GENERAL QUESTIONS OF THERMODYNAMICS, STATISTICAL
PHYSICS, AND QUANTUM MECHANICS

NEW MODELS OF A QUANTUM OSCILLATOR

A.U. KLIMYK

UDC 539.12, 517.984

©2007

Bogolyubov Institute for Theoretical Physics, Nat. Acad. Sci. of Ukraine
(14b, Metrolohichna Str., Kyiv 03680, Ukraine; e-mail: aklimyk@bitp.kiev.ua )

We construct new models of a quantum oscillator. As in the case of
the Macfarlane-Biedenharn g-oscillator, these models are related
to ¢g-Hermite polynomials. The position and momentum operators
in our models are appropriate representation operators for the
quantum algebra sug(1,1). As in the case of the standard harmonic
oscillator in quantum mechanics, the position and momentum
operators have continuous simple spectra. These spectra cover
a finite interval on the real line which depends on a value of gq.
Eigenfunctions of these operators are explicitly found. Contrary
to the case of the Macfarlane-Biedenharn g-oscillator, the positi-
on and momentum operators @ and P of our models satisfy the
quantum mechanics relations [H, Q] = —iP and [H, P] = iQ.

1. Introduction

There exist many algebraic constructions which can be
used for building up different models of quantum osci-
llators. They are constructed on a base of different
associative algebras or their deformations. For most of
them, it is difficult to construct a complete theory of
such an oscillator: the spectra of observables, the explicit
form of the eigenfunctions of observables, a description
of time evolution, etc. Only for some of such models, it is
possible to develop a corresponding theory. In [1] and [2],
the so-called g-oscillator, which is a g-deformed analog
of the standard linear harmonic oscillator in quantum
mechanics, was constructed. A theory of this oscillator
was elaborated in detail. There are physical problems
for which this g-oscillator is more adequate than the
quantum harmonic oscillator does (see, for example, [3]
and [4]). Unlike the quantum field theory constructed on
the base of the standard quantum harmonic oscillator,
the quantum field theory built on the base of the ¢-
oscillator is free of some divergences. This g-oscillator
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has many useful properties which are not inherent in the
common quantum harmonic oscillator (see, for example,
[5] and [6]).

However, in the case of the Biedenharn—Macfarlane
g-oscillator, the basic commutation relations

[H7Q]:_ip’ [H,P]:iQ, (1)

are broken. That is why the g-oscillator is not so attracti-
ve for many physicists.

For the quantum oscillators constructed in this
paper, relations (1) are satisfied. We build our oscillators
on the base of irreducible representations of the quantum
algebra su,(1,1) with lowest weights. Our models of
the quantum oscillator are models obeying the dynami-
cs of the harmonic oscillator, with the position and
momentum operators and Hamiltonian being functions
of elements of the quantum algebra su,(1,1). The aim
of this paper is to develop the theory of these osci-
llators by using the theory of irreducible representations
of sug(1,1).

In order to derive the properties of oscillators under
discussion, we essentially use the theory of speci-
al functions and g¢-orthogonal polynomials. Namely,
using the interrelation between self-adjoint operators
representable by Jacobi matrices (in our case, they are
the position and momentum operators) and orthogonal
polynomials, we find spectra of the position and
momentum operators and derive an explicit form of their
eigenfunctions. We derive an explicit form of the evoluti-
on operator in the coordinate space. It is given as an
integral operator. A kernel of this operator is given expli-
citly.

We employ the standard notations of the theory
of basic hypergeometric functions and g¢-orthogonal
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polynomials (see, for example, [7]). We will use g¢-
numbers defined as

I
qt? —q7V/

for any complex number a. The same notation [A], is
used for operators.

Everywhere below, it is assumed that ¢ is a fixed real
number such that 0 < g < 1. Each fixed value of ¢ gives
a model of the quantum oscillator.

