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The approach exposed in the recent paper [1] has been appli-
ed in studying the center-of-mass (CM) motion effects on the
nucleon density and momentum distributions in nuclei. We use
and develop a formalism based upon the Cartesian or boson
representation, in which the coordinate and momentum operators
are expressed through the creation and annihilation operators for
oscillator quanta in three different space directions. We are focused
upon effects due to the center-of-mass and short-range nucleon
correlations embedded in translationally invariant ground-state
wavefunctions. The latter are constructed in the so-called fixed
center-of-mass approximation, starting with a Slater determinant
wave function modified by some correlator e.g., after Jastrow or
Villars. It is shown how one can simplify the evaluation of the
corresponding expectation values that determine the distributions.
The analytic expressions derived here involve the own Tassie–
Barker factors for each distribution. As an illustration, numerical
calculations have been carried out for a nucleus 4He with the Slater
determinant to describe the nucleon (1s)4 configuration composed
of single-particle orbitals which differ from harmonic oscillator
ones at small distances. Such orbitals simulate a somewhat short-
range repulsion between nucleons. Special attention is paid to a si-
multaneous shrinking of the CM corrected density and momentum
distributions as compared with the purely (1s)4 shell nontranslati-
onally invariant ones.

1. Introduction

Treatment of the CM motion has been an attractive
subject of exploration in earlier and more recent studies
of nuclear theory (see, e.g., [1–9]). Those studies origi-
nated from the necessity to remedy a deficiency of the
nuclear many-body wave function (WF), namely its lack
of translational invariance (TI), wherever shell-model
single-particle (s.p.) WF’s are used for its construction.
This deficiency is important in quite a number of cases.

In the present investigation, we adopt the “fixed-CM
approximation” [10, 11] as a recipe to restore TI of a
many-body WF which does not possess this property.
We apply it when evaluating the elastic form factor
(FF) F (q) and the nucleon momentum distribution
(MD) η(p) for light nuclei, and more specifically for

4He in its ground state (g.s.). Following [1], we prefer
to deal with the intrinsic quantities which are determi-
ned as expectation values of appropriate (multiplicative)
operators that depend on the corresponding Jacobi vari-
ables and act on the intrinsic WF’s. We have seen in [1]
that the intrinsic density distribution (DD) ρint(r), bei-
ng defined by the Fourier transform of F (q), does not
coincide with the diagonal part of the one-body density
matrix (1DM) which is related in a standard manner to
the intrinsic MD. In the context, we also note that the
term “one-body” used here is somewhat conventional.
Let us mention that F (q) and η(p) can be related to the
different quantities measured via electron–nucleus colli-
sions, respectively, the elastic electron scattering cross
sections and the inclusive electron scattering cross secti-
ons. First of all, we mean comparatively simple relati-
ons in the Born approximation with the plane electron
waves. In addition, to the so-called approximation of
small interaction times (see [12–14] and refs. therein) the
double differential (e, e′) reaction cross section becomes
proportional to an integral of η(p) over the momentum
range that is fixed with a certain combination (the so-
called y – scaling variable) of the momentum transfer
q and the energy transfer ω (cf. [15]). Of course, in
the framework of these approximations, one neglects
off–shell effects in the electron scattering on bound
nucleons and meson exchange currents (MEC) contri-
butions to an effective electromagnetic (e.m.) interacti-
on with nuclei. The latter should be taken into account
(see, e.g., [16,17]) when describing the electron scatteri-
ng on nuclei, especially at high momentum transfers
(in particular, helping to remove a certain discrepancy
between theory and experiment in the vicinity of the
first minimum of |Fch(q)| at q2 = 10 fm−2 for 4He).
Therefore, any comparison with experimental data omi-
tting such physical inputs has a restricted character.
Nevertheless, in case of light nuclei, every approximate
evaluation of intrinsic quantities, being independent of
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different constraints originated from reaction mechani-
sms, can be compared with microscopic (“exact”) results.
In this respect, our addressing to the alpha particle seems
to be perfectly explicable.

The aim of this paper is to show to what extent
the approach developed in [1, 12, 18, 19] can be useful
in calculations with more realistic WF’s than those of
the simple harmonic oscillator model (HOM). In this
connection, we consider the CM correction of F (q)
and η(p) treated on an equal physical footing, viz., by
using one and the same translationally invariant g.s.
WF that incorporates the nucleon-nucleon short-range
correlations (SRC). One should note that, despite much
interest over the last two decades concerning the MD
in nuclei [20–26], its CM correction does not appear
to have been properly treated except for certain studi-
es, where harmonic oscillator (HO) wave functions were
used (see, e.g., [12]). Note also calculations beyond HOM
in [27]. The underlying formalism with basic definitions
is exposed in the following section. Section 3 contains the
analytic results of our derivations beyond HOM, while
the corresponding numerical results are discussed and
compared with experimental data in Section 4.

2. The Intrinsic Form Factor, Density and
Momentum Distributions with Short-range
Correlations Included

By definition, the intrinsic (elastic) FF of a nonrelati-
vistic system with the mass number A and the total
angular momentum equal to zero is

F (q) = Fint(q) ≡ 〈Φint | exp[ı~q · (~̂r1 − ~̂R)] | Φint〉, (1)

where Φint is the intrinsic WF of the system (nucleus),
~̂r1 the coordinate operator for nucleon number 1, and
~̂R = A−1

∑A
i=1 ~̂ri the CM operator.

