions. In
what follows, we take into consideration that, generally
speaking, the pressure values are different for two
membrane’s sides, with that in the cell being higher.
The so-called osmotic pressure provides the exchange,
absorption, distribution, and removal of substances
through the membrane. It depends on the concentrations
of substances dissolved outside and inside the cell.

An extra pressure can be also created owing to the
local action of external fields, in particular, ultrasound
ones, which became widely applied in modern medicine.
The effective use of available diagnostic methods, as well
as the development of essentially new ones, is impossible
without studying the mechanisms of ultrasound action
on molecules, cells, and tissues. The intensity of acoustic
waves affects the variation of the pressure difference
across the membrane

∆p =
√

2Iρυ, (3)
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where I is the ultrasound intensity, ρv the acoustic
resistance of the medium, ρ the medium density, and v
the sound velocity in the medium. Since I ∼ ω2, where
ω is the frequency of the ultrasound wave, the pressure
difference is proportional to the frequency:

∆p = Aω, (4)

where A is a quantity which does not depend on
the ultrasound frequency if there is no effect of
frequency dispersion for the sound velocity. Of special
interest is a critical range, where fluctuation effects,
which may substantially influence the behavior of
various equilibrium and nonequilibrium properties of the
substance (in particular, those which govern the electric
membrane potential), should be taken into account.

For an alive organism considered as a physical
system, there exists a hierarchy of spatial scales, namely,
the dimensions of atoms (L1), macromolecules (L2),
cells (L3), organs (L4), and so on. The action of
external physical fields is characterized by introducing
an additional spatial scale. In the case where such an
external factor is sound, the role of this extra scale is
played by the sound wavelength λ. Usually, the latter
satisfies the condition L3 ¿ λ ¿ L4 [3].

2. Stationary Membrane Potential Under
Non-isobaric Conditions

A condition for the system to be stationary means that
the total current density caused by fluxes of all ions
through the membrane is equal to zero, i.e.

~Jsum =
∑

~Jn = 0. (5)

Note that every quantity Jn, in general, is distinct from
zero. It is this circumstance that makes the stationary
potential different from the Nernst equilibrium one;
the condition for the latter to be established is a
zero current for only one, predetermined kind of ions.
We will take into consideration only monovalent ions
of potassium, sodium, and chlorine. In this case, the
stationary condition, which describes the currents of
sodium, Na+, and chlorine, Cl−, ions into the cell and
the current of potassium K+ ions from it, looks as
follows:

~Jsum = ~JK + ~JNa + ~JCl = 0, (6)

where ~JK = e~IK, ~JNa = e~INa, ~JCl = −e~ICl, e is the
elementary charge, and ~IK, ~INa, and ~ICl are the fluxes
of the corresponding ions through the membrane.

The passive flux of ions through the biomembrane,
provided that there are simultaneously two
thermodynamic forces associated with the gradients of
concentration and electric field potential, is determined
by the following expression (see, e.g., work [2]):

I = ψP
Ce exp ψ − Ci

1− expψ
. (7)

Here, P is the coefficient of membrane permeability for a
definite kind of ions; Ce and Ci are the concentration of
those ions outside and inside the cell, respectively; and ψ
is a generalized dimensionless membrane potential. The
latter can be presented in the form

ψ = ϕ− σ∆p, (8)

where ϕ = F
RT (ϕe − ϕi) is the dimensionless membrane

potential, ∆p the pressure difference between the
internal and external media, z the valency of this kind
of ions, and σ the kinetic factor which is responsible for
barodiffusion effects.

Under non-isobaric conditions, the fluxes of
potassium ions IK are described by the following
expression:

I = (ϕ− σK∆p)PK
[K]e exp(ϕ) exp(−σK∆p)− [K]i

1− exp(ϕ) exp(−σK∆p)
. (9)

Here, σK is the coefficient in the barodiffusion term
for K+-ions, which characterizes the diffusion-induced
distribution for those ions taking the pressure gradient
into account. This expression can be simplified:

I = (ϕ− σ∆p)P
Ce exp(ϕ exp(−σ∆p)− Ci

1− exp(ϕ) exp(−σ∆p)
, (10)

I ≈ P (ϕ− σ∆p)
Cee

ϕ − Ci

1− eϕ
− ϕP

Cee
ϕ

1− eϕ
−

−ϕPeϕ Cee
ϕ − Ci

(1− eϕ)2
σ∆p. (11)

The terms of the second order of smallness, i.e.
proportional to (σ∆p)2, are neglected. The first term
in Eq. (11) describes the flux of ions of a definite kind
if the gradient of pressure is not taken into account. We
use a notation I0 for it. Then, expression (11) reads

I = I0 − ϕP

1− eϕ
σ∆p

{
Ce

(
1
ϕ

+ 1 +
eϕ

1− eϕ

)
eϕ−
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−Ci

(
1
ϕ

+
eϕ

1− eϕ

)}
. (12)

We introduce a notation

f(ϕ) =
1
ϕ

+
eϕ

1− eϕ
. (13)

Now, formula (12) looks like

I =
ϕP

1− eϕ
{Ce(1− (f + 1)σ∆p)eϕ − Ci(1− f∆p)}.