We believe that our oscillators can be useful for the
application to quantum systems in the non-commutative
space-time (for which the “motion group” is the quantum
group SU,(2)) and to quantum systems with the
quantum algebra suy(1,1) describing their dynamical
symmetry. These oscillators can be considered (along
with the well-known g-oscillator) as new non-trivial
deformations of the standard quantum harmonic osci-
llator.

2. Representations of sug(1,1) with the
Highest Weight

The quantum algebra suy(1,1) is defined as the associ-
ative algebra generated by the elements J,., J_, J3 sati-
sfying the commutation relations

g’ —q

[J_,J_F} =5 = [2]3]q

[J3,Jx] = £J4, pIVE =D

(Observe that here we have replaced J_ by —J_ in the
usual definition of the algebra sl;(2); see [8], Chapter 3.)

Introducing the elements J; = 1(Jy + J_) and
Jo = 5(J4 — J_), we characterize the algebra su,(1,1)
by the relations

. . i
[Jg,Jﬂ = IJQ, [JQ,J3] = 1J1, [J],JQ] = —5[2J3]q. (2)

The Casimir element of the algebra sug(1,1) is given
by the formula

Cqi=1[Js—1/2]2+ $[2J3]g — JE — J5 —1/4.

We are interested in irreducible representations of
sug(1,1) with the lowest weights. These irreducible
representations will be denoted by T;, where [ is a lowest
weight which may be any complex number (see, e.g., [9]).

In order to realize these representations, we consider
the space P of all polynomials in one variable y. We fix
[ and introduce the monomials

21, \1/2

=l () = g, o= gm2n/a g
(@)
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n:0a152737"',

where (a;q), = (1 —a)(1 —aq)...(1 —ag"'). They
form a basis in P. The representation 7} is then realized
by the operators J; = y%—&—l, Jy = y* [J3 £1],. In this
explicit realization, one has Jsel, = (I 4+n) el and

Ty e =/[20+ njqln +1]q 6ln+1a

l

J_ eﬁl =1/[2l +n —1]4[n]qe,_1,

The basis functions €/ (y) are eigenfunctions of the
operators Js and Cy: Cgel, = (1 —1/2)2 — 7) el,.

We may introduce a scalar product into P, consi-
dering that the monomials € (y), n = 0,1,2,..., are
orthonormal, (¢!, €.} = &,,,,. Closing the space P with

respect to this scalar product, we obtain a Hilbert space
which will be denoted as H;.

3. Description of the Models

Our models of the quantum oscillator are based on a fi-
xed irreducible representations of the algebra su,(1,1)
with a highest weight. In order to describe the models,
we fix a highest weight

| im + 1

-~ 2n 2

where h is determined by ¢: ¢ = exp h, and consider the
representation 7; from the previous section. In this case,

q' = ig*/? and the basis elements (3) are of the form
o 1/2

= (a2 LD
(4 9)n

We define the Hamiltonian H and the position and
momentum operators () and P in terms of the generators
J1, J2, J3 of this representation as

Q _ qJ3/4J2qJ3/4, P = qJ3/4J1qJ3/4-
H=Jy—1+1/2, (4)

Then, due to (2), for @Q,P, and H, we have the
commutation relations

[H7Q]:_1P7 [HaP]:lQa (5)
Q. Pl=3¢"/2(q2 J, J_—q2 J_J;)q”*/>=i F,(Cy, J3)

= i{$e?"’s coth & —e"/3[(Cy+1) sinh 241 csch 2]}, (6)
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where ¢ := exp h (the expression for [Q, P] is calculated
in the same way as in [10]). The operator F,(Cy,J3)
defined in (6) commutes with J3 and therefore is also di-
agonal in the basis (3); in the irreducible representation
T, l = (1+ir/h)/2, we have

2mh

emh COSh(]+ Yh —
2 sinh % m

h
cosh 3

J —
Fyel, =

The basis e!,, n = 0,1,2,---, of the Hilbert space H,
consists of eigenfunctions of the Hamiltonian H:
Hel =(n+1/2)é,, n=0,1,2,---,
that is, the spectrum of H coincides with the spectrum
of the Hamiltonian of the standard quantum harmonic
oscillator. Our models are similar to but do not coincide
with models in [10] and [11]. Moreover, our models are
more simple.

