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We construct new models of a quantum oscillator. As in the case of
the Macfarlane–Biedenharn q-oscillator, these models are related
to q-Hermite polynomials. The position and momentum operators
in our models are appropriate representation operators for the
quantum algebra suq(1, 1). As in the case of the standard harmonic
oscillator in quantum mechanics, the position and momentum
operators have continuous simple spectra. These spectra cover
a finite interval on the real line which depends on a value of q.
Eigenfunctions of these operators are explicitly found. Contrary
to the case of the Macfarlane–Biedenharn q-oscillator, the positi-
on and momentum operators Q and P of our models satisfy the
quantum mechanics relations [H, Q] = −iP and [H, P ] = iQ.

1. Introduction

There exist many algebraic constructions which can be
used for building up different models of quantum osci-
llators. They are constructed on a base of different
associative algebras or their deformations. For most of
them, it is difficult to construct a complete theory of
such an oscillator: the spectra of observables, the explicit
form of the eigenfunctions of observables, a description
of time evolution, etc. Only for some of such models, it is
possible to develop a corresponding theory. In [1] and [2],
the so-called q-oscillator, which is a q-deformed analog
of the standard linear harmonic oscillator in quantum
mechanics, was constructed. A theory of this oscillator
was elaborated in detail. There are physical problems
for which this q-oscillator is more adequate than the
quantum harmonic oscillator does (see, for example, [3]
and [4]). Unlike the quantum field theory constructed on
the base of the standard quantum harmonic oscillator,
the quantum field theory built on the base of the q-
oscillator is free of some divergences. This q-oscillator

has many useful properties which are not inherent in the
common quantum harmonic oscillator (see, for example,
[5] and [6]).

However, in the case of the Biedenharn–Macfarlane
q-oscillator, the basic commutation relations

[H, Q] = −iP , [H, P ] = iQ , (1)

are broken. That is why the q-oscillator is not so attracti-
ve for many physicists.

For the quantum oscillators constructed in this
paper, relations (1) are satisfied. We build our oscillators
on the base of irreducible representations of the quantum
algebra suq(1, 1) with lowest weights. Our models of
the quantum oscillator are models obeying the dynami-
cs of the harmonic oscillator, with the position and
momentum operators and Hamiltonian being functions
of elements of the quantum algebra suq(1, 1). The aim
of this paper is to develop the theory of these osci-
llators by using the theory of irreducible representations
of suq(1, 1).

In order to derive the properties of oscillators under
discussion, we essentially use the theory of speci-
al functions and q-orthogonal polynomials. Namely,
using the interrelation between self-adjoint operators
representable by Jacobi matrices (in our case, they are
the position and momentum operators) and orthogonal
polynomials, we find spectra of the position and
momentum operators and derive an explicit form of their
eigenfunctions. We derive an explicit form of the evoluti-
on operator in the coordinate space. It is given as an
integral operator. A kernel of this operator is given expli-
citly.

We employ the standard notations of the theory
of basic hypergeometric functions and q-orthogonal



A.U. KLIMYK

polynomials (see, for example, [7]). We will use q-
numbers defined as

[a]q :=
qa/2 − q−a/2

q1/2 − q−1/2

for any complex number a. The same notation [A]q is
used for operators.

Everywhere below, it is assumed that q is a fixed real
number such that 0 < q < 1. Each fixed value of q gives
a model of the quantum oscillator.

We believe that our oscillators can be useful for the
application to quantum systems in the non-commutative
space-time (for which the “motion group” is the quantum
group SUq(2)) and to quantum systems with the
quantum algebra suq(1, 1) describing their dynamical
symmetry. These oscillators can be considered (along
with the well-known q-oscillator) as new non-trivial
deformations of the standard quantum harmonic osci-
llator.

2. Representations of suq(1, 1) with the
Highest Weight

The quantum algebra suq(1, 1) is defined as the associ-
ative algebra generated by the elements J+, J−, J3 sati-
sfying the commutation relations

[J3, J±] = ±J±, [J−, J+] =
qJ3 − q−J3

q1/2 − q−1/2
≡ [2J3]q.

(Observe that here we have replaced J− by −J− in the
usual definition of the algebra slq(2); see [8], Chapter 3.)