(14)

Let

FK
1 = 1− (f + 1)σK∆p, FK

2 = 1− fσK∆p, (15)

In this case, taking formula (9) into account, we obtain

IK = ϕPK
[K]e exp ϕFK

1 − [K]iFK
2

1− exp ϕ
. (16)

for the potassium ion flux. Analogously, for the sodium
and chlorine ion fluxes, we have

INa = ϕPNa
[Na]e exp ϕFNa

1 − [Na]iF
Na
2

1− exp ϕ
, (17)

ICl = −ϕPCl
[Cl]e exp ϕFCl

1 − [Cl]iF
Cl
2

1− exp ϕ
, (18)

where

FNa
1 = 1− (f + 1)σNa∆p, FNa

2 = 1− fσNa∆p,
(19)

FCl
1 = 1 + (f + 1)σCl∆p, FCl

2 = 1 + fσCl∆p. (20)

Substituting expressions (16)–(18) into the stationary
condition (9), we obtain

(PK[K]eFK
1 + PNa[Na]eFNa

1 + PCl[Cl]iFCl
1 )eϕ =

= PK[K]iFK
2 + PNa[Na]iFNa

2 + PCl[Cl]eFCl
2 . (21)

Whence, for the dimensionless membrane potential ϕ,
we have the expression

ϕ = ln
PK[K]iFK

2 + PNa[Na]iFNa
2 + PCl[Cl]eFCl

2

PK[K]eFK
1 + PNa[Na]eFNa

1 + PCl[Cl]iFCl
1

. (22)

Let us use the obtained formula (22) for estimating
the value of the rest potential, taking only the flux of
potassium ions into consideration. In the numerator and
the denominator of the fraction under the logarithm, we
preserve only terms which contain PK. In this case,

ϕ = ln
[K]iFK

2

[K]eFK
1

. (23)

Now, consider the relations

FK
2

FK
1

=
1− fσK∆p

1− (f + 1)σK∆p
≈

≈ (1− fσK∆p)(1 + (f + 1)σK∆p), (24)

FK
2

FK
1

= 1− (f + 1)σK∆p− fσK∆p + 0(σK∆p)2. (25)

Therefore, we obtain the formula

ϕ = ln
{

[K]i
[K]e

(1 + σK∆p)
}

= ln
[K]i
[K]e

+ ln(1 + σK∆p) ≈

≈ ln
[K]i
[K]e

+ σK∆p. (26)

While deriving this expression, we used the approximate
equality ln(1 + x) ≈ x for x = σK∆p ¿ 1. As a result,
the rest potential is estimated as

φ =
RT

F

{
ln

[K]i
[K]e

+ σK∆p

}
. (27)

Thus, taking only potassium ions into account, we
passed from formula (22) to the formula for Nernst
concentration potential which makes allowance for
barodiffusion effects. A similar formula was obtained
in work [4], where the thermodiffusion effect was
considered.

It should be noted that the concentrations of ions
in formulas (22) and (27) are determined taking into
account their redistributions owing to barodiffusion
processes.

Now we intend to derive an expression for the
stationary potential under non-isobaric conditions with
regard for all kinds of ions. To make mathematical
calculations convenient, we introduce the following
notations:

α = PK[K]i + PNa[Na]i + PCl[Cl]e, (28)
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β = PK[K]e + PNa[Na]e + PCl[Cl]i, (29)

χ = PK[K]iσK + PNa[Na]iσNa − PCl[Cl]eσCl, (30)

δ = PK[K]eσK + PNa[Na]eσNa − PCl[Cl]iσCl. (31)

With these notations in view, formula (22) reads

ϕ = ln
α− χf∆p

β − δ(f + 1)∆p
. (32)

Then

ϕ = ln
α− χf∆p

β(1− δ
β (f + 1)∆p)

≈

≈ ln

{
(
α

β
− χ

β
f∆p)(1 +

δ

β
(f + 1)∆p)

}
, (33)

ϕ ≈ ln

{
α

β
+

α

β

δ

β
∆p + [

α

β

δ

β
− χ

β
]f∆p

}
. (34)

Expression (34) is a transcendental equation for
the parameter ϕ. It can be solved by the iteration
method. In the zero-order approximation, i.e. at ∆p = 0,
we have ϕ(0) = ln(α/β). Substituting this expression
into the right-hand side of Eq. (34), we find the first
approximation

ϕ(1) = ln

{
α

β
+

(
α

β

δ

β
+

[
α

β

δ

β
− χ

β

]
f0

)
∆p

}
, (35)

where

f0 = f(ϕ(0)) =
1

ln α
β

+
α

β − α
. (36)

Let us rewrite formula (35) in another form, namely,

ϕ(1) = ln

{
α

β
(1 +

[
δ

β
+

δ

β
f0 − χ

α
f0

]
∆p)

}
, (37)

From this expression, we obtain, for small pressure
gradients, that

ϕ(1) = ln
α

β
+

(
δ

β
+

δ

β
f0 − χ

α
f0

)
∆p. (38)

At last, the general formula for the stationary membrane
potential in the presence of pressure gradient is as
follows:

ϕ̃stat =
RT

F

(
ln

α

β
+

(
δ

β
+

δ

β
f0 − χ

α
f0

)
∆p

)
. (39)

Thus, we obtained generalized analytical expressions
for ionic fluxes through membrane structures, which
allow the application limits of the theory of ionic
transport developed by now to be extended onto the
case with pressure gradients.