The time evolution of our system is the harmonic

motion with
wm (QN _irg_ (Q(T)\ [ cosT sinT Q
€ p)° T\ P(r) ) \—sinT cosT P

This is a group U(1) of inner automorphisms of the
algebra su,(1,1) and of rotations of the phase-space
surface. We have

exp (irH) = e Y27 exp (ir.J3) . (7)
Explicit form of the time evolution in the coordinate
space will be derived below.

4. Spectrum and Eigenfunctions of the
Momentum Operator

Since P = ¢”’3/%J,¢73/%, the direct calculation shows
that the momentum operator P in the basis of the Hami-
ltonian eigenfunctions el,, n = 0,1,2,---, has the form

1
P@ln:2<

Let us find the spectrum and eigenfunctions of this
operator. If ¢, (y) is an eigenfunction of P, corresponding
to the eigenvalue p, P, (y) = p1,(y), then

9= hap) ), (®)
n=0

where h,,(p) are coefficients depending on p.

2(n+1)

DR G
—1/2_g1/2 En+1 qg1/2— 1/26n—1 ’
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In order to find an explicit form of eigenfunctions
¥p(y), we substitute expression (8) for ,(y) into the
equation P, (y) = p¢,(y) and obtain the relation

5 )<¢T Vi >:
2 1/2”1

1/2 1/2 n+1+ —1/2 _
n=0

=p Z hn(p) el
n=0

Equating the coefficients of a fixed basis element €/,, we
obtain a three-term recurrence relation for the coeffici-
ents hy,(p):

2p hy(p) =
1— 2(n+1) /1 — g2n
= ﬁ hoy1(p) + g hn—1(p). 9)
qg /2 —ql/

q1/2 — q1/2

It is clear from (9) that the coefficients h,(p) are uni-
quely determined up to a common constant factor. Since
h_1(p) = 0, we see, by setting ho(p) = 1, that hy,(p),
n =1,2,---, are evaluated uniquely. Moreover, relation
(9) shows that h,,(p) are polynomials in p of degree n.

To solve the recurrence relation (9), we make the
substitution

ha(p) = (6% 4%)5 /210, (p).
Then (9) turns into the equality

2(g7% — q?) phiy(p) = Byya () + (1= ") 1y (p). (10)
Comparing this relation with the recurrence relation
2z Hpm (2lq) = + (L =q")Hm-1(z[q)

(see formula (3.26.3) in [12]) for the continuous g¢-
Hermite polynomials

Hp(zlq) = €™ 3¢0(q
we find that

ho(p) = Ho((a7 2 = ¢"/*)plg?),

where cos@ = (g% — ¢*/?)p and 200 (¢~™,...) is the
basic hypergeometric polynomial. Consequently, for the
coefficients in (8), we obtain that

ha(p) = (6% 6%, P Ho((g7H? — ¢ (11)

Thus, the eigenfunctions of the momentum operator
P are

Hypni1(2]q)

- . gem o200 —
m’ 07 Q7me ' )a z = COS&,

Y2)plg?).

o0

D (@%¢%)5 P Hocos 0l¢%) e, (y)+

n=0

Yp(y) =
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Ha(p(g7V% = ¢"/%)|¢?) y™, (12)

where expression (3) for the basis elements has been
taken into account.

The above expression (12) for the eigenfunctions
¥p(y) can be summed up by using the method of deri-
vation of the generating function (23) [13]. Making this
derivation, we conclude that the eigenfunctions of the
momentum operator are of the form

((—)"26"2y; @)oo (— (—19)?¥; @) o
(i™1/2€y; @)oo (i71/2e71%y; ¢) o

Uply) = ; (13)

where, as before, p = cos0/(q~/? — ¢*/?).