In the fixed-CM approximation, according to the
Ernst, Shakin, and Thaler (EST) prescription [11], the
nuclear many-body WF with the total momentum ~P can
be written in the form:

| ΨP 〉 = |~P ) | ΦEST
int 〉, (2)

where a round bracket is used to represent a vector in
the space of the CM coordinate, so that |~P ) means the

eigenstate of the total momentum operator ~̂P . The intri-
nsic WF after EST

| ΦEST
int 〉 =

(~R = 0 | Φ〉
[〈Φ | ~R = 0)(~R = 0 | Φ〉]1/2

(3)

is constructed from an arbitrary (in general, translati-
onally non-invariant) WF Φ, by requiring that the CM
coordinate ~R be equal to zero. The corresponding FF is
the ratio

FEST(q) =
A(q)
A(0)

,

A(q) = 〈Φ | (2π)3δ( ~̂R) exp[i~q · (~̂r1 − ~̂R)] | Φ〉. (4)

Using the Cartesian representation in which

~̂r =
r0√
2

(~̂a
†
+ ~̂a), ~̂p = ı

p0√
2

(~̂a
† − ~̂a) (5)

with the Bose commutation rules,

[âi, âj ] = 0, [âi, â
†
j ] = δij (i, j = 1, 2, 3) (6)

and arbitrary real c-numbers r0 and p0 that meet the
condition

r0p0 = 1, (7)

one can show (see [1, 19] and Appendix A) that

A(q) = exp
(
− r̄2

0q
2

4

)
U(q), (8)

U(q) =
∫

d~λ exp
(
−r2

0λ
2

4A

)
F (~v,~s), (9)

F (~v,~s) = 〈Φ|Ô1(~v + ~s )Ô2(~v) . . . ÔA(~v)|Φ〉, (10)

where

Ôγ(~x) = exp(−~x∗~̂a
†
γ) exp(~x~̂aγ) ≡ Ê†

γ(−~x)Êγ(~x) (11)

(γ = 1, . . . , A)

with

~s = ı
r0√
2

~q, ~v = ı
r0√
2A

(~λ− ~q) (12)

and the renormalized “length” parameter

r̄0 =

√
A− 1

A
r0.
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Further, starting from the definition of intrinsic MD
(see [1]),

η(p) = 〈Φint | δ(~̂p1 − ~̂P/A− ~p) | Φint〉, (13)

we consider the distribution in the fixed-CM approxi-
mation,

ηEST(p) =
〈Φ | (2π)3δ( ~̂R)δ(~̂p1 − ~̂P/A− ~p) | Φ〉

〈Φ | (2π)3δ( ~̂R) | Φ〉
, (14)

and the Fourier transform

ηEST(p) = (2π)−3

∫
exp(−ı~p~x)N(x)/N(0)d~x (15)

with

N(x) = 〈Φ | (2π)3δ(~R) exp[ı(~p1 − ~P/A)~x] | Φ〉. (16)

We see the certain resemblance between the structure
functions N(x) and A(q), viz., both are determined by
the expectation values of similar multiplicative operators
with one and the same trial WF Φ. Owing to this, using
the same algebraic technique, we get

N(x) = exp
(
− p̄2

0x
2

4

)
D(x), (17)

D(x) =
∫

d~λ exp
(
−r2

0λ
2

4A

)
F (~v ′, ~s ′), (18)

where

~s ′ = − p0√
2
~x, ~v ′ =

ır0√
2A

(~λ− ıp2
0~x) (19)

and

p̄0 =

√
A− 1

A
p0.

A certain relation of the MD to the corresponding intri-
nsic density matrix has been shown in [1].

Then let us assume a trial WF,

| Φ〉 =| Φcorr〉 = Ĉ(1, 2, · · · , A) | Det〉 (20)

with the Slater determinant

| Det〉 =
1√
A!

∑

P̂∈SA

εP P̂{| φp1(1)〉 · · · | φpA
(A)〉}. (21)

Here, εP is the parity factor for the permutation P, φa

the occupied orbital with the quantum numbers {a},
and the summation runs over all permutations of the
symmetric group SA.

The A-particle operator Ĉ = Ĉ(~̂rα − ~̂rβ , ~̂pα − ~̂pβ) 1

introduces the SRC and meets all necessary requi-
rements of the translational and Galilei invariance, the
permutable and rotational symmetry, etc. However, bei-
ng translationally invariant itself, such model introducti-
on of correlations does not enable one to restore the TI
violated with such shell-model WF as the Slater determi-
nant.

What it follows can be used with the Jastrow
correlator [28]

Ĉ =
A∏

α<β

f(~̂rαβ), (22)

where f(~̂rαβ) is a two-body correlation factor whose
deviation from unity occurs only for small distances
rαβ = |~rα − ~rβ | less than a correlation radius rc.

Another popular option goes back to the lectures by
Villars [29] (see also [30]) with a unitary operator

Ĉ = exp(−ıĜ), (23)

Ĝ =
∑

α<β

ĝ(α, β), (24)

where the Hermitian operator ĝ(α, β) acts onto the space
of the pair (α, β). In particular, we could follow the si-
mplest Darmstadt ansatz [31]:

ĝ(α, β) =
1
2
{~s (~̂rαβ)~̂pαβ + ~̂pαβ~s (~̂rαβ)}, (25)

where ~s is a function of the relative coordinate ~̂rαβ =
~̂rα − ~̂rβ . Its canonically conjugate momentum ~̂pαβ =
1
2 (~̂pα − ~̂pβ).

Keeping in mind similar constructions, we rewrite
expectation (10) as

F (~v,~s) = 〈Φ(−~v) | Ê†
1(−~s)Ê1(~s) | Φ(~v)〉, (26)

where

| Φ(~x)〉 = Ê1(~x) . . . ÊA(~x) | Φ〉,

since Ê1(~v + ~s) = Ê1(~v)Ê1(~s) and [Êα(~x), Êβ(~y)] = 0
(α, β = 1, . . . , A) for any vectors ~x and ~y.

