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To the 90-th anniversary of the birthday of S.I. Pekar

Experimental works, which confirm the existence of additional
light waves (ALWs) in the exciton resonance range predicted
by S.I. Pekar in 1957, have been reviewed. The scope of the
review includes works concerning the measurements of absorption,
reflection, and scattering spectra and the spectra of phase changes
of a reflected light wave, as well as the measurements of the
refractive index dispersion. The works concerning the spatial
separation of Pekar waves in thin wedge-shaped crystals have been
considered in detail. A transition to classical single-wave crystal
optics, which takes place after achieving some critical value of
the exciton damping constant, has been traced. The applicability
criteria of classical Kramers–Kronig relations (KKRs) and Fresnel
formulas for the determination of optical characteristics of
crystals have been presented. The characteristic features of the
approximation of reflection spectra under different additional
boundary conditions (ABCs) have been analyzed, as well as the
influence of surface treatment on the profiles of exciton reflection
spectra.
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1. Introduction

In 1957, the priority work by S.I. Pekar [1] was
published. Thirty years later, it was registered by
the State Committee for inventions and discoveries at
the Council of Ministers of the USSR as a domestic-
science discovery “The phenomenon of propagation of
additional light waves (the Pekar waves) in crystals”
[2]. The essence of the discovery is contained in
its formulation: “An unknown earlier phenomenon of
propagation of additional light waves through crystals
has been theoretically established, which is caused by
the dependence of the dielectric permittivity of the
crystal on the wave vector (spatial dispersion) and
which consists in that, provided light waves with
the frequencies close to the frequencies of exciton
resonances are excited in crystals, besides ordinary
birefringence waves, waves with other refractive indices
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are propagated”. In work [1] and other following works,
new, generalized crystal optics had been created, which
is relevant to exciton sections of the spectrum but
includes the traditional classical optics as a particular
case. The prediction of additional light waves (ALWs)
and the changes to the basic laws of crystal optics were
made as a result of taking into account the large effects
of spatial dispersion (SD) of the dielectric permittivity
of the crystal, which had been discovered for the first
time. Earlier, crystal optics dealt with small SD effects
only, which did not lead to the ALW emergence.

The correctness of the theoretical prediction of
ALWs was beyond doubts, but it was not clear to
what extent they influenced the optical characteristics
of crystals and in what cases they had to be taken
into account by experimenters. Owing to tremendous
experimental difficulties, the answers to those questions
were managed to be obtained only a lot of years later,
owing to efforts of plenty of researchers.

The first experiments were executed in the late
1950s and the early 1960s at the Institute of Physics
of the Academy of Sciences of the UkrSSR; here, the
idea of ALWs was born and was widely discussed.
In the works by Brodyn, Prikhot’ko, and others
[3–6], an inconsistency between the area under the
exciton absorption band and the variation range of the
corresponding curve of the refractive index dispersion,
i.e. the violation of the integral KKRs, was revealed
for some molecular and semiconductor crystals at
low temperatures. This fact, which was absolutely
incomprehensible from the viewpoint of classical optics,
can be explained at length in the framework of Pekar’s
theory, where it immediately comes from. In works by
Brodyn and Pekar [7] and Gorban and Timofeev [8],
the intensity oscillations of light transmitted through
anthracene or Cu2O crystals with the variation of
those crystals’ thickness were observed; the oscillations
were explained as a result of interference between
the additional and the main wave. Very important
theoretical and experimental researches of the ALWs
were carried out by Hopfield and Thomas in work [9]
published in 1963. The results of this first stage of studies
were summarized in the monograph by Agranovich and
Ginzburg [10], where it was stated that “the influence of
SD is small in most cases and, leaving gyrotropy aside,
can be registered under rather specific conditions”.

