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We present the results of experimental studies of the temperature
dependence of the dynamical viscosity η(t) for a wide class of liquid
systems near the critical temperature (CT) of stratification. The
analysis of those data is performed on the basis of the equation
of viscosity of the dynamical theory of critical phenomena and
a semiempiric equation which accounts the spatial dispersion of
the system near CT. By the data on η(t), we have calculated a
number of parameters which characterize the fluctuation part of
the viscosity of various liquid systems near CT: the amplitudes
and the critical indices of correlation length and viscosity, and a
finite value of viscosity at the critical point.

The experimental and theoretical studies of individual
liquids and double solutions near their critical states,
especially the kinetic properties of liquid systems,
continue to be actual in the physics of condensed matter
[1, 2].

According to the modern dynamical theory of critical
phenomena [3–5], the general equation of viscosity near
CT, which accounts both the regular part of the viscosity
and the fluctuation one, can be presented in the form

η(T ) = ηr(T ) + ηf (T )

η(T ) = ηr(T )(qRc)Zη = A exp
B
T

(r0q)Zη t−νZη , (1)

where ηr(T ) = A expB
T – the regular part of the viscosity

which does not account fluctuations of the density or
concentration in a liquid system; ηf – the singular or
fluctuation part of the viscosity [3–5]; Rc = r0t

−ν – the
correlation length of fluctuations of the concentration;
ν – the critical index of correlation length; zη – the
critical index of viscosity; q – the parameter which has
the dimension of a wave vector; t = (T −Tc)/Tc, and Tc

– the critical temperature.
According to [3–5] and (1), the viscosity of a

substance grows infinitely, while approaching CT. At
the same time, as seen from (1), the temperature region,

where this equation is valid, is bounded: the equation
cannot be used in the hydrodynamical region, where
qRc ¿ 1; in addition, the temperature region of its
validity is not specifically determined as t →0. As
distinct from those theoretical calculations, the analysis
of many up-to-date experimental data [6–16] testifies,
nevertheless, to the finiteness of the viscosity at the
critical point.

The same conclusion can be also drawn from the
Fixman’s integral equation of critical viscosity [17] which
accounts the spatial dispersion of the system near the
critical point. Unfortunately, the complicated integral
form of this equation hampers its practical application
to the analysis of available experimental data on η(T ).

At the same time, it was shown in [17] on the
simplified solution of the equation, by taking the wave
vector q →0, that the viscosity of the system η(t) is
related to the compressibility β(t) and the correlation
length of the system (ηf (t) ∼ β1/2 ∼ Rc ∼ t−1/2 ⇒
∞). That is, the shear viscosity ηf (t) tends to infinity,
according to [17], only as q ⇒0.

Unfortunately, this old work [17] has not been
considered and analyzed in the modern analysis of the
equations of critical viscosity [3–5].

In view of this fact, we propose here, by basing on
the Fixman’s scientific position, a semiempiric equation
for the critical part of viscosity which accounts, in a
simplified manner, the spatial dispersion of the system:

ηf =

[
(ARc)

2

1 + (qRc)
2

]1/2

=

[
(∆η0t

−ν)2

1 + (qr0t−ν)2

]1/2

, (2)

where ∆η0 – the amplitude of the singular part of
viscosity. This formula agrees qualitatively with the
Fixman’s equation [17] and ensures the finiteness of
viscosity at the critical point.

Then, in addition to the up-to-date equation of
critical viscosity (1), we propose one more equation on
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Fig. 1. Temperature dependence of the fluctuation part of viscosity, а – literature data [10, 11] and b – our experimental data. Solid
lines describe the form of Eq. (7), whose parameters ai and bi are given in Table 2

the basis of (2):

η(T ) = ηr(T ) + ηf (T ) =

= A exp
(

B

T

)
+

[
(∆η0t

−ν)2

1 + (qr0t−ν)2

]1/2

. (3)

We will use these equations (1) and (3)
simultaneously in the analysis of the experimental data
on the temperature dependence of the viscosity η(T )
of a number of various double liquid systems near CT
of stratification: methanol–hexane, methanol–heptane,
nitromethane–n–pentanol [13, 14], trimethylpyridine–
heavy water (3MP–D2О), and trimethylpyridine+heavy
water+sodium chloride (3MP–D2О+NaCl) [10, 11].

In this case, it is worth noting that the use of only
one formula (1) in calculations does not allow one to
determine the critical index of viscosity zη which appears
in this formula in the form of a product (ηf ∼ t−Zην).
In order to determine it, we need to find separately
the critical index of correlation length of the system ν
(Rc ∼ t−ν).