1Of course, the operator may be spin and isospin dependent
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Moreover, we find that

Ê(~x) ~̂r Ê−1(~x) = ~̂r +
r0√
2

~x (27)

and

Ê(~x)~̂p Ê−1(~x) = ~̂p− ı
p0√
2

~x. (28)

We recall that E† 6= E−1. In other words, Êα(~x) is the
displacement operator in the space of nucleon states with
the label α.

Due to this property, when handling the similarity
transformation

Ĉ ′ = Ê1(~x) . . . ÊA(~x)Ĉ(~̂rα − ~̂rβ , ~̂pα − ~̂pβ)×

×Ê−1
1 (~x) . . . Ê−1

A (~x),

we get

Ĉ ′ = Ĉ(Êα(~x)~̂rαÊ−1
α (~x)− Êβ(~x)~̂rβÊ−1

β (~x),

Êα(~x)~̂pαÊ−1
α (~x)− Êβ(~x)~̂pβÊ−1

β (~x)) =

= Ĉ(~rα − ~rβ , ~pα − ~pβ) = Ĉ

i.e.,

Ĉ ′ = Ĉ. (29)

We recall that C is a function of all the relative
coordinates and their canonically conjugate momenta.
It follows from Eqs. (20) and (29) that

| Φcorr(~x)〉 ≡ Ê1(~x) . . . ÊA(~x) | Φcorr〉 =

= Ĉ | Det(~x)〉. (30)

Here, | Det(~x)〉 = Ê1(~x) . . . ÊA(~x) | Det〉 is a new Slater
determinant composed of the renormalized orbitals,

| φa(~x;α)〉 = Êα(~x) | φa(α)〉 (α = 1, . . . , A), (31)

viz.,

| Det(~x)〉 =
1√
A!

∑

P̂∈SA

εP P̂{| φp1(~x; 1)〉 · · · | φpA
(~x; A)〉}.

(32)

In their turn, such orbitals can be evaluated in a concise
analytic form, as the initial ones are linear combinations
of the HOM orbitals (see Appendix A).

Following (26), we arrive at

Fcorr(~v,~s) ≡ 〈Φcorr(−~v) | Ê†
1(−~s)Ê1(~s) | Φcorr(~v)〉 =

= 〈Det(−~v) | Ĉ†Ê†
1(−~s)Ê1(~s)Ĉ | Det(~v)〉. (33)

Expressions (8) and (17) with expectations F (~v,~s) and
F (~v ′, ~s ′), which are determined by Eq. (33), are a
certain base for our calculations.

2.1. Several working formulae: application to
4He

In the special case of the pure HOM (1s)4 configuration
occupied by the four nucleons in 4He, we have

| Φcorr(~x)〉 =| Φcorr〉 = Ĉ | (1s)4〉, (34)

taking into account that the HOM g.s. | (1s)4〉 is the
vacuum for the operators ~̂aα (α = 1, . . . ,A). It is the
case, where | Det(~v)〉 does not depend on ~v coinciding
with the initial Slater determinant | (1s)4〉. Hence,

F1s(~v,~s) = 〈(1s)4 | Ĉ†Ê†
1(−~s)Ê1(~s)Ĉ | (1s)4〉. (35)

In other words, under such a simplification, the function
F (~v,~s) in integral (9) becomes independent of ~λ, and we
get

U(q) = U1s(q)
∫

exp
(
−r2

0λ
2

4A

)
d~λ,

so that

U1s(q)
U1s(0)

=
〈(1s)4 | Ĉ†Ê†

1(−ı r0√
2
~q)Ê1(ı r0√

2
~q)Ĉ | (1s)4〉

〈(1s)4 | Ĉ†Ĉ | (1s)4〉 .

(36)

Thus, the FF of interest is

FEST(q) = FTB(q)FIPM(q)Fcorr(q), (37)

where, according to Eq.(A.1), we have the Tassie–Barker
factor FTB(q) and the HOM FF FHOM(q). The factor

Fcorr(q) =
〈(1s)4 | Ĉ†Ê†

1(−ı r0√
2
~q)Ê1(ı r0√

2
~q)Ĉ | (1s)4〉

〈(1s)4 | Ĉ†Ĉ | (1s)4〉
(38)

incorporates the SRC in any way.
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At this point, one can proceed, at least, along
two guidelines. One of them could be based upon the
representation

〈(1s)4 | Ĉ†Ê†
1(−ı

r0√
2
~q)Ê1(ı

r0√
2
~q)Ĉ | (1s)4〉 =

= 〈(1s)4 | Ĉ†1(−~q)Ĉ1(~q) | (1s)4〉, (39)

where

Ĉ1(~q) = Ê1(ı
r0√
2
~q)Ĉ(~̂r1, ~̂p1, · · · )Ê−1

1 (ı
r0√
2
~q) =

= C

(
~̂r1 + ı

~q

2
r2
0, ~̂p1 +

~q

2
, . . .

)
. (40)

Other continuation is prompted by the relation

Ê†
1(−ı

r0√
2

~q )Ê1(ı
r0√
2

~q ) = exp
(

r2
0q

2

4

)
exp(ı~q ~̂r1),

that gives rise to

Fcorr(q) = exp
(

r2
0q

2

4

)
FC(q), (41)

FC(q) =
〈(1s)4 | Ĉ† exp(ı~q~̂r1)Ĉ | (1s)4〉

〈(1s)4 | Ĉ†Ĉ | (1s)4〉 , (42)

where FC(q) is the no CM corrected FF with the
correlated g.s. Ĉ | (1s)4〉.