The second stage of the ALW discovery spanned the
1970s and the early 1980s, when, in a number of works
carried out with the application of various experimental
techniques, the existence of Pekar waves in exciton
spectral sections and at low temperatures was irrefutably

proved, and their role in the changes introduced to
the basic laws of crystal optics was elucidated. The
results of some of those works were included into
the second edition of monograph [10]; they were also
expounded in detail in the collection of reviews [11]. An
outcome of the long-term work of S.I. Pekar became
monograph [12] published in 1982. In this monograph,
the results of the ALW theory development obtained
by that time were generalized; the experimental results,
which were considered by the author of the discovery
as its convincing confirmation, were also quoted. SD
was analyzed in the books by Knox [13] and Davydov
[14] and in the collective monograph “Cryocrystals” [15].
After the works cited above had already been published,
in works [16, 17], two identically polarized light waves
induced by a laser beam transmission through a wedge-
edged CdS crystal at a temperature of 1.8 K [18] were
managed to be observed.

Therefore, it can be adopted that, by the early 1990s,
the correctness of the predictions given by S.I. Pekar’s
theory had been completely confirmed experimentally.
Practically all experiments proposed by S.I. Pekar as
early as in 1958 had been carried out, as well as
additional experiments which were devoted to the study
of dispersion, nonlinear phenomena, and luminescence.
It should be emphasized that all the proofs of the ALW
existence were obtained at low temperatures and using
perfect single-crystalline three-dimensional specimens,
the structure of which was close to ideal, i.e. using
monostructures.

During last decades, the interest of researchers
became mainly concentrated in the nanophysics area
direction; the objects of concern became media with
quantum wells, wires, and dots, superlattices, photon
crystals, and so on. In low-dimensional heterostructures,
the wave vector ceases to be a continuous quantum
number in the direction perpendicular to the structure
plane, which, as a rule, is the direction of light
propagation; therefore, the SD effects should not
manifest themselves, and they did not attract enough
attention really. Only during recent years, owing to the
improvement of the quality of grown objects and in
connection with the emergence of new physical problems,
the interest to studying the non-local response of those
media at their interaction with light became renewed.
A new stage of investigations of SD effects in more
complicated systems, which are very promising for
practical applications and technical use, has started.

Because of a large time gap between the researches
executed at the peak of interest in ALWs and at
the present time, the sequence in the development of
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this scientific direction becomes sometimes violated,
and some facts that have already been established
become forgotten. Therefore, challenging seems a task
to summarize the results obtained for three-dimensional
media on the basis of using single crystals. In particular,
the following questions are to be answered: How does
the additional wave influence the optical properties of
three-dimensional media? In what experiments has it to
be taken into consideration? and How does a consistent
transition to single-wave crystal optics happen? The
answers to those questions will help us to reveal common
features in and differences between ALW manifestations
in simple and involved systems, where SD has to be
taken into account along with the quantization of energy
levels associated with the spatial confinement of exciton
motion.

Since the literature devoted to SD is very large
(see, e.g., the monographs and collective monographs
cited above), this review should be considered as a
complementary one. In the first place, attention is
focused on works, where it has been reliably proved
and evidently demonstrated that only Pekar’s theory
correctly describes optical properties of crystals in the
exciton spectral ranges and at low temperatures, while
the use of formulas of classical single-wave crystal optics
could result in crude errors. Owing to an extreme
confinement put onto the review’s length, only the
basic directions of contemporary researches have been
included for consideration.

2. Fundamentals of Pekar’s Theory and
Single-wave Optics

2.1. Spatial dispersion. Pekar’s theory

The classical theory of crystal optics is based on the
principles of causality and locality, i.e. the assumptions
are made that the electric polarization of a medium at
a given point in space is determined by the values of
the electric field at the same point at the present time
moment and at every previous moment. Generally, the
assumption about the response locality is not correct,
so that the polarization of the medium P at the given
point depends also on the values of electric field strength
E within some vicinity of this point. Strictly speaking,
one may talk only about a polarizability kernel which
is determined by an integral dependence of P on E.
Respectively, a non-local linear relation between E and
the induction D = E + 4πP in an infinite spatially

homogeneous medium looks like

D(r, t) = E(r, t)+4π

∞∫

0

dτ

∫

cτ≥ρ

f(ρ, τ)E(t−τ, r+ρ)d3ρ, (1)

where f(ρ, τ) is a real tensor of the second rank, and
integration is carried on over the region which is located
inside a light cone “turned to the past”. For plane waves,
E(r,t) = E0 exp[−i(ωt − kr)], and, from Eq. (1), the
relation D = ε(ω,k)E follows.