Introducing the elements J1 = 1
2 (J+ + J−) and

J2 = 1
2i (J+ − J−), we characterize the algebra suq(1, 1)

by the relations

[J3, J1] = iJ2, [J2, J3] = iJ1, [J1, J2] = − i
2
[2J3]q. (2)

The Casimir element of the algebra suq(1, 1) is given
by the formula

Cq := [J3 − 1/2]2q + 1
2 [ 2J3 ]q − J2

1 − J2
2 − 1/4.

We are interested in irreducible representations of
suq(1, 1) with the lowest weights. These irreducible
representations will be denoted by Tl, where l is a lowest
weight which may be any complex number (see, e.g., [9]).

In order to realize these representations, we consider
the space P of all polynomials in one variable y. We fix
l and introduce the monomials

el
n ≡ el

n(y) := cl
n yn, cl

n = q(1−2l)n/4 (q2l; q)1/2
n

(q; q)1/2
n

, (3)

n = 0, 1, 2, 3, · · · ,

where (a; q)n := (1 − a)(1 − aq) . . . (1 − aqn−1). They
form a basis in P. The representation Tl is then realized
by the operators J3 = y d

dy +l, J± = y±1 [J3 ± l]q. In this
explicit realization, one has J3 el

n = (l + n) el
n and

J+ el
n =

√
[2l + n]q[n + 1]q el

n+1,

J− el
n =

√
[2l + n− 1]q[n]q el

n−1,

The basis functions el
n(y) are eigenfunctions of the

operators J3 and Cq: Cq el
n =

(
[l − 1/2]2q − 1

4

)
el
n.

We may introduce a scalar product into P, consi-
dering that the monomials el

n(y), n = 0, 1, 2, . . . , are
orthonormal, 〈el

m, el
n〉 = δmn. Closing the space P with

respect to this scalar product, we obtain a Hilbert space
which will be denoted as Hl.

3. Description of the Models

Our models of the quantum oscillator are based on a fi-
xed irreducible representations of the algebra suq(1, 1)
with a highest weight. In order to describe the models,
we fix a highest weight

l =
iπ
2h

+
1
2
,

where h is determined by q: q = exp h, and consider the
representation Tl from the previous section. In this case,
ql = iq1/2 and the basis elements (3) are of the form

el
n = (−i)n/2 (−q; q)1/2

n

(q; q)1/2
n

yn.

We define the Hamiltonian H and the position and
momentum operators Q and P in terms of the generators
J1, J2, J3 of this representation as

Q = qJ3/4J2q
J3/4, P = qJ3/4J1q

J3/4.

H = J3 − l + 1/2, (4)

Then, due to (2), for Q,P , and H, we have the
commutation relations

[H, Q] = −iP , [H, P ] = i Q , (5)

[Q,P ]= i
2qJ3/2(q−

1
2 J+J−−q

1
2 J−J+)qJ3/2=i Fq(Cq, J3)

= i{ 1
2e2hJ3 coth h

2−ehJ3 [(Cq+ 1
4 ) sinh h

2 + 1
2 csch

h
2 ]}, (6)
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where q := exp h (the expression for [Q,P ] is calculated
in the same way as in [10]). The operator Fq(Cq, J3)
defined in (6) commutes with J3 and therefore is also di-
agonal in the basis (3); in the irreducible representation
Tl, l = (1 + iπ/h)/2, we have

Fq ej
m =

emh cosh(j+ 1
2 )h− e2mh cosh h

2

2 sinh h
2

ej
m.

The basis el
n, n = 0, 1, 2, · · ·, of the Hilbert space Hl

consists of eigenfunctions of the Hamiltonian H:

H el
n = (n + 1/2) el

n, n = 0, 1, 2, · · · ,

that is, the spectrum of H coincides with the spectrum
of the Hamiltonian of the standard quantum harmonic
oscillator. Our models are similar to but do not coincide
with models in [10] and [11]. Moreover, our models are
more simple.

The time evolution of our system is the harmonic
motion with

eiτH

(
Q
P

)
e− iτH=

(
Q(τ)
P (τ)

)
=

(
cos τ sin τ
− sin τ cos τ

)(
Q
P

)
.

This is a group U(1) of inner automorphisms of the
algebra suq(1, 1) and of rotations of the phase-space
surface. We have

exp (iτH) = e−i(l−1/2)τ exp (iτJ3) . (7)

Explicit form of the time evolution in the coordinate
space will be derived below.