Analogously, we find

N(x) = NTB(x) NHOM(x)Ncorr(x) (43)

with the own Tassie–Barker factor

NTB(x) = exp
(

p2
0 x2

4A

)
(44)

and

NHOM(x) = exp
(
−p2

0 x2

4

)
, (45)

Ncorr(x) =
〈(1s)4 | Ĉ†Ê†

1(
p0√
2
~x)Ê1(− p0√

2
~x)Ĉ | (1s)4〉

〈(1s)4 | Ĉ†Ĉ | (1s)4〉 .

(46)

Again, different continuations are possible (cf. the
transition from Eq. (38) to Eqs. (39) and (41)). In parti-
cular, with the help of

Ê†
1(

p0√
2
~x)Ê1(− p0√

2
~x) = exp

(
p2
0 x2

4

)
exp

(
ı~̂p1~x

)
,

we get

Ncorr(x) = exp
(

p2
0 x2

4

)
NC(x), (47)

NC(x) =
〈(1s)4 | Ĉ† exp(ı~̂p1~x)Ĉ | (1s)4〉

〈(1s)4 | Ĉ†Ĉ | (1s)4〉 . (48)

The Fourier transform

ηC(p) =
1

(2π)3

∫
e−ı~p~xNC(x)d~x (49)

gives us the one-body momentum distribution (OBMD)
without the CM correction of the model g.s. Ĉ | (1s)4〉.

By definition, the intrinsic DD is

ρint(r) =
1

(2π)3

∫
e−ı~q~rFint(q)d~q =

= 〈Φint | δ(~̂r1 − ~̂R− ~r) | Φint〉, (50)

so that the relations

ρEST(r) =
1

(2π)3

∫
e−ı~q~rFEST(q)d~q

and

ρC(r) =
1

(2π)3

∫
e−ı~q~rFC(q)d~q

are, respectively, the one-body density distribution
(OBDD) with the CM correction and the no CM
corrected distribution.

Thus, we have shown (with the help of purely
algebraic means) that the evaluation of the distributions
can be reduced to the well-known treatment. Indeed, the
expectation values (42) and (48) occur in all conventi-
onal calculations with the many-particle WF (20), i.e.,
without any CM correction. Diverse methods have been
elaborated when evaluating similar quantities (see, e.g.,
[6, 8, 30–35] and refs. therein). In this work, we confi-
ne ourselves to comparatively simple computations for
the (1s)4 configuration, where a short-range repulsion
between nucleons is introduced in an effective way, viz.,
modifying the s.p. orbital as in [10]. Respectively, the
following WF is used in the next section.
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3. Analytic Expressions for the Form Factor,
Density and Momentum Distributions with
the Single-particle Wave Function beyond
HOM

In accordance with [10], we employ the normalized
Radhakant, Khadkikar, and Banerjee (RKB) radial orbi-
tal for the lowest s.p. state of 4He,

φRKB(r) =
1√

1 + β2
(φ00(r) + βφ10(r)), (51)

where φ00 and φ10 are the normalized HO radial ei-
genfunctions:

φ00(r) = 2

√
1√
πbH

r

bH
exp

(
− r2

2b2
H

)
, (52)

φ10(r) =

√
3!√
πbH

r

bH

[
1− 2

3
r2

b2
H

]
exp

(
− r2

2b2
H

)
(53)

for the states with n = 0, l = 0 and n = 1, l = 0, respecti-
vely. Here, bH is the HO parameter, and β is a mixing
parameter.

The RKB WF allows one to obtain the following
expressions for the density distribution (normalized to
unity), for the point proton FF as well as for the MD
(also normalized to unity):

ρRKB
sp (r) =

1
(
√

πbH)3(1 + β2)
exp

(
− r2

b2
H

)
×

×
[
1 +

√
3
2
β

(
1− 2r2

3b2
H

)]2

, (54)

FRKB
sp (q) =

1
1 + β2

exp
(
− (bHq)2

4

)
×

×
[
1 + β2 +

β√
6

(
1−

√
2
3
β

)
b2
Hq2 +

β2b4
Hq4

24

]
, (55)

ηRKB
sp (p) =

b3
H

π
√

π(1 + β2)
exp(−b2

Hp2)×

×
[
1−

√
3
2
β

(
1− 2

3
b2
Hp2

)]2

. (56)

3.1. The CM corrected form factor F (q) and its
reduction to quadratures

Assuming a Slater determinant as the g.s. (1s)4 of 4He,
its FF in the fixed-CM approximation can be written in
the form (cf. [10]):

FEST(q) =
∫

F1s(|~q + ~u|)F 3
1s(u)d~u∫

F 4
1s(u)d~u

, (57)

where

F1s(v) ≡
∫

ei~v~rφ2
1s(r)d~r =

4π

v

∫
φ2

1s(r) sin vr rdr

is the not CM-corrected FF.
In the case of the RKB-like s.p. WFs whose orbitals

are truncated expansions in the radial HO eigenfuncti-
ons, the multiple integrals on the r.h.s. of Eq. (63)
can be expressed through simple integrals. The respecti-
ve algebraic technique has been developed in [12] and
exposed recently in [37] (see also Appendix A to the
present paper). Its application with the RKB orbital
enables us to get

FRKB(q) =
ARKB(q)
ARKB(0)

, (58)

where

ARKB(q) = I1(q) + I2(q),

I1(q) =
4π

qb4
H

exp
(
− 3

16
q2b2

H

)
×

×
∞∫

0

{B2

[
1
4
(t− 3

4
qbH)2

]
M3

2

[
1
4
(t +

1
4

qbH)2
]
−

−B2

[
1
4
(t+

3
4
qbH)2

]
M3

2

[
1
4
(t− 1

4
qbH)2

]
} exp(−t2)tdt,

I2(q) =
π

b3
H

exp
(
− 3

16
q2b2

H

)
×

×
∞∫

0

{B2

[
1
4
(t− 3

4
qbH)2

]
M3

2

[
1
4
(t +

1
4
qbH)2

]
+

834 ISSN 0503-1265. Ukr. J. Phys. 2007. V. 52, N 9



A SIMULTANEOUS CENTER-OF-MASS CORRECTION

+B2

[
1
4
(t +

3
4
qbH)2

]
M3

2

[
1
4
(t− 1

4
qbH)2

]
} exp(−t2)dt,

ARKB(0) =
4π

b3
H

∞∫

0

M4
2

[
1
4

t2
]

exp(−t2)t2dt.