In the present work, we calculated the parameters
A and B of the regular part of viscosity ηr with
the purpose to determine the fluctuation part of the
viscosity ηf (2) for the objects under study [13, 14]
and to describe the literature data [10, 11] firstly
in the supercritical region of temperatures (t >
10−2), where ηr À ηf (the results are given in
Table 1).

T a b l e 1. Parameters of Eq. (3) which characterize the viscosity of the liquids under study near CT

Name of a system A, mPa·s B, К ∆η0, mPa·s n ∼ ν ηfc, mPa·s (qr0)
Methanol–hexane 0.2×10−1 878 0.19×10−2 0.61±0.05 9.5×10−2 0.02
Methanol–heptane 0.2×10−1 900 0.18×10−2 0.63±0.05 6.4×10−2 0.028
Nitromethane–n–pentanol 0.65×10−3 2180 0.45×10−2 0.64±0.05 0.26 0.017
3MP–D2О 0.49×10−3 2520 0.75×10−2 0.60±0.05 0.50 0.015
3MP–D2О+NaCl 0.51×10−3 2530 0.6×10−2 0.62±0.05 1.11 0.009

T a b l e 2. Parameters which define the equation of asymptotics of the fluctuation part of the viscosity of the liquid
systems under study

Name of a system a0, mPa·s b0, mPa·s a1, mPa·s b1, mPa·s ν (qr0)
Methanol–hexane 12 500 12000 0.05 0.61 0.024
Methanol–heptane 15 650 15000 0.2 0.63 0.023
Nitromethane–n–pentanol 3 144 7936 0.015 0.6 0.020
3MP–D2О 2 150 5000 0.05 0.64 0.013
3MP–D2О+NaCl2О+NaCl 2 190 6000 0.0080 0.62 0.010
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Then, by using the values of the parameters A
and B, we separated and analyzed the temperature
dependence of the fluctuation part of viscosity (2)
ηf (T ) = η(T )− ηr(T ). These data are presented in Fig.
1,a,b. As seen from this figure, while approaching CT
(t →0), the reciprocal quantities η−1

f tend to a constant
value η−1

f (t = 0) = η−1
fc (see Figs. 1,а,b and 2,а,b),

which confirms the form of Eq. (2) at t = 0 (η−1
fc =

qr0
∆η0

). Its values for the studied objects are presented in
Table 1. In order to determine the temperature behavior
of the fluctuation part of viscosity, we analyzed the
temperature dependence of the difference (η−1

f − η−1
fc ) =

∆η−1
f ∼ tn on the double logarithmic scale. It is

established that, for all the studied objects, the index
n = 0.61 ± 0.03 and is close, in the limits of the
experimental error, to the critical index of correlation
length ν=0.63 [1].

The values of the index n, amplitude ∆η0, and
product (qr0) for all the studied objects are presented
in Table 1.

Thus, this experimental result, (n ≈ ν), confirms
both the conclusion made in [17] on the linear connection
of the fluctuation part of viscosity with the correlation
length of the system (ηf (t, q = 0) ∼ Rc(t)) and the
proposed form of the equation of critical viscosity (2).

In what follows, these data (Fig. 1) are used for
the determination of the critical index of viscosity zη

(η(t) ∼ tZη·ν) [3,4]. To this end, by analyzing the
temperature dependence of the ratio η(t)

ηP (t) ≈ tZη·ν for all
the systems [10, 11, 13, 14], we will determine, at first,
the product zην = 0.04±0.005. Then, with regard for the
value of the index n ∼= ν = 0.62±0.03 obtained earlier,
we found the critical index of viscosity zη = 0.065±0.01
(Table 1). This result is corroborated by the analysis of
the data of other experimental studies of the viscosity
near CT [6–9, 15, 16].

Our experimental results on ηf (t) [13, 14] and the
literature data [10, 11] (Fig. 1) allow us to verify the
form of the asymptotics of the above-proposed equation
(2) in various limiting cases.