The spectrum of the momentum operator P can
be found by means of formula (12). Indeed, it is easy
to verify that the operator P, coinciding with the
operator ¢73/%.J,q”#/* of the representation T} with a fi-
xed value of [, is bounded and self-adjoint. Moreover, P
is representable in the basis {el,} by a Jacobi matrix,
that is, by a tridiagonal matrix of the form

bo ap 0 0 0
ao b1 aq 0 0 tee

M = 0 aq bg as 0 s ;
0 0 a9 b3 as s

aﬁéo.

There exists a theory (see [14], Chapter VII; a short
description of this theory can be found in [6]) which
allows to connect the spectra of operators of such a
type with the orthogonality measures for appropriate
orthogonal polynomials. To employ this theory, we note
that the eigenfunctions ¢, (y) are expressed in terms of
the basis elements e!, by formula (8) with the polynomi-
al coefficients (11). According to the results of Chapter
VIIin [14], these polynomials are orthogonal with respect
to some measure du(p). (This measure is unique, up to
a constant factor, since the operator P is self-adjoint;
see [6].) A set (a subset of R), on which the polynomi-
als are orthogonal, coincides with the spectrum of the
operator P and du(p) determines a spectral measure of
this operator. Moreover, the spectrum of P is simple.

Thus, to find the spectrum of the momentum
operator P, we recall that the continuous g-Hermite
polynomials H,(z) = H,(z|q) are orthogonal and the
orthogonality relation is of the form

T

QL H,,(cos ) H,(cos @) w(cos ) df = (¢;q)n0mn,
™

—T

908

where w(cosf) = (q;q)oo|(62i‘9;q)oo|2 (see formula

(3.26.2) in [12]). This orthogonality relation can be wri-
tten for polynomials in relation (11) as

b
% / Ho(p/blq”) Hn(p/blq?)(p) dp = cnbmn, (14)
—b

where ¢, = (¢%¢*)n, b = (q—1/2 _ q1/2)_1 and
W(p) = (6% ¢%) oo |(e2i9; (12)00!2 /b sin . This means that
the spectrum of P coincides with the finite interval,

Spec P = [—b,b], b= (qg"Y?—¢"/?)7L

Thus, the spectrum is continuous and simple. Continui-
ty of the spectrum means that the eigenfunctions ¢, (y)
are not elements of the Hilbert space H;. These functi-
ons of y for p € [—b,b] form a continuous basis in H;
(similar to the basis {¢'P*} in the Hilbert space L?(R) of
square-integrable functions on R).

Note that the spectrum of P tends to the infini-
te interval (—oo,00) when ¢ — 1. When ¢ — 0, the
spectrum tends to the zero point.

Eigenfunctions of P are determined up to constant
factors. In order to normalize the -eigenfunctions
¥p(y), we take into account the orthogonality relation
(14) for the continuous g-Hermite polynomials. Since
these polynomials are associated with the determinate
moment problem (see, for example, [6] for the description
of this correspondence), the set P,(p/b), n =0,1,2,- -,
is complete in the Hilbert space L?([—b,b], @) with the
scalar product

b

(o12) = 5= [ 510V BT () d

—b

(15)

where b and w(p) are the same as in (14). This means
that

oo

> (2;2 w(p) Hy (p/blq*) Hn (p'/0lq%) = 6(p — D).
= (a*¢%)n

Then, due to (12), we get

(Wp(y), vy (y) = ————
Therefore, the normalized functions are

J)p(y) = w(p)l/%p(y),

that is, (1, (y), ¥y (y)) = d(p — p').

p S [_b7 b]a
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5. Spectrum and Eigenfunctions of the
Position Operator

The position operator @ in the basis el,, n = 0,1,2,- -,
has the form

L l 1_q2(n+1) . B 1_q2n .
€n = 2 q—1/2_q1/2 Cnt1 q—1/2_q1/2 €n—1) -

By changing the basis {el} to the basis {é.}, where
él. =i"mel | we see that the position operator @ is given
in the latter basis by the same formula as the momentum
operator is given in the former basis {e!,} (see Section
4). This means that the spectrum of the operator @ coi-

ncides with the spectrum of P, that is,
Spec Q = [—b,b], b= (¢ Y2 —q¢"/HL.