The functions M2(z) and B2(z) are second degree
polynomials of the variable z

M2(z) = m0 + m1z + m2z
2

B2(z) = h0 + h1z + h2z
2,

where the constants are related to the mixing parame-
ter β

m0 = 1 + β2,

m1 = 2
√

2/3β(1−
√

2/3β),

m2 = (2/3)β2,

and

h0 = m0 + m1 + 2m2,

h1 = m1 + 2m2,

h2 = m2.

3.2. The CM corrected momentum distribution
η(p) and its reduction to quadratures

In parallel, starting from Eq.(16), we obtain, for the
(1s)4 configuration with the Slater determinant | Φ〉 =
| (1s)4〉 (see Appendix B to Lect. I in [37]),

NEST(x) =
∫

d~k 〈1s | exp

(
ı
~k~̂r

A

)
exp

(
ı
A− 1

A
~̂p~x

)
| 1s〉×

×〈1s | exp

(
ı
~k~̂r

A

)
exp

(
−ı

~̂p~x

A

)
| 1s〉3. (59)

Again, using representation (5) and splitting the
exponents involved in Eq.(67) with the succesive normal

ordering of the operators ~̂a † and ~̂a (the former are to
the left from the latter), we get

N(x)RKB

N(0)RKB
= exp

(
−A− 1

A

x2

4b2
H

)
J(x)
J(0)

, (60)

where the integral J(x) is determined by

J(x) =

∞∫

0

exp
(
−r2

0λ
2

4A

)
g(λ2; x2)λ2dλ,

g(λ2; x2) =
(

A1 +
1
3
A2

)
B3

1 +
(

A1 +
3
5
A2

)
B2

1B2+

+3
(

1
5
A1 +

1
7
A2

)
B1B

2
2 +

(
1
7
A1 +

1
9
A2

)
B3

2 ,

A1 = 1 + β2 −
√

2
3

β

[
1 +

√
2
3
β

] (
A− 1

A

)2
p2
0x

2

2
+

+

√
2
3
β

[
1−

√
2
3
β

]
r2
0λ

2

2A2
+

+
1
6
β2

[(
A− 1

A

)2
p2
0x

2

2
− r2

0λ
2

2A2

]2

,

A2 =
1
6
β2

(
A− 1

A

)2
x2λ2

A2
,

B1 = 1 + β2 −
√

2
3
β

[
1 +

√
2
3
β

]
p2
0x

2

2A2
+

+

√
2
3
β

[
1−

√
2
3
β

]
r2
0λ

2

2A2
+

1
6
β2

[
p2
0x

2

2A2
− r2

0λ
2

2A2

]2

,

B2 =
1
6
β2 x2λ2

A4
.

Thus, the structure function NRKB(x) can be reduced
to one-dimensional integrals similar to those derived for
FRKB(q). Here, A = 4, but we allow A to be changeable,
particularly, in order to check that the corresponding di-
stribution

ηRKB
EST (p) =

1
2π2p

∞∫

0

NRKB(x)/NRKB(0) sin(px)xdx

to the limit A →∞ yields the not CM corrected distri-
bution (62).
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Fig. 1. Point-like FF (left) and the charge FF (right) of 4He.
Curves calculated with the RKB WF using the EST prescripti-
on (solid) and without the CM-correction (dashed); experimental
points from [39]. Other clarifications are given in the text

Fig. 2. One-body density distribution (OBDD) for (1s)4 confi-
guration with the RKB orbital in the fixed-CM approximation
(solid) and without the CM correction (dashed). For two sets of
parameters: bH = 0.8532 fm and β = −0.4738 (top); bH = 0.8532

fm and β = 0 (bottom). Dot-dashed line with the parametrization
from [41]

4. Results and Discussion

The analytic expressions obtained in Section 2 for the
density and momentum distributions and their Fouri-
er transforms are sufficiently general to be applied in
different translationally invariant treatments with the
SRC included. The corresponding formulae derived in

Fig. 3. One-body momentum distribution (OBMD) for the (1s)4

configuration with the RKB orbital. Difference between the curves
is the same as in Fig. 2. Dot-dashed line with the parametrization
from [42]

Fig. 4. Variations logηRKB
EST (p) (solid), logηRKB

sp (p) (dashed), and
logηMorita(p) (dot-dashed) with p. Notation logηMorita(p) =�

4
3

�3
WSN( 4

3
p), where the function WSN(x) calculated with the

convenient parametrization from [42]. Points are resulted from
[24]

Section 3 in the case of a 4He nucleus have been
employed to carry out our the calculations beyond the
simple HOM. Their numerical results are displayed in
Figs. 1–4.

In Fig. 1, we show the results of calculations of the
charge FF, Fch(q2) = fp(q)F (q) of the alpha particle,
using Eqs. (55) and (58) and considering the Chandra
and Sauer prescription [40] for the finite proton si-
ze factor fp(q). The parameters bH and β have been
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determined by the least-square fitting to the experi-
mental values [39]: their best-fit values are bH = 0.8532
fm and β = −0.4738 (χ2 ' 13.07). These values have
been utilized in our calculations shown in Figs. 2–4.