4. Spectrum and Eigenfunctions of the
Momentum Operator

Since P = qJ3/4J1q
J3/4, the direct calculation shows

that the momentum operator P in the basis of the Hami-
ltonian eigenfunctions el

n, n = 0, 1, 2, · · ·, has the form

P el
n =

1
2

(
1−q2(n+1)

q−1/2−q1/2
el
n+1 +

1−q2n

q−1/2−q1/2
el
n−1

)
.

Let us find the spectrum and eigenfunctions of this
operator. If ψp(y) is an eigenfunction of P , corresponding
to the eigenvalue p, P ψp(y) = pψp(y), then

ψp(y) =
∞∑

n=0

hn(p) el
n(y), (8)

where hn(p) are coefficients depending on p.

In order to find an explicit form of eigenfunctions
ψp(y), we substitute expression (8) for ψp(y) into the
equation P ψp(y) = pψp(y) and obtain the relation

1
2

∞∑
n=0

hn(p)

(√
1−q2(n+1)

q−1/2 − q1/2
el
n+1+

√
1−q2n

q−1/2 − q1/2
el
n−1

)
=

= p

∞∑
n=0

hn(p) el
n.

Equating the coefficients of a fixed basis element el
n, we

obtain a three-term recurrence relation for the coeffici-
ents hn(p):

2p hn(p) =

=

√
1− q2(n+1)

q−1/2 − q1/2
hn+1(p) +

√
1− q2n

q−1/2 − q1/2
hn−1(p). (9)

It is clear from (9) that the coefficients hn(p) are uni-
quely determined up to a common constant factor. Since
h−1(p) = 0, we see, by setting h0(p) = 1, that hn(p),
n = 1, 2, · · ·, are evaluated uniquely. Moreover, relation
(9) shows that hn(p) are polynomials in p of degree n.

To solve the recurrence relation (9), we make the
substitution

hn(p) = (q2; q2)−1/2
n h′n(p).

Then (9) turns into the equality

2(q−
1
2 − q

1
2 ) p h′n(p) = h′n+1(p) + (1− q2n) h′n−1(p). (10)

Comparing this relation with the recurrence relation

2xHm(z|q) = Hm+1(z|q) + (1− qm)Hm−1(z|q)
(see formula (3.26.3) in [12]) for the continuous q-
Hermite polynomials

Hm(z|q) = einθ
2φ0(q−m, 0; q;m e−2iθ), z = cos θ,

we find that

h′n(p) = Hn((q−1/2 − q1/2)p|q2),

where cos θ = (q−1/2 − q1/2)p and 2φ0 ( q−m, ...) is the
basic hypergeometric polynomial. Consequently, for the
coefficients in (8), we obtain that

hn(p) = (q2; q2)−1/2
n Hn((q−1/2 − q1/2)p|q2). (11)

Thus, the eigenfunctions of the momentum operator
P are

ψp(y) =
∞∑

n=0

(q2; q2)−1/2
n Hn(cos θ|q2) el

n(y)+
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=
∞∑

n=0

i−n/2

(q; q)n
Hn(p(q−1/2 − q1/2)|q2) yn, (12)

where expression (3) for the basis elements has been
taken into account.

The above expression (12) for the eigenfunctions
ψp(y) can be summed up by using the method of deri-
vation of the generating function (23) [13]. Making this
derivation, we conclude that the eigenfunctions of the
momentum operator are of the form

ψp(y) =
((−i)1/2q1/2y; q)∞(−(−iq)1/2y; q)∞

(i−1/2eiθy; q)∞(i−1/2e−iθy; q)∞
, (13)

where, as before, p = cos θ/(q−1/2 − q1/2).
The spectrum of the momentum operator P can

be found by means of formula (12). Indeed, it is easy
to verify that the operator P , coinciding with the
operator qJ3/4J1q

J3/4 of the representation Tl with a fi-
xed value of l, is bounded and self-adjoint. Moreover, P
is representable in the basis {el

n} by a Jacobi matrix,
that is, by a tridiagonal matrix of the form

M =




b0 a0 0 0 0 · · ·
a0 b1 a1 0 0 · · ·
0 a1 b2 a2 0 · · ·
0 0 a2 b3 a3 · · ·
· · · · · · · · · · · · · · · · · ·


 , ai 6= 0.

