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We present a new method of determination of electron affinity
X0(L) of semiconductor nanocrystals with various lattice
constants L that takes into account the experimental (or
calculated) data on the forbidden gap width Eg(L) and the
relation: Eg(L) + X0(L) = 5.5−∆Egv(L) ≈ 5.5 eV. This relation
is proposed to use for bulk and quantum-sized structures. Its
detailed verification for a number of semiconductor cubic crystals
is performed.

1. Introduction

In the previous works [1–4], a method of determination
of the band parameters of semiconductor crystals with
(diamond-like) fcc lattices, namely the forbidden gap
width Eg, valence band energy Ev, conduction band
energy Ec, melting temperature, etc., as functions of the
well-known parameter – crystal lattice constant L or the
quantity proportional to it, the minimum interatomic
distance d. Both last quantities are determined by the
sum of valence radii of neighboring atoms, d = (ra + rb),
forming the crystal lattice, i.e. by the first coordination
sphere radius. For many crystalline compounds, the
quantity L is available from the handbooks and can
be calculated with sufficient accuracy with the use
of tabular values of the valence radii of elements. In
particular, for the tetrahedral configuration of a cell
(i.e. for diamond-like fcc lattices) in the case of one-
component crystals (formed from elements of groups
III–V of the Periodic table), L = 4kra/

√
3; for two-

component crystals, L = 2k (ra+rb)√
3

, etc. These quantities
are determined to within the coefficient k ≈0.9 which
accounts a small decrement of the valence radii on the
joining of atoms into a molecule або under condensation
[5–8].

In those works, it was shown that the band
parameter, the forbidden gap width Eg, is also related
to the value of electron affinity (or the emissive work
function) X0. Thus, by setting Eg(L), one can obtain
the corresponding values of X0. In what follows, we
consider this problem for ordinary “bulk” crystals and

for nanocrystalline bodies, where the band parameters
are changed due to the quantum-size mechanisms.

2. Analysis of Band Parameters for Bulk FCC
Crystals

The results of works [1–8] testify that the properties of
crystalline bodies are genetically programmed in such
a parameter of atoms as the radius of an external
(valence) orbital. In order to unambiguously describe
the behavior of band parameters of crystals, the analysis
of components of the binding energy as functions of
the base parameters of atoms forming a solid such as
the energies of valence Ev, metallic Em, and ionic Ei

couplings was carried out in [2–4].
These components are calculated with sufficient

accuracy in the approximation of strong coupling
(LCAO), by using the energy terms of external electron
orbitals εs and εp [3–8] available from the handbooks
as tabular data [9, 10]. For the collectivized states (the
atom-molecular or condensed state), they are different
due to the Pauli principle, and εs > εp. As known, this
leads to the appearance of the bands of free (excited)
electrons, Ec, and bound (valence) Ev electrons.

The value of valence energy Ev is easily calculated
in terms of the lattice constant and coincides with the
tabular value [5–8]. In this case, it is necessary to take
two following effects into account:
1) Hybridization of the orbitals which firm the
chemical, including valence, coupling with the effective
energy term εh = 1

4 (εs + 3εp) (in the case of the
sp3-hybridization). The solutions of the Schrödinger
equation for bound atoms give two values of energy:
the lower value that corresponds the bonding action,
Eb = εh + Ev, and the higher one corresponding to the
the antibonding action Eab = εh − Ev. The difference
between these values is related to the valence component
of forbidden states.
2) Appearance of the metallic coupling which has
antibonding (repulsive) character due to the screening
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of the valence coupling (exchange interaction). This
mechanism is quantitatively characterized by the
difference of the terms Em = 1

2 (εs − εp). The analysis
of the values of Em (L) for many semiconductor crystals
[4] indicates that this difference of energies (εs − εp) is
almost constant, as distinct from its strongly varying
components εs(L) and εp(L). Thus, irrespective of the
absolute values of εs(L) and εp(L), the energy of metallic
coupling in the LCAO approximation can be considered
constant with an accuracy of ≈ 10%. Namely,

Em = 2.2Cm, Cm =
[
1− (L− LD)

4LD

]
,

Em ≈ (1.9± 0.2) eV. (1)

The energy of attractive coupling, in addition to
the valence (exchange) component, has else the polar
component.