As seen in Fig. 1 (its left part), the CM correcti-
on leads to a considerable qualitative change of the q-
dependence of the FF: its first minimum and second
maximum are shifted towards higher q-values. This di-
fference between the solid and dashed curves is due to
the different behavior of the respective densities at small
distances r ≤ 1 fm: see Fig. 2, top, where the dashed
curve is ρRKB

sp (r) by Eq. (54), while the solid line is
determined by

ρRKB(r) =
1

2π2r

∞∫

0

FRKB(q) sin(qr)qdq. (61)

Moreover, we see that each of the distributions (for the
simple HOM orbital on the bottom and for the RKB
orbital on the top), after being CM corrected, increases
in its central but decreases in its peripheral region. One
may say that we encounter a specific effect of shrinki-
ng the OBDD owing to the translationally invariant
treatment.

In addition, there is a central depression of the densi-
ty distribution (cf. the upper and lower dashed lines in
Fig. 2). Such a change is not unexpected since the RKB
WF represents a simple way to allow for some of the
effects of short-range repulsion between the nucleons in
4He. These numerical results get an explicit confirmation
if we write

ρRKB
sp (0) =

1
(
√

πbH)3
1

1 + β2

(
1 +

√
3
2
β

)2

. (62)

Evidently, the inequality

ρRKB
sp (0) ≤ ρRKB

sp (0) |β=0 ≡ ρHOM(0) =
1

(
√

πbH)3

takes place for negative β values with | β |< 2
√

6.
In parallel, we show in Fig. 3 that the corresponding

change of the OBMD has much in common with that for
the OBDD, viz., the distribution ηRKB

EST (p) turns out to
be shrunk in the above sense relative to the distributi-
on ηRKB

sp (p). Thus, we see a simultaneous shrinking of
the density distribution ρ(r) and the momentum distri-
bution η(p). As has been shown in [12] (see also [14]),
such a simultaneous change of these distributions plays
a substantial role in getting a fair treatment of the data
on the elastic and inelastic electron scattering of 4He.

Let us recall that there the charge FF and the dynamic
FF of 4He were calculated using one and the same HOM
WF, corrected both with the fixed-CM approximation
and the Peierls–Yoccoz prescription [44].

Regarding the properties of these simultaneously
corrected distributions in detail, we would like to
emphasize a practical consequence of their interpretati-
on. This aspect becomes especially transparent in the
case of the simple HOM (1s)4 configuration, where we
have

ρHOM
EST (r) = [

√
πr̄0]−3 exp(−r2/r̄2

0)

vs

ρHOM
sp (r) = [

√
πr0]−3 exp(−r2/r2

0)

and

ηHOM
EST (p) = [

√
πp̄0]−3 exp(−p2/p̄2

0)

vs

ηHOM
sp (p) = [

√
πp0]−3 exp(−p2/p2

0).

Thus, the inclusion of CM corrections gives rise to two
independent renormalizations, r0 ≡ bH → r̄0 =

√
3/4r0

and p0 ≡ bH
−1 → p̄0 =

√
3/4p0, of the oscillatory

parameter values, r0 and p0 (cf. [12]). Evidently, such
changes are not equivalent to a hasty replacement of p0

by
√

4/3p0 if one follows the Tassie–Barker recipe with
bH →

√
3/4bH only.

Now, following the conventional way of determining
the HOM parameter r0, as in [12], we use the expansions

Fch(q2) = 1− 1
6
q2r2

ch + · · · ,

fp(q) = 1− 1
6
q2r2

p + · · ·

and

F (q) = 1− 1
6
q2r2

rms + · · · ,

where, within the HOM, we have

r2
rms =

3
2
r2
0,

so that

r2
ch =

3
2
r2
0 + r2

p,
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whence

r2
0 ≡ r2

exp =
2
3

[
r2
ch − r2

p

]
. (63)

Doing so for the CM corrected quantities, we find the
similar relation

r̄2
0 =

2
3

[
r2
ch − r2

p

]
= r2

exp (64)

with the identical q-dependence FHOM
EST (q) = FHOM(q) =

exp(−q2r2
exp/4). At the same time, the difference

between the respective OBMDs becomes more consi-
derable than that after the substitution r0 →

√
A

A−1rexp

in ηHOM
sp (p) = r3

0
π3/2 exp(−p2r2

0), which gives

ηHOM
sp (p) =

(
A

A− 1

)3/2 r3
exp

π3/2
exp

[
− A

A− 1
p2r2

exp

]

vs

ηHOM
sp (p) =

r3
exp

π3/2
exp(−p2r2

exp).

Under the simultaneous CM correction of the OBDD
and OBMD, we have

ηHOM
EST (p) =

(
A

A− 1

)3 r3
exp

π3/2
exp

[
−

(
A

A− 1

)2

p2r2
exp

]

(65)

vs

ηHOM
sp (p) =

r3
exp

π3/2
exp(−p2r2

exp), (66)

which is equivalent to the substitution r0 → A
A−1rexp in

ηHOM
sp (p) = r3

0
π3/2 exp(−p2r2

0).
Note also that the product r̄0p̄0 = 1 − A−1 6= 1,

unlike the relation r0p0 = 1. In this connection, followi-
ng [19], let us recall the commutation rules for the intri-
nsic coordinate ~r ′ = ~r − ~R and conjugate momenta
~p ′ = ~p− ~P/A :

[~r ′
l, ~p

′
j ] = iδl,j(1− 1/A), (l, j = 1, 2, 3). (67)