Eigenfunctions of the position operator can be found (by
using the basis {¢},}) in the same way as in the case of
the momentum operator. For this reason, we exhibit here
only the result.

If ¢.(y) is an eigenfunction of @, corresponding to
the eigenvalue x, Q¢,(y) = x¢,(y), then

62(y) = 3 hnl) € (1),
n=0

where, as before, el (y) are given by (3) and h,,(z) are

coefficients depending on the eigenvalues x.

Repeating the reasoning of the previous section, we
derive a three-term recurrence relation for the polynomi-
als h,(z) and conclude that

I (@) = 1" ha (@) = 17"(a% ¢%), P Ha(2/bla?),  (16)

where b = (¢~ /2 —¢'/?)~" and H,,(z|q) is the continuous
g-Hermite polynomial from Section 4. Thus, eigenfuncti-
ons of the position operator ) are of the form

buly) = 3 s o (cosblg?) € (y) =
o (@%¢%)n
0 ian/2 o
=y (q;q)an(x/blq )y". (17)

One can sum up expression (17) for the eigenfuncti-
ons ¢, (y) by the same method as in the case of functions
(13). Figenfunctions of the position operator Q are of the
form

((i9)"%y; @)oo (—(19)y; )0

(V) = iiTzeity g) o (/2o 0y )
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where x = b cosf with b= (¢~/2 — ¢'/2)~1.

FEigenfunctions of the operator @) are determined
up to constant factors. To normalize the eigenfuncti-
ons ¢,(y), we employ the orthogonality relation (14)
for continuous ¢g-Hermite polynomials. The set H,,(z/b),
n = 0,1,2,---, is complete in the Hilbert space
L2([=b,b],w(x)), b = (¢~ — ¢*/?)~", with the scalar
product

b

(of2) = o [ Fle) @) o) da

—b

where w is the same as in (14). Consequently, the
normalized functions are

QET(y) = UNJ(CL’)I/Zqﬁx(y),

that is, (¢s(y), a(y)) = d(a — 2').

T e [767 bL

6. Momentum Realization of the Oscillator

In Section 3, we have constructed a realization of the
oscillator on the space of functions of the supplementary
variable y. It is natural to look for its realization on the
space of functions of the coordinate x and on the space
of functions of the momentum p.

Let L2([=b,b],@), b = (¢~%? — ¢"/?)~1, be the
space of square-integrable functions f(p) (where p is the
momentum of the oscillator) with respect to the scalar
product (15). It is clearly seen from (14) that polynomi-
als (11) constitute an orthonormal basis in L?([—b, b], w).

First, we construct a one-to-one linear isometry €2
from the Hilbert space H;, considered in Section 2, onto
the Hilbert space L?([—b, b], @) given by the formula

Q: Hize(y) — f(p) = (e(y), ¥p(y))n, €L ([, 0], @),

where 1, (y) are eigenfunctions (13) of P. It follows from
(12) that

Hi 3 el (y) = (eh (1) YY), = hn(D),

that is,  maps the orthonormal basis {e! ()} of H;
onto the orthonormal basis {h,(p)} in L2([-b,b], ).
This means that € is, indeed, a one-to-one isometry.

The operator P acts on L?([—b,b],%) as the multi-
plication operator,

P f(p) =pf(p).

Indeed, according to formula (18), if Qe(y) = f(p) =
(e(y) ¥p(y))r,, then

Pe(y) — Pf(p) = (Pe(y), ¥p(y))n, =

(18)
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= (e(y), Pp(y))m, = (e(y) p¥n(y)) 1, = p f(P)-

We can find how P acts upon the basis elements
hn(p), n =0,1,2,..., of the Hilbert space L?([—b, ], 0).
According to the recurrence relation for polynomials
(11) (which follows from the recurrence relation for the
polynomials H,(z|q)), we have, for Ph,(p) = phn(p),
the expression

1 ( 1_q2(n+1) 1_q2n

Phy,= q-12—ql/2 h”+1+q71/2_q1/2 hnl) J

where h,, = h,(p).
The Hamiltonian H acts upon the polynomials h,(p)
in the Hilbert space L?([—b,b],w) as

H hy(p) = (n+1/2) hy(p).