For the valence component, its dependence on L
was established in the classical works [5–8]. It decreases
monotonously (with increase in L) and has shape of a
square parabola:

EV = A/L2, A = 7.8 · L2
D[eV/Å

2
], (2)

where LD is the lattice constant of diamond.
The ionic component arises only in the case of
nonidentical atoms in the crystal at the expense of
an asymmetric redistribution of the density of the
electron clouds of neighboring atoms which create the
chemical coupling. Thus, this component is defined as
the difference of the electron terms of neighboring atoms:

Ei =
1
2

(εa − εb) . (3)

Since the reconstruction (the so-called hybridization) of
atomic orbitals occurs on the formation of interatomic
chemical bonds, it is necessary to use the hybrid terms
which can be obtained with the eligible accuracy in the
linear approximation:

εh(sp3) =
1
4

(εs + 3εp) , εh(sp2) =
1
3

(εs + 2εp) ,

εh(sp) =
1
2

(εs + εp) . (4)

Then the energy of ionic coupling reads

Ei =
1
2

(εha − εhb) . (5)

This difference, as distinct from the energy of
metallic coupling, depends quite strongly on the lattice
constant. Like the energy of valence coupling, it
decreases with increase in the lattice constant by the
sharper power law:

Ei ≈ Bi/Ln, n ∼ 2÷ 3. (6)

Moreover, the coefficient Bi remains invariant only
for the sets with common cathode under changing the
elements of the which belong to the same column of the
Periodic table.

The other simple method of calculation of Ei does
not require the data on εh and consists in the use of
the tables of the electronegativies of elements by Pauling
XA, XB , and XC . Namely, the difference ∆X = Xa−Xb

sets the coupling ionicity degree: αi ≈ 1
2∆X. Hence,

Ei ≈ αiEv ≈ 1
2
∆XEv. (7)

For one-component materials, ∆X = 0. In this case,
the ionic coupling is absent. It is also small for anode–
cathodic compounds with close position in the Periodic
table of elements and a small value of ∆r = ra − rb, i.e.
with a small dipole moment for basic polarized atoms.

Thus, using the relation for three calculated
components of the binding energy in the crystal state,
we obtain the general analytic formula for the binding
energy of a valence electron in the crystal under its
excitation to the conduction band. That is, we get
the forbidden band width as a function of the lattice
constant L:

Eg
P ≈ EgvD

(
LD

L

)2
(

1− k

(
L

2LD

)2
)

(
1 + α2

i

)1/2
.

(8)

Here, the normalizing constant EgvD =7.8 eV is the
valence component of the forbidden band of diamond,
k ≈1.2 is the correction concerning the degree of
approximation of the LCAO calculation, and EgD =
5.5 eV.

In Figs. 1–3, we show the experimental forbidden
band widths Eg for many cubic semiconductors with a
small share of polar coupling (at most 20%) versus the
lattice constant L and the theoretical curves constructed
by the last formula.

In order to calculate the work function (electron
affinity) X0 and its dependence on the lattice constant
L, we consider the earlier obtained dependence of the
band spectrum on L [5–8] (see Fig. 1). It is seen that,
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Fig. 1. Band energy vs lattice constant for cubic fcc crystals of
group IV

for crystals of group IV of the Periodic table, the energy
of the excited band is connected with X0 by the analytic
relation

Eg + X0 = 5.5−∆Ev ≈ const, (9)

∆Ev = (1− kL/2LD) , ∆Ev = (0÷ 0.6) eV is a change
in the edge of the valence band.

Let us assume that a similar relation holds also
for other groups of diamond-like (fcc) crystals (i.e.
the influence of ionic components of the coupling is
neglected). Then we get the following relation for the
electron affinity (i.e. the barrier for the emission of
electrons into vacuum):

X
(L)
0 =5.5

[
1− 1.4 (LD/L)2

(
1−

(
L

2LD

)2
)]

−∆Ev.