There exists a theory (see [14], Chapter VII; a short
description of this theory can be found in [6]) which
allows to connect the spectra of operators of such a
type with the orthogonality measures for appropriate
orthogonal polynomials. To employ this theory, we note
that the eigenfunctions ψp(y) are expressed in terms of
the basis elements el

n by formula (8) with the polynomi-
al coefficients (11). According to the results of Chapter
VII in [14], these polynomials are orthogonal with respect
to some measure dµ(p). (This measure is unique, up to
a constant factor, since the operator P is self-adjoint;
see [6].) A set (a subset of R), on which the polynomi-
als are orthogonal, coincides with the spectrum of the
operator P and dµ(p) determines a spectral measure of
this operator. Moreover, the spectrum of P is simple.

Thus, to find the spectrum of the momentum
operator P , we recall that the continuous q-Hermite
polynomials Hn(z) ≡ Hn(z|q) are orthogonal and the
orthogonality relation is of the form

1
2π

π∫

−π

Hm(cos θ)Hn(cos θ) w(cos θ) dθ = (q; q)nδmn,

where w(cos θ) = (q; q)∞
∣∣(e2iθ; q)∞

∣∣2 (see formula
(3.26.2) in [12]). This orthogonality relation can be wri-
tten for polynomials in relation (11) as

1
2π

b∫

− b

Hm(p/b|q2) Hn(p/b|q2)w̃(p) dp = cnδmn, (14)

where cn = (q2; q2)n, b := (q−1/2 − q1/2)−1 and
w̃(p) = (q2; q2)∞

∣∣(e2iθ; q2)∞
∣∣2 /b sin θ. This means that

the spectrum of P coincides with the finite interval,

Spec P = [−b, b], b = (q−1/2 − q1/2)−1.

Thus, the spectrum is continuous and simple. Continui-
ty of the spectrum means that the eigenfunctions ψp(y)
are not elements of the Hilbert space Hl. These functi-
ons of y for p ∈ [−b, b] form a continuous basis in Hl

(similar to the basis {eipx} in the Hilbert space L2(R) of
square-integrable functions on R).

Note that the spectrum of P tends to the infini-
te interval (−∞,∞) when q → 1. When q → 0, the
spectrum tends to the zero point.

Eigenfunctions of P are determined up to constant
factors. In order to normalize the eigenfunctions
ψp(y), we take into account the orthogonality relation
(14) for the continuous q-Hermite polynomials. Since
these polynomials are associated with the determinate
moment problem (see, for example, [6] for the description
of this correspondence), the set Pn(p/b), n = 0, 1, 2, · · ·,
is complete in the Hilbert space L2([−b, b], w̃) with the
scalar product

〈f1, f2〉 =
1
2π

b∫

−b

f1(p) f2(p) w̃(p) dp, (15)

where b and w̃(p) are the same as in (14). This means
that
∞∑

n=0

1
(q2; q2)n

w̃(p)Hn

(
p/b|q2

)
Hn

(
p′/b|q2

)
= δ(p− p′).

Then, due to (12), we get

〈ψp(y), ψp′(y)〉 =
δ(p− p′)

w̃(p)
.

Therefore, the normalized functions are

ψ̃p(y) = w̃(p)1/2ψp(y), p ∈ [−b, b],

that is, 〈ψ̃p(y), ψ̃p′(y)〉 = δ(p− p′).
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5. Spectrum and Eigenfunctions of the
Position Operator

The position operator Q in the basis el
n, n = 0, 1, 2, · · ·,

has the form

Qel
n =

1
2i

(
1−q2(n+1)

q−1/2−q1/2
el
n+1 −

1−q2n

q−1/2−q1/2
el
n−1

)
.

By changing the basis {el
n} to the basis {ẽl

n}, where
ẽl
n = i−nel

n, we see that the position operator Q is given
in the latter basis by the same formula as the momentum
operator is given in the former basis {el

n} (see Section
4). This means that the spectrum of the operator Q coi-
ncides with the spectrum of P , that is,

Spec Q = [−b, b], b = (q−1/2 − q1/2)−1.

Eigenfunctions of the position operator can be found (by
using the basis {ẽl

n}) in the same way as in the case of
the momentum operator. For this reason, we exhibit here
only the result.