Indeed, since He! (y) = (n+1/2)el,(y), we have, accordi-
ng to (18),

th(p) = <He£1(y)7¢p(y)>7'(l =
= (n+1/2)(e,(y), ¥p()) 2, = (n + 1/2) hn(p).

Let us find how the position operator () acts on the
Hilbert space L?([—b,b],w). To achieve this, we use the
results of [15].

The polynomials h,(p) from (11) can be expressed in
terms of the Askey—Wilson polynomials defined as

QaQ>a

where (a, ,7; @)n = (@ Q)n(0; ) (75 @)n (see [7], Secti-
on 7.5). We have

ha(p) = capn (3 (24271542, —¢"/2,0,0| g),

—1/2 : .
where ¢, = (¢%¢*)n /2 and z = €. For convenience,

we denote the polynomials h,(p) by h,[z], where z is the
same as in (19). It follows from (19) and from formula
(4.5) in [15] that the polynomials h,[z] satisfy the di-
fference equation

2(g " - 1)
1—qg!

Pn (%(z +27Ysa,0, c,d|q) =pulz] =

_ (ab,ac,ad; q),, <q", ¢ tabed, az, az" "
=———"u4¢3

an

ab, ac, ad

(19)

Dhy,lz] = hn[2],

where the difference operator D acts as

14qz

_ 1+qz 14gz~ 1 .
(T * i) (e
910

14 gzt ,
TR Tl

We also need an operator of the form
p_ 1 -1
whose action on the polynomials h,[z] is

D' hylz] = ¢ hal2].

This means that the operator D’ acts on the polynomials
hn|z] as ¢V, where N is the number operator,

N hp[z] = nhy,lz].

In order to find a difference form for the position
operator, we use the operator L which is defined as

(272 +9¢)

1 f(qZ) - (ZQ s q)

Lf(z) = 1 fla"2).

Z—Z Z—Z

This is operator (4.7) in [15] for our case. Then, from
formulas (4.11) and (4.12) in [15], we get

(L—¢" ™ (z4+27")) hy[2)=—dpn /12" DDy 4 [2], (20)

(L—|—q7"(z+z71)) hn[z]=dn v/ 1—=¢*"hp—1]7], (21)

where d,, = (1 4+ q)/¢"™. One may express the position
operator Q = ¢’#/*J,q”3/* in terms of the difference
operators (20) and (21) as

1/2

Q=izg

1) 2L+ (1=q)(z+2"")g V] ¢V,

which can be represented in the form

1/2

CThn

[2LgY + (1 —q)(z+271)]. (22)

Thus, formula (22) gives us the difference form of the
position operator.
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7. Coordinate Realization of the Oscillator

Let iQ([—b,b],iIJ), b = (¢7'/? — ¢"/?)~1, be the space
of square-integrable functions f(z) (where z is the
coordinate of the oscillator) with respect to the same
scalar product as in (15). It follows from (14) that the
polynomials iLn(QT) from (16) constitute an orthonormal
basis in L?([—b, b], ).

We construct a one-to-one linear isometry Q from
the Hilbert space H;, considered in Section 2, onto the
Hilbert space L2([—b,b],w) given by the formula

Q: Hizely) — f(x) = (e(y): ¢u(y))r, €L ([~b, 1], D),

where ¢, (y) are eigenfunctions (17) of Q. It is evident
from (17) that

Hi 3 el (y) = (€ (1), 6o (¥)) 1, = (@),

that is, Q maps the orthonormal basis {€,(y)} from H;
onto the orthonormal basis {hy(z)} in L2([—b,b], ).
This means that is, indeed, a one-to-one isometry.

The operator Q acts on L?([—b,b], ) as the multi-
plication operator,

Qf(x) = f(x).