In the critical region (t →0, qRc →∞), Eq. (2) yields

η−1
f =

qr0

∆η0

[
1 +

1
2

(
tν

qr0

)2
]

= a0 + a1t
2ν ,

a0 =
qr0

∆η0
, a1 =

1
2(qr0)∆η0

. (4)

It is seen from (4) that, at the critical temperature (t
= 0), the viscosity takes a finite value ηfc = ∆η0

r0q . While

a

b

c

Fig. 2. Behavior of the viscosity η(t)−1
f of the systems under

study in the close vicinity of the critical temperature (qRc À 1):
η−1

f = a0 + a1t2ν : а – our experimental data; b and c – the
literature data [10, 11]
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a b

Fig. 3. Behavior of the viscosity η(t)−1
f of the systems under study in the hydrodynamical region of temperatures (qRc ¿ 1): η(t)−1

f =

b0tν + b1t−ν , а) our experimental data; b) the literature data [10, 11]

moving off CT, the reciprocal quantity η−1
f varies by the

square law η−1
f = const + a1(tν)2.

In the opposite limiting case in the hydrodynamical
region (qRc ¿1), Eq. (2) yields

η−1
f =

(
∆η0t

−ν
)−1 +

(qr0)2

2
(∆η0t

ν)−1 =

=
(
∆η0t

−ν
)−1 +

η−2
ФК
2

∆η0t
−ν = b0t

ν + b1t
−ν , (5)

where

b0 =
1

∆η0
, b1 =

(qr0)2

2∆η0
=

b0(qr0)2

2
.

Using (4) and (5), we get

qr0 =
a0

b0
. (6)

Then, on the basis of (6), Eq. (2) can be also
represented as

ηf =




(
b−1
0 t−ν

)2

1 +
(

a0
b0

t−ν
)2




1/2

. (7)

The proposed equations of critical viscosity (2), (7)
and the form of their asymptotics (4), (5) were verified
by the data on the temperature dependence of the
viscosity of the objects under study [13,14] and [10, 11]

near CT in two limiting cases: (qRc)2 À 1 (Fig. 2) and
(qRc)2 ¿ 1 (Fig. 3).

In these figures, the solid lines show asymptotics (4)
and (5), whose parameters a0, a1, b1, b0, ν, and the
product (qr0) (6) are presented in Table 2.

Using these parameters, we calculated such an
important parameter of the fluctuation part of viscosity
as (qr0) with the help of formula (6) (Table 2). As seen,
its value coincides, in the limits of the experimental
error, with the experimental value (Fig. 1, Table 1).

It is clear that the experimental data on η(t) (Fig.
1) represented in the general form and the behavior of
η(t) in the asymptotics qR À 1 and qR ¿ 1 (Figs. 2
and 3) well correspond to the form of Eqs. (2), (7) and
asymptotics (4), (5) with the parameters given in Tables
1 and 2.

A similar analysis of the other literature data [6–9,
15, 16] performed by us also corroborates the conclusions
drawn above.

In the case, the simultaneous application of the
equation of viscosity (1) of the modern dynamical theory
of critical phenomena [3, 5] and Eq. (2), which agrees
qualitatively with the Fixman’s theoretical calculations
[17], turns out to be fruitful. This allows us to calculate,
by using the data on η(t), a number of parameters
which characterize the fluctuation part of the viscosity of
various liquid systems near CT (the amplitudes and the
critical values of correlation length and viscosity) and to
determine a finite value of viscosity at the critical point.

Thus, we may conclude on the basis of the performed
experimental studies of the temperature dependence of
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the shear viscosity of liquid systems of different nature
such as dielectric liquids [13, 14], liquid and ionic systems
[10, 11], solutions of polymers [9], metal melts [15, 16],
and liquid crystals [12] that the proposed equation for
the fluctuation part of viscosity is in agreement with
the Fixman’s equation [17] and describes adequately
the available experimental data on the temperature
dependence of the viscosity near the critical point.
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ПОВЕДIНКА В’ЯЗКОСТI РIДИННИХ СИСТЕМ ПОБЛИЗУ
КРИТИЧНОЇ ТЕМПЕРАТУРИ РОЗШАРУВАННЯ

О.Д. Альохiн, О.I. Бiлоус

Р е з ю м е

В роботi представлено результати експериментальних дослiд-
жень температурної залежностi динамiчної в’язкостi широкого
класу рiдинних систем поблизу критичної температури роз-
шарування. Аналiз цих даних проведено на основi рiвняння
в’язкостi динамiчної теорiї критичних явищ i напiвемпiрично-
го рiвняння, що враховує просторову дисперсiю системи по-
близу критичної температури. За даними η(t) розрахували цi-
лий ряд параметрiв, що характеризують флуктуацiйну части-
ну в’язкостi рiзноманiтних рiдинних систем поблизу критичної
точки (КТ): амплiтуди i критичнi показники радiуса кореляцiї
та в’язкостi; визначили кiнцеве значення в’язкостi в критичнiй
точцi.
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