One can show that the corresponding uncertainty pri-
nciple is related to the deviation from unity. Thus,
the uncertainty principle does not contradict the si-
multaneous shrinking of the density and momentum di-
stributions (see also [37], Lect. I, Suppl. C)

In the case of the RKB function, we get

r2
rms =

3
2
r2
0 −

β
√

6
1 + β2

(
1−

√
2
3
β

)
r2
0. (68)

This means that the short-range repulsion involved in
the WF with a negative β leads to some increase in
the rms radius, viz., rRKB

rms > rHOM
rms . For the values

bH = 0.8532 fm and β = −0.4738, formula (68) yi-
elds rRKB

rms = 1.429 fm, so that the corresponding charge
radius is equal to rRKB

ch = 1.667 fm. Here, we employ
the charge proton radius rp = 0.86 fm (see, for example,
Appendix 7 in [43]).

The CM correction gives an opposite effect. Indeed,
after some calculation, we find that rEST

rms = 1.309 fm for
the same bH = 0.8532 fm and β = −0.4738. This yields
rEST
ch = 1.566 fm.

The variation of log ηRKB
EST and log ηRKB

sp with p is
depicted in Fig. 4 for a wider range of momenta. It is
seen from Fig. 4 that the allowance of the CM motion
improves the description of the available data on the
OBMD of an alpha particle. It is further seen from Fig.
4 that, in the translationally invariant quantity accordi-
ng to the fixed-CM prescription, the “seagull” behavior
appearing in the variation of the corresponding s.p. one
becomes somewhat less pronounced. The dip is dimini-
shed, and it moves to smaller values of momentum.

Finally, we would like to point out in connection
to the comparison with the s.p. distributions that the
CM corrected OBDD and OBMD become closer to the
corresponding microscopic ones by using their conveni-
ent parametrizations from [41] and [42], as one can see
in Figs. 3 and 4. According to communication [42], one
has to introduce the factor (2π)−3 to reproduce the
momentum distribution ηMorita(p) which is one of the
significant results obtained by the Sapporo group. At
this point, let us recall that these authors employed
the so-called ATMS-method (ATMS is abbreviation of
“Amalgamation of Two-body correlations into Multiple
Scattering process”) to construct the variational WF
of the 4He nucleus (see [21] and refs. therein). Along
the variational approach, a considerable progress was
made when including more the dynamics of the reali-
stic nucleon-nucleon interaction such as the effect of its
tensor component (cf. [22]).

5. Concluding Remarks

We have seen how the approach exposed in [1] can be
extended to the translationally invariant evaluation of
the density and momentum distributions in nuclei. The
present analysis shows that the restoration of translati-
onal invariance in the Slater determinant WF of 4He by
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means of the fixed-CM correction (the EST prescription)
gives rise, as a whole, to essential changes in the r-, p-,
and q-dependences of the OBDD ρ(r), the OBMD η(p),
and the charge FF Fch(q), respectively. We have seen
that the correlation between nucleons induced by the
fixation of the center-of-mass of the nucleus results in
the simultaneous shrinking of ρ(r) and η(p). Meanwhile,
this effect has been revealed here beyond the pure HOM
extending the available experience.

Also, this study demonstrates the relative
importance of the CM and SRC corrections for the
same nucleus, viz., the shrinking of the density and
momentum distributions owing to the use of translati-
onally invariant g.s. wave functions of 4He versus their
broadening after the inclusion of short-range repulsi-
on in these wave functions at small distances r < 1
fm. It is true that the latter has been introduced in
our calculations in a simple manner. Nevertheless, there
are all reasons to believe that the algebraic method
employed here might be helpful within more sophisti-
cated approaches, where the short-range correlations
are taken into account via the Jastrow factor or other
correlation operator (see, e.g., [31]). At present, the
corresponding applications are in progress both for 4He
and 16O nuclei.

One of us, A.S., is very grateful to M. Grypeos and
his colleagues for their hospitality during his visits to
Department of Theoretical Physics at Aristotle Universi-
ty of Thessaloniki, where this work was begun. Also, it is
a great pleasure for us to thank A. Antonov and M. Gai-
darov for sending the numerical values of the momentum
distribution displayed by the points in Fig. 4.

APPENDIX A
Details of calculations beyond HOM

Here, we want to illustrate a convenient method for the evaluati-
on of the expectations in question, being aimed at some general
(model-independent) results (cf. [1, 19]).

First of all, we have, by recurring the Cartesian representation,

exp
h
ı~q (~̂r1 − ~̂R)

i
= exp

�
ı~q

�
A− 1

A

�
~̂r1

�
exp

"
−ı~q

~̂r2

A

#
· · · =

= FTB(q) FHOM(q) exp

�
ı~q

�
A− 1

A

�
r0√
2

~̂a
†
1

�
×

× exp

�
ı~q

�
A− 1

A

�
r0√
2

~̂a1

�
exp

�
−ı~q

r0√
2A

~̂a
†
2

�
×

× exp

�
−ı~q

r0√
2A

~̂a2

�
. . . , (A.1)

FTB(q) = exp(
r2
0q2

4A
), FHOM(q) = exp(− r2

0q2

4
), where the index α

at ~̂aα(~̂a
†
α) is the individual particle number (α = 1, · · · , A).