If φx(y) is an eigenfunction of Q, corresponding to
the eigenvalue x, Qφx(y) = xφx(y), then

φx(y) =
∞∑

n=0

h̃n(x) el
n(y),

where, as before, el
n(y) are given by (3) and h̃n(x) are

coefficients depending on the eigenvalues x.
Repeating the reasoning of the previous section, we

derive a three-term recurrence relation for the polynomi-
als h̃n(x) and conclude that

h̃n(x) = i−nhn(x) = i−n(q2; q2)−1/2
n Hn(x/b|q2), (16)

where b = (q−1/2−q1/2)−1 and Hn(z|q) is the continuous
q-Hermite polynomial from Section 4. Thus, eigenfuncti-
ons of the position operator Q are of the form

φx(y) =
∞∑

n=0

i−n

(q2; q2)1/2
n

Hn(cos θ|q2) el
n(y) =

=
∞∑

n=0

i−3n/2

(q; q)n
Hn(x/b|q2) yn. (17)

One can sum up expression (17) for the eigenfuncti-
ons φx(y) by the same method as in the case of functions
(13). Eigenfunctions of the position operator Q are of the
form

φx(y) =
((iq)1/2y; q)∞(−(iq)1/2y; q)∞

(−i1/2eiθy; q)∞(−i1/2e−iθy; q)∞
,

where x = b cos θ with b = (q−1/2 − q1/2)−1.
Eigenfunctions of the operator Q are determined

up to constant factors. To normalize the eigenfuncti-
ons φx(y), we employ the orthogonality relation (14)
for continuous q-Hermite polynomials. The set Hn(x/b),
n = 0, 1, 2, · · ·, is complete in the Hilbert space
L2([−b, b], w̃(x)), b = (q−1/2 − q1/2)−1, with the scalar
product

〈f1, f2〉 =
1
2π

b∫

−b

f1(x) f2(x) w̃(x) dx,

where w̃ is the same as in (14). Consequently, the
normalized functions are

φ̃x(y) = w̃(x)1/2φx(y), x ∈ [−b, b],

that is, 〈φ̃x(y), φ̃x′(y)〉 = δ(x− x′).

6. Momentum Realization of the Oscillator

In Section 3, we have constructed a realization of the
oscillator on the space of functions of the supplementary
variable y. It is natural to look for its realization on the
space of functions of the coordinate x and on the space
of functions of the momentum p.

Let L2([−b, b], w̃), b = (q−1/2 − q1/2)−1, be the
space of square-integrable functions f(p) (where p is the
momentum of the oscillator) with respect to the scalar
product (15). It is clearly seen from (14) that polynomi-
als (11) constitute an orthonormal basis in L2([−b, b], w̃).

First, we construct a one-to-one linear isometry Ω
from the Hilbert space Hl, considered in Section 2, onto
the Hilbert space L2([−b, b], w̃) given by the formula

Ω : Hl3e(y) → f(p) = 〈e(y), ψp(y)〉Hl
∈L2([−b, b], w̃),

where ψp(y) are eigenfunctions (13) of P . It follows from
(12) that

Hl 3 el
n(y) → 〈el

n(y), ψp(y)〉Hl
= hn(p), (18)

that is, Ω maps the orthonormal basis {el
n(y)} of Hl

onto the orthonormal basis {hn(p)} in L2([−b, b], w̃).
This means that Ω is, indeed, a one-to-one isometry.

The operator P acts on L2([−b, b], w̃) as the multi-
plication operator,

P f(p) = p f(p).

Indeed, according to formula (18), if Ωe(y) = f(p) =
〈e(y), ψp(y)〉Hl

, then

Pe(y) → Pf(p) = 〈Pe(y), ψp(y)〉Hl
=

ISSN 0503-1265. Ukr. J. Phys. 2007. V. 52, N 9 909
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= 〈e(y), Pψp(y)〉Hl
= 〈e(y), pψp(y)〉Hl

= p f(p).

We can find how P acts upon the basis elements
hn(p), n = 0, 1, 2, . . ., of the Hilbert space L2([−b, b], w̃).
According to the recurrence relation for polynomials
(11) (which follows from the recurrence relation for the
polynomials Hn(z|q)), we have, for P hn(p) = p hn(p),
the expression

Phn=
1
2

(
1−q2(n+1)

q−1/2−q1/2
hn+1+

1−q2n

q−1/2−q1/2
hn−1

)
,

where hn ≡ hn(p).
The Hamiltonian H acts upon the polynomials hn(p)

in the Hilbert space L2([−b, b], w̃) as

H hn(p) = (n + 1/2)hn(p).