3. Results and Conclusions

Thus, the obtained expression (39) contains the
analytical dependence of the stationary membrane
potential under non-isobaric conditions on such major
factors as 1) the stationary ion concentrations on
both membrane sides, 2) the coefficients of membrane
permeability for various kinds of ions, 3) the parameters
of barodiffusion distribution (σK, σNa, and σCl), and
4) the pressure difference across the membrane. It should
be noted that, if ∆p = 0, formula (39) transforms into
formula (2) for the stationary membrane potential under
isobaric conditions.

It should be noted that the coefficient σK for
the barodiffusion term in formula (27) was estimated
on the basis of the following considerations. In work
[4], electrodiffusion processes were studied taking the
influence of the temperature gradient into account. The
multiplier before the temperature difference in the linear
law for the diffusion flux was the Soret coefficient
σT for a definite kind of ions; its dimension is an
inverted temperature unit. According to the available
experimental data, the numerical value to this coefficient
is σT ≈ 10−3 K−1. Therefore, it was natural to consider
the coefficient σT to be equal to the inverse critical
temperature of water, which – by its consistence –
corresponds to liquids that the biological membranes are
made up of [4]. Such a suggestion is also supported by the
fact that the cell membrane, besides structured sections
of the bilayer, also contains boundary sections with a
high water content, as well as a plenty of pores filled
with water [5]. Therefore, in this work, by analogy with
work [4], an assumption was made that the coefficient
σ in formula (27) is approximately equal to the inverse
critical pressure of water:

σ ≈ 1
pc

=
1

22 · 106 Pa
= 4, 6 · 10−8Pa−1. (40)
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Fig. 1. Dependence of the rest membrane potential on the pressure
difference across the membrane

Fig. 2. Dependence of the electric membrane potential on the
ultrasonic wave frequency

Using the theoretical results obtained in this work,
the dependences of membrane potential on the pressure
gradient for the giant axon of a squid at the temperature
of the endocellular medium T = 293 K were plotted. In
Fig. 1, the dependence of the rest membrane potential on
the pressure difference ∆p = pe−pi across the membrane
for K+-ions, calculated using Eq. (27), is depicted.
We also plotted the dependence of the potential on
the ultrasonic wave frequency (Fig. 2), making use of
formula (3).

Now, let us analyze the characteristic features of
the dependence of membrane potential on the pressure
gradient in more details. As one can see from formula
(39), the term ln(α/β), besides a usual difference
between ion concentrations across the membrane, also
takes barodiffusion into account in the form of the
exponential dependence on the σj∆p products. The
expression before the quantity ∆p in the second term
also contains the exponential dependence on the σj∆p
product. For σj∆p ¿ 1, the exponents can be
expanded in series up to the linear terms, so that
the obtained dependence of the membrane potential
on ∆p can be described (Fig. 1). Thus, the analysis
of the theory demonstrates that the results obtained
give the important estimations (both quantitative and
qualitative) to the barodiffusion processes in membrane
structures and their influence on biological potentials.
In particular, with increase in the pressure outside the
membrane, the rest potential grows, i.e. the endocellular
medium becomes more electronegative with respect to
the external solution.

The numerical calculations have shown that the
dependences of the membrane potential on the pressure

difference and the ultrasonic wave frequency are almost
linear in the intervals ∆p = (0 ÷ 15) × 107 Pa/cm and
ν = (0.5÷ 7)× 106 Hz, with the variation of membrane
potential in the indicated intervals reaching almost 15%
of its value under isobaric conditions.
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ЕЛЕКТРИЧНI МЕМБРАННI ПОТЕНЦIАЛИ СПОКОЮ
З УРАХУВАННЯМ БАРОДИФУЗIЙНИХ ЯВИЩ

Г.В. Шлiхта, О.В. Чалий

Р е з ю м е

Вивчено вплив градiєнтiв тиску на стацiонарний мембранний
потенцiал, який є найбiльш реальним електричним потенцiа-
лом спокою. Дослiджено i проаналiзовано залежнiсть елек-
тричного мембранного потенцiалу вiд перепаду тиску з враху-
ванням змiни частоти ультразвукового випромiнювання для
неiзобаричних умов. Отримано чисельнi оцiнки впливу баро-
дифузiйних ефектiв на значення електричних мембранних по-
тенцiалiв спокою.
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