Thereat, the Tassie–Barker factor FTB(q) appears automati-
cally due to a specific structure of the operators involved. In other
words, its appearance is independent of any nuclear properties (in
general, properties of a finite system). The only mathematical tool
that has been used is the Baker–Hausdorff relation

eA+B = eA eB e−
1
2 [A,B] (A.2)

that is valid with arbitrary operators Â and B̂, for which the
commutator

h
Â, B̂

i
commutes with each of them. Further, applyi-

ng Eq. (A.2) in combination with

(2π)3 δ
�

~̂R
�

=

Z
exp

�
ı~λ ~̂R

�
d~λ, (A.3)

we can show that the expectation value A(q) in Eq. (4) and the
expectation value N(x) in Eq. (16) are expressed through one
and the same function F (~x, ~y) that depends, respectively, on the
arguments ~x = ~v, ~y = ~s (as in Eq. (9)) and ~x = ~v′, ~y = ~s′ (as
in Eq. (18)). In other words, we have constructed the common
generating function for each of them. One should stress that this
result has been obtained independently of the model WF Φ.

The algebraic technique shown here turns out to be useful for
practical calculations with the Slater determinants like | Φ〉 (see
[18]) or the Slater determinants modified by different correlators
(for instance, the Jastrow factor).

In the simplest case of the independent particle model (IPM)
(1s)4 configuration for 4He with the Slater determinant | Φ〉 =|
(1s)4〉, we get, by omitting the nonessential factor [A!]−1,

AIPM(q) = exp

�
− r̄2

0q2

4

�
U IPM(q), (A.4)

U IPM(q) =

Z
d~λ exp

�
− r2

0λ2

4A

�
f(~λ, ~q ), (A.5)

f(~λ, ~q) = 〈1s | exp (−~α∗~̂a
†
) exp (~α ~̂a) | 1s〉×

×〈1s | exp (−~β∗~̂a
†
) exp (~β~a) | 1s〉3, (A.6)

~α = ı
r0√
2A

[~λ + (A− 1)~q], ~β = ı
r0√
2A

[~λ− ~q],

with the renormalized “length” parameter

r̄0 =

r
A− 1

A
r0.

In our case, r0 = bH . We are keeping the notations with a mass
number A (= 4) to point out a certain trend in the A-dependence.

At this point, let us note that the RKB orbital (or another
model orbital) being composed of the basis states of the spherical
representation can be written then as a superposition of the basis
states | n1n2n3〉 of the Cartesian representation (see, e.g., [38] and
refs. therein),

| n1n2n3〉 =
1√

n1!n2!n3!
(~̂a

†
1 )n1 (~̂a

†
2 )n2 (~̂a

†
3 )n3 | 0〉, (A.7)

where the vector | 0〉 ≡| 000〉 is the vacuum state with respect to
the destruction operators âi (i = 1, 2, 3), e.g.,

~̂a | 0〉 = 0. (A.8)

It is proved that, for the RKB-orbital,

| 1s〉 = [1 + β2]−1/2[1− (β/
√

6) ~̂a
†
~̂a
†

] | 0〉. (A.9)
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Substituting (A.9) into (A.6) (when calculating the ratio
AIPM(q)/AIPM(0), the normalization factor [1 + β2]−1/2 can be
omitted), we find

exp (~χ · ~a) | 1s〉 = [1− (β/
√

6)(~̂a
†

+ ~χ)(~̂a
†

+ ~χ)] | 0〉 (A.10)

for any complex vector ~χ.
Now, after the modest effort, we obtain

〈1s | exp (−~χ ∗ · ~̂a †
) exp (~χ · ~̂a) | 1s〉 = 1 + β2 − 2

3
β2~χ ∗~χ−

− β√
6

[~χ ∗~χ ∗ + ~χ ~χ ] +
β2

6
(~χ ∗~χ ∗)(~χ ~χ). (A.11)

It follows from (A.11), for instance, that

〈1s | exp (ı~α∗~̂a
†
) exp (ı~α~̂a) | 1s〉 = M2

�
~α∗~α
2

�
, (A.12)

where the polynomial M2(z) is given at the end of Subsection 3.1.
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A SIMULTANEOUS CENTER-OF-MASS CORRECTION

ОДНОЧАСНА КОРЕКЦIЯ ПРОСТОРОВОГО
ТА IМПУЛЬСНОГО РОЗПОДIЛIВ
НУКЛОНIВ В ЯДРАХ НА РУХ
ЦЕНТРА МАС

О. Шебеко, П. Григоров

Р е з ю м е

Основну увагу зосереджено на ЦМ-корегуваннi одночастинко-
вої матрицi густини та її фур’є-перетворень, якi мiстять багату
iнформацiю про властивостi основного стану ядра (зокрема про
нуклон-нуклоннi кореляцiї). Цi величини є невiд’ємною скла-
довою аналiзу розсiяння швидких частинок (наприклад еле-
ктронiв) ядерними мiшенями. Насамперед, йдеться про роз-

подiл густини нуклонiв ρ(r) i вiдповiдний форм-фактор, а та-
кож про iмпульсний розподiл нуклонiв η(p) в ядрi. При їх об-
числюваннi в цiй роботi застосовано алгебраїчний метод, що
ґрунтується на використаннi декартового зображення для опе-
раторiв координат та iмпульсiв нуклонiв. Цей метод (див. [1])
дозволив не тiльки спростити розрахунки очiкувань багаточа-
стинкових мультиплiкативних операторiв, але й, що важливi-
ше, дав змогу виявити новi модельно незалежнi зв’язки мiж
розглянутими величинами. Вiдповiднi спiввiдношення демон-
струють одночасне звуження обох розподiлiв ρ(r) та η(p) за
рахунок виокремлення руху ЦМ. Такий якiсний результат пiд-
тверджується чисельними розрахунками в наближеннi фiксо-
ваного ЦМ для ядра 4He. У цьому контекстi обговорюються
значнi вiдхилення вiд популярного рецепта Тассi–Баркера як
в межах осциляторної моделi, так i поза її межами.
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