Indeed, since Hel
n(y) = (n+1/2)el

n(y), we have, accordi-
ng to (18),

Hhn(p) = 〈Hel
n(y), ψp(y)〉Hl

=

= (n + 1/2)〈el
n(y), ψp(y)〉Hl

= (n + 1/2)hn(p).

Let us find how the position operator Q acts on the
Hilbert space L2([−b, b], w̃). To achieve this, we use the
results of [15].

The polynomials hn(p) from (11) can be expressed in
terms of the Askey–Wilson polynomials defined as

pn

(
1
2 (z + z−1); a, b, c, d|q) ≡ pn[z] =

=
(ab, ac, ad; q)n

an 4φ3

(
q−n, qn−1abcd, az, az−1

ab, ac, ad

∣∣∣∣ q, q

)
,

where (α, β, γ; q)n := (α; q)n(β; q)n(γ; q)n (see [7], Secti-
on 7.5). We have

hn(p) = cnpn( 1
2 (z+z−1); q1/2,−q1/2, 0, 0| q), (19)

where cn = (q2; q2)−1/2
n and z = eiθ. For convenience,

we denote the polynomials hn(p) by hn[z], where z is the
same as in (19). It follows from (19) and from formula
(4.5) in [15] that the polynomials hn[z] satisfy the di-
fference equation

D hn[z] =
2(q−n − 1)

1− q−1
hn[z],

where the difference operator D acts as

D f(z) =
1 + qz

(1− z2)(1− qz2)
f(qz)−

−
(

1+qz

(1−z2)(1−qz2)
+

1+qz−1

(1−z−2)(1−qz−2)

)
f(z)+

+
1 + qz−1

(1− z−2)(1− qz−2)
f(q−1z).

We also need an operator of the form

D′ :=
1
2
(1− q−1)D + 1 ,

whose action on the polynomials hn[z] is

D′ hn[z] = q−n hn[z].

This means that the operator D′ acts on the polynomials
hn[z] as q−N , where N is the number operator,

N hn[z] = nhn[z] .

In order to find a difference form for the position
operator, we use the operator L which is defined as

Lf(z) =
(z−2 + q)
z − z−1

f(qz)− (z2 + q)
z − z−1

f(q−1z).

This is operator (4.7) in [15] for our case. Then, from
formulas (4.11) and (4.12) in [15], we get

(
L−q1−n(z+z−1)

)
hn[z]=−dn

√
1−q2(n+1)hn+1[z], (20)

(
L+q−n(z+z−1)

)
hn[z]=dn

√
1−q2nhn−1[z], (21)

where dn = (1 + q)/qn. One may express the position
operator Q = qJ3/4J2 qJ3/4 in terms of the difference
operators (20) and (21) as

Q = i
q1/2

2(1−q2)
[
2L + (1−q)(z+z−1)q−N

]
qN ,

which can be represented in the form

Q = i
q1/2

2(1− q2)
[
2LqN + (1− q)(z + z−1)

]
. (22)

Thus, formula (22) gives us the difference form of the
position operator.
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7. Coordinate Realization of the Oscillator

Let L̃2([−b, b], w̃), b = (q−1/2 − q1/2)−1, be the space
of square-integrable functions f(x) (where x is the
coordinate of the oscillator) with respect to the same
scalar product as in (15). It follows from (14) that the
polynomials h̃n(x) from (16) constitute an orthonormal
basis in L̃2([−b, b], w̃).

We construct a one-to-one linear isometry Ω̃ from
the Hilbert space Hl, considered in Section 2, onto the
Hilbert space L̃2([−b, b], w̃) given by the formula

Ω̃ : Hl3e(y) → f(x) := 〈e(y), φx(y)〉Hl
∈L̃2([−b, b], w̃),

where φx(y) are eigenfunctions (17) of Q. It is evident
from (17) that

Hl 3 el
n(y) → 〈el

n(y), φx(y)〉Hl
= h̃n(x),

that is, Ω̃ maps the orthonormal basis {el
n(y)} from Hl

onto the orthonormal basis {h̃n(x)} in L̃2([−b, b], w̃).
This means that Ω̃ is, indeed, a one-to-one isometry.