~ We can find how @ acts upon the basis elements
hn(x), n=0,1,2,--- in the Hilbert space iz([—b, b, ).
According to the recurrence relation for polynomials
(16), we have, for Qh,,(x) = zh,(x), the expression

1 1_q2(n+1) _ 2n

- 1—q
Qhn = 57 | g2 —gi v =

q_1/2_q1/2 hn—l )
where h,, = hy, (). Clearly, H hy,(z) = (n+ 1/2) hp(z).
One can also find a difference form for the
momentum operator P in the coordinate space by
repeating the reasoning of the previous section.

8. Evolution Operator in the Coordinate Space

According to (7), the time evolution operator exp (it H)
acts upon the basis elements e/, n = 0,1,2,---, of the
Hilbert space H; as

irH I —i(l— i1 l i l
€1TH€n —e i(l—1/2)r 61( +n)‘r6n _ 61(n+1/2)‘r el.
We wish to find how this operator acts in the coordinate
space, that is, on the Hilbert space L?([—b,b],w) from
Section 7. If the isometry (2 maps a function e(y) € H; to
a function f(x) € L2([—b,b],1@), then exp (itH)e(y) €
‘H; corresponds to the function

e f(x) = (€7 e(y), ¢u (1)), = (e(y), e T du(y))m,
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<6(y)v 651>Hz <€il, e_iTH(b:D (y)>HL =

M

0

3
I

<€(y), egn>7‘(z <eiTHeln’ x(y»?'tl =

M

3
Il
=

3

b
O;T_/b%(y),d;mf(y)m (B (y), €1 )3, da’

3
Il

T2 el o (y))r, =
b

1 / T AP / /
:T/f(x)K (z, 2" w(z") dx',
~b

™

where the kernel K7 (z,2') is given by

KT(xv x/) = Z<¢$' (y)v 65L>Hl <elna ¢x(y)>HleiT(n+1/2)'
n=0

Taking into account the expression for h,(z) =
(€l ¢ (y)), With z = b cosf, we obtain

KT(x,x') _ eiT/Q Zeinr qfn (*Q;Q)n ™

= (¢ @)n
X302(q7",q" 2", ¢ 2e710; —q,0;q,q)x
Xaa(q™", ¢ g2 —q,059,q).

Here, the explicit expression for the continuous g¢-
Hermite polynomials from Section 4 was taken into
account.

We can derive an explicit expression for the kernel
K7 (z,2"). Due to formula (8.15) in [16], one calculates
that K7 (x,2’) is of the form

K7(z,2') = ™/?x

[V JUVIN U J .
(ae1«9 6”—, ae—le 617—, aeleelT’ ae—196177 _elT;q)oo

(00 eiT ei(0'=0)ciT ¢i(0=0) it e=i(0+07)eiT geir: q)

o0
. ) ) o o .
xsWr(el; ae? ae™ ael? ae™, —€lT; ¢, —€lT), (23)

where (d1,,dr;@)oc = (d1;@) 0 (dr; @)oo, a = 91/27
and gWy is the basic hypergeometric function (2.1.11)
from [7]. Expressing the function sW7 in (23) in terms
of the basic hypergeometric function g¢7 (see [7], Section
2.1) and using relation (II1.17) from Appendix III in [7],
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one can reduce gW7 in (23) to the basic hypergeometric
function 4¢3:

. . . . . . .
8W7(€1T; (1610,(16 197(1610,(16 19,—€1T; q, _el‘f'):

(qeiT, €i7—7 _(11/26—19’7 _q1/26i0';q)oo
- (ql/Qe*ie'eiT,q1/2ei9’eiT, —q, —1;q)00

ir ir . 1/2,i0" 1/2_—i6’
€ ,—€ 7q/€7q/e

X493 q,q

q1/26710617’ (]1/2619617'7 —q

As a result, we arrive at the following expression for the
kernel K7 (x,a'):

K7 (z,2') =

o U . . oy .o
. (aeu961‘r'7 ae*19elr’ 6”—, _617" a6719 ’ _q1/2619 7q)oo y
(600 eim i0=0) it ei(0—0)gir _e=i(0+0) it ¢)