(10)

That is, the dependence of the emissive work function
(electron affinity) X0 on L is presented in the analytic
form, and it is antisymbatic to the dependence Eg(L).
This relation is demonstrated in Fig. 2 for many crystals

Fig. 2. Valence matrix element (1 ) and forbidden band width (2–
4 ) vs lattice constant L. (2 – for semiconductors with a large share
of ionic coupling, 3 – with a low share of ionic coupling, and 4 –
without ionic coupling)

of group IV and for crystals with low share of
ionicity. The theoretical curves are compared with the
experimental data and with the new data considered in
this work. It is seen that the work function X0 grows
with L up to the maximum value. For semiconductor
crystals, it is X0max ≈5 eV. At the same time, the
sum Eg + X0 is almost constant ≈ 5.5 eV, according
to relation (10). As seen from Fig. 2, by changing the
composition of fcc crystals (SixC1−x, SixG1−x, cubic
SixSn1−x, etc.), one can easily vary the work function
in a quite wide range (from 0.4 to 4 eV).

3. Analysis of Band Parameters for Nanosized
Crystals

In quantum-size nanocrystals, it is possible to
significantly increase the forbidden band width and
the binding energy of excitons. The last quantity
can essentially influence the results of calculations of
the dimensional quantization energy. Therefore, it is
necessary to estimate the influence of exciton effects on
the work function of semiconductor nanocrystals.

For quantum-size structures, we calculated the
energy levels with regard for the finite height of the
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Fig. 3. Work function, forbidden band width, and their sum Eg+X

vs lattice constant for various semiconductors. Dots – tabular data,
curves – theoretical results

barrier of the environment and the change of m∗ [11]. In
the general form in the approximation of effective mass,
we considered the problem of the electron spectrum of a
quantum dot with diameter d on the basis of the solution
of the Schrödinger equation
[
− ~2

2m∗
e (re)

∆e − ~2

2m∗
h (rh)

∆h+

+U (re, rh)
]
Ψ (re, rh) = EΨ (re, rh) (11)

with the generalized potential U(re, rh) = Ucv(r) +
Ueh(r) + Us(r).

Here, Ucv(r) is the barrier for the V− and C-bands.
The coordinate dependences of the effective mass and
the potential barrier are introduced as step functions.
The energy eigenvalues are obtained by solving the
Schrödinger equation for the spherical model of a
quantum-size dot [10–13]. Figure 4 illustrates the model
of a quantum dot: as the geometric size decreases, the
edge of the conduction band shifts to vacuum, and the
valence band is deepened.

As for the exciton energies, this problem was solved
in [11]. In that model, the electron charge is spread over
the volume, whereas a more localized hole oscillates in
the field of the electron wave.

The Coulomb interaction potential of an electron and
a hole looks as

Ueh(r) = − e2

4πε (d) ε0

∫ |Ψ(r′)|
|r − r′|

2

d3r′. (12)

Fig. 4. Effective permittivity vs quantum dot diameter for various
surrounding media (1 – hydrated surface, 2 – silicon, 3 – SiOx, 4
– SiO2, 5 – vacuum). On the right, a model of spherical quantum
dot with transient layer is given

To take the image forces Us into account, we used the
one-dimensional polarization potential which is suitable
for estimates in the macroscopic approximation of the
effective permittivity:

Us =
1
n

n∑

i=1

e2

(
εQD − ε(xi)

ε(xi)

)

4πε0εQD

(
dQD

2
+ xi

) . (13)

By dQD, we denote the effective diameter of a quantum
dot.

In order to take the smooth variation in ε(xi) into
account, we approximate it by several (n) rectangular
steps. Formula (3) describes the polarization potential
created by a one-dimensional rectangular step. The
exciton levels are given by the equation [4,5]

Eex =
−e2

2πεeff (d) ε0d
βn +

√
3π~2n2e2

m∗
exd3εeff (d) ε0

. (14)

This formula sets the eigenvalues of the potential energy
of an oscillator with regard for the motion of an electron
and a hole.