The operator Q acts on L̃2([−b, b], w̃) as the multi-
plication operator,

Qf(x) = x f(x).

We can find how Q acts upon the basis elements
h̃n(x), n = 0, 1, 2, · · ·, in the Hilbert space L̃2([−b, b], w̃).
According to the recurrence relation for polynomials
(16), we have, for Qh̃n(x) = xh̃n(x), the expression

Qh̃n =
1
2i

[
1−q2(n+1)

q−1/2−q1/2
h̃n+1 − 1−q2n

q−1/2−q1/2
h̃n−1

]
,

where hn ≡ hn(x). Clearly, H h̃n(x) = (n + 1/2) h̃n(x).
One can also find a difference form for the

momentum operator P in the coordinate space by
repeating the reasoning of the previous section.

8. Evolution Operator in the Coordinate Space

According to (7), the time evolution operator exp (iτH)
acts upon the basis elements el

n, n = 0, 1, 2, · · ·, of the
Hilbert space Hl as

eiτHel
n = e−i(l−1/2)τ ei(l+n)τel

n = ei(n+1/2)τ el
n.

We wish to find how this operator acts in the coordinate
space, that is, on the Hilbert space L̃2([−b, b], w̃) from
Section 7. If the isometry Ω̃ maps a function e(y) ∈ Hl to
a function f(x) ∈ L̃2([−b, b], w̃), then exp (iτH) e(y) ∈
Hl corresponds to the function

eiτHf(x) = 〈eiτHe(y), φx(y)〉Hl
= 〈e(y), e−iτHφx(y)〉Hl

=
∞∑

n=0

〈e(y), el
n〉Hl

〈el
n, e−iτHφx(y)〉Hl

=

=
∞∑

n=0

〈e(y), el
n〉Hl

〈eiτHel
n, φx(y)〉Hl

=

=
∞∑

n=0

1
2π

b∫

−b

〈e(y), φ̃x′(y)〉Hl
〈φ̃x′(y), el

n〉Hl
dx′×

×eiτ(n+1/2)〈el
n, φx(y)〉Hl

=

=
1
2π

b∫

−b

f(x′)Kτ (x, x′)w̃(x′) dx′,

where the kernel Kτ (x, x′) is given by

Kτ (x, x′) =
∞∑

n=0

〈φx′(y), el
n〉Hl

〈el
n, φx(y)〉Hl

eiτ(n+1/2).

Taking into account the expression for h̃n(x) =
〈el

n, φx(y)〉Hl
with x = b cos θ, we obtain

Kτ (x, x′) = eiτ/2
∞∑

n=0

einτ q−n (−q; q)n

(q; q)n
×

×3φ2(q−n, q1/2eiθ, q1/2e−iθ; −q, 0; q, q)×

×3φ2(q−n, q1/2eiθ′ , q1/2e−iθ′ ; −q, 0; q, q).

Here, the explicit expression for the continuous q-
Hermite polynomials from Section 4 was taken into
account.

We can derive an explicit expression for the kernel
Kτ (x, x′). Due to formula (8.15) in [16], one calculates
that Kτ (x, x′) is of the form

Kτ (x, x′) = eiτ/2×

(aeiθ′eiτ , ae−iθ′eiτ , aeiθeiτ , ae−iθeiτ ,−eiτ ; q)∞
(ei(θ+θ′)eiτ , ei(θ′−θ)eiτ , ei(θ−θ′)eiτ , e−i(θ+θ′)eiτ , qeiτ ; q)∞

×8W7(eiτ ; aeiθ, ae−iθ, aeiθ′ , ae−iθ′ ,−eiτ ; q, −eiτ ), (23)

where (d1, · · · , dr; q)∞ ≡ (d1; q)∞ · · · (dr; q)∞, a = q1/2,
and 8W7 is the basic hypergeometric function (2.1.11)
from [7]. Expressing the function 8W7 in (23) in terms
of the basic hypergeometric function 8φ7 (see [7], Section
2.1) and using relation (III.17) from Appendix III in [7],
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one can reduce 8W7 in (23) to the basic hypergeometric
function 4φ3:

8W7(eiτ ; aeiθ, ae−iθ, aeiθ′ , ae−iθ′ ,−eiτ ; q, −eiτ ) =

=
(qeiτ , eiτ ,−q1/2e−iθ′ ,−q1/2eiθ′ ; q)∞
(q1/2e−iθ′eiτ , q1/2eiθ′eiτ ,−q,−1; q)∞

×

×4φ3

(
eiτ ,−eiτ , q1/2eiθ′ , q1/2e−iθ′

q1/2e−iθeiτ , q1/2eiθeiτ ,−q

∣∣∣∣∣ q, q

)
.