. . n’ n!
€T, —el7, q1/2610 7q1/26—149

X €iT/2 4¢3 q,49 |, (24>

q1/26710617’ q1/2610617'7 —q

where a = ¢*/? and ¢ = (=1, —q; ¢). Thus, the evoluti-
on operator exp (itH) is a kernel operator given by the

formula

b

exp (irH) f(z) = / K7 (2,2)f (') d(a") e,

—b

where the kernel K7 (x,z') is given by (24). Since
eTH i H — oi(r+7)H | thig kernel satisfies the relation

b
1

o / K™ (z,2")K7 (2, 2" &(z') da’ = K™+ (2, 2").

—b
Observe that this relation leads to the corresponding
integral relation for the basic hypergeometric function
4¢3 from relation (24).

Formula (24) gives a possibility to construct a transi-
tion from the coordinate space to the momentum space.
Such a transition is fulfilled by an integral operator. The
kernel of such an operator is a particular case of kernel
(24) (see [10] for details).

9. Concluding Remarks

We have constructed new models of the quantum
oscillator which are related to continuous g-Hermite
polynomials (that is, the models can be realized on the
bases of the coordinate and momentum Hilbert spaces
expressed in terms of these g-orthogonal polynomials).
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Remark that the Macfarlane-Biedenharn g¢-oscillator
is also related to these g-Hermite polynomials. This
means that our models and the Macfarlane-Biedenharn
g-oscillator in real are g-deformations of the standard
harmonic quantum oscillator. A characteristic peculiari-
ty of our models is that the spectrum of the position
operator covers a finite interval of the real line. Note
that there exist the systems in quantum physics with
this property.

Our models may be useful for the description of
quantum systems in a non-commutative space-time (for
which a “motion group” is one of the quantum groups
SU,(2) and SLy(2,R)) and of quantum systems with
the quantum algebra su,(1,1) describing their dynamical
symmetry. Principles of these applications are the same
as in the case of the Biedenharn—Macfarlane g-oscillator.

This research was partially supported by Grant
14.01/016 of the State Foundation of Fundamental
Research of Ukraine.
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NEW MODELS OF A QUANTUM OSCILLATOR

HOBI MOJIEJII KBAHTOBOTI'O OCILIMJIAATOPA

A. Y. Knimur

PeszomMme

TToGynoBaro HOBI Mo/l KBAHTOBOrO OCHMJATOPa. K 1 y BUma-

Ky g-ocumnsitopa Binenrapua—Maxkdapiteitna, 1ii mozesi 3B sa3ani
3 g-MHOrouweHamu Epwmita. OmnepaTopu MooXKeHHsT Ta IMITYJIbCy B

ISSN 0503-1265. Ukr. J. Phys. 2007. V. 52, N 9

OUX MOZEJSIX € IiIXOASINUME OIlepaTOPaMU IPEICTaBJIEHD KBaH-
ToBOI arebpu sug (1, 1). Sk i B craHIapTHOMY KBaHTOBOMY IapMO-
HiYHOMY OCIIUJIATOPI, OIIepPaTOPH IOJIOYKEHHH Ta IMIIyJIbCy MalOThb
HernepepBHi npocTi criekTpu. Lli cnekTpu HOKpuBarOTh CKIHYEHHUNR
iHTepBaJI AiificHOI OCi, 10 3aeXXUTh BiJ 3HadYeHHs ¢. Biacui dyH-
KIil 1ux omepaTopiB 3HaiijieHi y siBHOMY Burisani. Ha nporusa-
ry BUNaJKy g-ociuisitopa bBimenrapua—Maxkdapieiina oneparopu
[OJIOXKEHHST Ta IMIYyJabCcy @ i P B IUX MOJENSX 3aJI0BOJILHSIIOTH
KBaHTOBO-MexaHiuHi cuiBBinnomenus [H, Q] = —iP i [H, P] =iQ.
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