In the approximation of effective medium, the
formula for the permittivity looks as

εeff (d) =
∑

i

ε (ri)

ri+1∫

ri

r2|Ψ(r)|2dr (15)
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or in the simpler form

1
εeff(d)

=
1

εSi
P1(d) +

1
εSiO2

P2(d), (15′)

where P1(d) and P2(d) are the weight coefficients of
the substances of, respectively, a quantum dot and its
environment.

d/2∫

0

r2|Ψ(r)|2dr = P1,

∞∫

d/2

r2|Ψ(r)|2dr = P2. (15′′)

It is important to use the normalization condition

∞∫

0

r2|Ψx)|2dr = 1. (15′′′)

As seen, P1 and P2 are the probabilities to find a
particle in the quantum dot and outside it. Figure 4
show the dependence of εef (d) for a Si quantum dot for
different ε of the environment. We obtain the solution
of the Schrödinger equation in the case of the spherical
symmetry in the Bessel spherical functions as

Ψ1 = BJ(k, r) (at the quantum dot), (16)

Ψ2 = AN(β, r) (outside the quantum dot). (16′)

Here,

β =

√
2m∗

2(U (d)− E)
~

, k =

√
2m∗

1E

~
, (17)

m∗
e1 and m∗

e2 are the effective masses of an electron at a
quantum dot and outside it. A and B are the constants
which define the amplitude of the wave function, and E
are the eigenvalues of the ground state.

With regard for the boundary conditions

Ψ1(d/2) = Ψ2(d/2),

1
m∗

e,1

dΨ1(d/2)
dr

=
1

m∗
e,2

dΨ2(d/2)
dr

, (18)

we get the nonalgebraic (transcendental) equation for
the determination of the energy parameters of a
quantum dot:

dβ
2 − 1
m∗

e,2

=
1− dk

2 ctg(kd
2 )

m∗
e,1

. (19)

a

b

Fig. 5. a – Forbidden band widths of quantum-size structures
vs quantum dot diameter for various dimensionalities. b – Work
functions of quantum-size structures vs quantum dot diameter for
various dimensionalities

Its solution gives the allowable levels of kinetic
energy for electrons of the quantum structure under
study.

An analogous equation can be written also for holes
(respectively, with the effective masses m∗

h1 and m∗
h2.) In

order to determine the constants A and B, it is necessary
to use the normalization condition. The obtained energy
levels of electrons and holes form the “forbidden zone” of
a quantum dot, which can be used for the determination
of the work function by formula (9).

In the rough approximation of an infinite barrier, the
energy quantization is given by the simple relation
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a

b
Fig. 6. a – Forbidden band widths the GaN of quantum-size
structures vs quantum dot diameter vs quantum dot diameter
for various dimensionalities. b – Work functions of quantum-size
structures vs quantum dot diameter for various dimensionalities

E = π~2
2m∗d2 ∼ 1

d2 . Since mh À me, the change of the
valence band energy on the quantization will be less than
that of the conduction band energy.

In Figs. 5–7, we present the values of forbidden
band widths and work functions for different dimensions
versus the diameter d of a quantum dot for some
semiconductors: GaAs, GaN, and Si. It is clear that,
in quantum confined structures, the energy parameters
vary monotonically with the size d of a structure. A
qualitatively similar behavior is demonstrated by bulk
structures vs the linear size of an elementary cell L.
In all cases, the dependence on d is a monotonic curve
decreasing by a power law: Eg ∼ A/Ln, where n is

Fig. 7. Work function and forbidden band width of Si quantum-
size structures vs the diameter and quality for of the interface
layer. Dots – experimental data

obviously 1.5± 0.5 (Figs. 4–6). There, we give the data
on the electron affinity which is calculated by a relation
analogous to (8).

The experimental data for the nanotextured surface
of Si are shown in Fig. 7.

It is seen that one size of nanocrystallites corresponds
to several experimentally measured energies of optical
transitions. This difference is caused by the different
conditions of fabrication of specimens: nanostructures
with hydrated surface demonstrate the greater energy of
the transitions. Nanoclusters with dry oxidized surface
have, as a rule, the less energies of optical transitions.
We relate it to the influence of parameters of the barrier
layer on the level of dimensional quantization [11].