As a result, we arrive at the following expression for the
kernel Kτ (x, x′):

Kτ (x, x′) =

= c
(aeiθeiτ , ae−iθeiτ , eiτ ,−eiτ , ae−iθ′ ,−q1/2eiθ′ ; q)∞

(ei(θ+θ′)eiτ , ei(θ′−θ)eiτ , ei(θ−θ′)eiτ , e−i(θ+θ′)eiτ ; q)∞
×

× eiτ/2
4φ3

(
eiτ ,−eiτ , q1/2eiθ′ , q1/2e−iθ′

q1/2e−iθeiτ , q1/2eiθeiτ ,−q

∣∣∣∣∣ q, q

)
, (24)

where a = q1/2 and c = (−1,−q; q)−1
∞ . Thus, the evoluti-

on operator exp (iτH) is a kernel operator given by the
formula

exp (iτH) f(x) =
1
2π

b∫

−b

Kτ (x, x′)f(x′) w̃(x′) dx′,

where the kernel Kτ (x, x′) is given by (24). Since
eiτHeiτ ′H = ei(τ+τ ′)H , this kernel satisfies the relation

1
2π

b∫

−b

Kτ (x, x′)Kτ (x′, x′′) w̃(x′) dx′ = Kτ+τ ′(x, x′′) .

Observe that this relation leads to the corresponding
integral relation for the basic hypergeometric function
4φ3 from relation (24).

Formula (24) gives a possibility to construct a transi-
tion from the coordinate space to the momentum space.
Such a transition is fulfilled by an integral operator. The
kernel of such an operator is a particular case of kernel
(24) (see [10] for details).

9. Concluding Remarks

We have constructed new models of the quantum
oscillator which are related to continuous q-Hermite
polynomials (that is, the models can be realized on the
bases of the coordinate and momentum Hilbert spaces
expressed in terms of these q-orthogonal polynomials).

Remark that the Macfarlane–Biedenharn q-oscillator
is also related to these q-Hermite polynomials. This
means that our models and the Macfarlane–Biedenharn
q-oscillator in real are q-deformations of the standard
harmonic quantum oscillator. A characteristic peculiari-
ty of our models is that the spectrum of the position
operator covers a finite interval of the real line. Note
that there exist the systems in quantum physics with
this property.

Our models may be useful for the description of
quantum systems in a non-commutative space-time (for
which a “motion group” is one of the quantum groups
SUq(2) and SLq(2,R)) and of quantum systems with
the quantum algebra suq(1, 1) describing their dynamical
symmetry. Principles of these applications are the same
as in the case of the Biedenharn–Macfarlane q-oscillator.

This research was partially supported by Grant
14.01/016 of the State Foundation of Fundamental
Research of Ukraine.
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НОВI МОДЕЛI КВАНТОВОГО ОСЦИЛЯТОРА

А.У. Клiмик

Р е з ю м е

Побудовано новi моделi квантового осцилятора. Як i у випад-
ку q-осцилятора Бiденгарна–Макфарлейна, цi моделi зв’язанi
з q-многочленами Ермiта. Оператори положення та iмпульсу в

цих моделях є пiдходящими операторами представлень кван-
тової алгебри suq(1, 1). Як i в стандартному квантовому гармо-
нiчному осциляторi, оператори положення та iмпульсу мають
неперервнi простi спектри. Цi спектри покривають скiнченний
iнтервал дiйсної осi, що залежить вiд значення q. Власнi фун-
кцiї цих операторiв знайденi у явному виглядi. На протива-
гу випадку q-осцилятора Бiденгарна–Макфарлейна оператори
положення та iмпульсу Q i P в цих моделях задовольняють
квантово-механiчнi спiввiдношення [H, Q] = −iP i [H, P ] = iQ.
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