The dependence of the barrier, X0, on d were studied
experimentally for quantum structures GaN and Si
obtained by the method of selective etching [13, 14]. We
measured the specimens with the tip radius of a quantum
thread ∼ 2.5 ±0.5 nm, for which the work function
determined by the method of field electron emission from
the slope of the Fowler–Nordheim dependences is in the
interval X0 =2.3–2.8 eV, which is significantly less than
the bulk value (3.4 eV). The optical forbidden gap width
determined by the photoconductivity spectrum is, on the
contrary, significantly greater than the bulk value and
is about 4 eV.

For the nanospikes of Si with diameters of 1.5–2.8
nm, we observe experimentally a significant decrease in
the work function (down to 3.5 eV) which is essentially
less than the bulk work function, whereas the forbidden
band width increases respectively to 2.0 eV. Thus, we
deal with quantum-size structures. We emphasize also
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Fig. 8. Quantum cathod. Exciton diameter vs quantum dot
diameter

good agreement with the above-presented theoretical
results according to the formula X0 + Eg = 5.5 eV -
∆Egv, ∆Egv ≤0.6 eV (Fig. 7).

Finally, we note that, for quantum dots of certain
substances (with the small effective mass of electrons),
the exciton radius can become greater than the size of
a quantum dot. This means that the electron leaves
the scope of the quantum dot and comes into the
environment. That is, we are faced with the case of with
negative electric affinity, as it is illustrated by Fig. 8.

4. Conclusions

In the present work, we have analyzed the developed
method of calculations of electron affinity (optical
work function) X0(L) of semiconductor nanocrystals
for various lattice constants L which uses the
experimentally determined (or calculated) data on the
forbidden gap width Eg(L) and the relation

Eg(L) + X0(L) = 5.5−∆Egv(L) ≈ 5.5 eV. (20)

We propose to use this relation also for quantum-
size structures, where the relevant parameter will be
their size (the diameter d). The agreement of the
theoretical results with experimental data was obtained
for many bulk crystals of the tetrahedral syngony and
for nanocrystals of Si and GaN.

Thus, we have obtained the relation for the energies
of quantum states of electrons depending on the
geometric sizes of a nanostructure with regard for the

change of boundary barriers. Earlier, the preliminary
calculations were performed for the model of quantum
well with infinite barriers or with fixed barriers
independent of the well size, and also with arbitrarily
given barriers.

In the calculations of band characteristics, we have
first used the relations between parameters of the
electron structure (the energies of electron levels in a
potential well E2) and the work function which were
verified for the certain bulk semiconductors.

This work was supported by the Ukrainian-Russian
Program “Nanophysics and Nanotechnology” and by
the Ukrainian-German Project “Nanostructured Field
Emission Cathodes”.
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ВИЗНАЧЕННЯ ЕЛЕКТРОННОЇ СПОРIДНЕНОСТI
(РОБОТИ ВИХОДУ) НАПIВПРОВIДНИКОВИХ
НАНОКРИСТАЛIВ

В.Г. Литовченко, А.О. Григор’єв

Р е з ю м е

Розроблено метод розрахунку величини електронної спорiдне-
ностi (оптичної роботи виходу) X0(L) напiвпровiдникових на-

нокристалiв з рiзними сталими ґратки, який використовує екс-
периментально визнаначенi (чи розрахованi) значення енергiї
забороненої зони Eg(L) та спiввiдношення Eg(L) + X0(L) =
5, 5 − ∆Egv(L) ≈ 5, 5 [eB]. Це спiввiдношення пропонуєть-
ся використовувати як для об’ємних, так i для квантово-
розмiрних структур – в залежностi параметрiв вiд дiамет-
ра останнiх. Проведено перевiрку запропонованого спiввiдно-
шення для напiвпровiдникових кристалiв кубiчної модифiка-
цiї.

904 ISSN 0503-1265. Ukr. J. Phys. 2007. V. 52, N 9