Therefore, the violation of the principle of locality
brings about the spatial dispersion, i.e. the dependence
of the dielectric permittivity function ε on the wave
vector k. On the other hand, the dependence of ε on
the frequency ω is a consequence of the principle of
causality. Until work [1] was published, SD was taken
into consideration only when optically active media
were examined [19]. In so doing, the quantity ε was
represented in the form of a series in the wave-vector
powers:

εij(ω,k) = εij(ω) + iγijl(ω)kl + αijlm(ω)klkm, (2)

where the expansion coefficients are equal, by the
order of magnitude, to the size of the region of
mutual influence of neighbor particles. The first term
in the expansion is responsible for the appearance of a
difference between the phase velocities of waves with
right and left circular polarizations in media without the
inversion center. It results in very small corrections to
the refractive indices for visible light, of the order of
a/λ ≈ 3× 10−3, where a is the lattice constant, and λ is
the length of the wave in the medium; therefore, they can
be called small SD effects, although the magnitude of the
polarization plane rotation can be very large, provided
that the thickness of the specimen is considerable.
The number of waves remains the same as in the
case without taking SD into account, when two waves
with mutually orthogonal polarizations can propagate
in the given direction k. In media with the inversion
center, γ(ω) ≡ 0, and the SD effects are proportional
to (a/λ)2 ≈ 10−5. This term, which has not been
considered earlier in crystal optics owing to its extreme
smallness, is responsible, as Ginzburg showed [20], for
the optical anisotropy of cubic crystals. The effect was
revealed in a crystal of cuprous oxide, while studying
the quadrupole transition in precision experiments by
Gross and Kaplyanskii [21], and confirmed by Gorban
and Timofeev [22].

In his work [1], Pekar was the first who predicted
large SD effects in the range of exciton resonances. They
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are associated with the collective character of electron
excitations and a much larger extension of the non-
locality region, which can reach the value of 10−5 ÷
10−4 cm under favorable conditions [12]. In this case,
expansion (2), which is valid far from the resonance,
turns out insufficient for SD to be taken into account
in the vicinity of the resonance.

Owing to the strong exciton-photon interaction in
the resonance region, “mere” excitons and photons are
not real elementary excitations of the crystal; instead,
these are mixed states, which were called by S.I. Pekar as
photon-like excitons. Later on, Hopfield has introduced
a term “polariton” [23]. In the elementary case of an
isolated resonance in the exciton spectral range of
the isotropic crystal, Pekar considered SD by having
presented the ε(ω,k)-dependence in the form

ε(ω,k) = ε0 +
2πe2fN/mω0

ω0 + ~k2/2M − ω − iΓ
, (3)

where ε0 is the background value of ε; e and m are the
electron charge and mass, respectively; f is the oscillator
strength in the elementary lattice; N is the number of
cells in a unit volume; ω0 = E(0)/~; E(0) is energy which
is required for the excitation of an exciton with a zero
quasimomentum; and M and Γ are the effective mass
and the inverse lifetime of exciton, respectively. Thus,
the dependence of ε on k turns out to be included into
the denominator, where the second term – if multiplied
by ~ – is the kinetic energy of an exciton, and non-
locality is caused by the exciton motion in the band. For
local excitations, e.g., for impurity centers with M →∞,
formula (3) automatically leads to the ordinary equation
of classical optics (see Eq. (14) below).

The account of SD in such a manner essentially
changes the behavior of ε at ω → ω0, where the
second term in the denominator becomes prevailing.
Therefore, even under the condition a/λ ¿ 1 (this is
the only limit, where the effective mass approximation
is valid), large SD effects, i.e. large variations of ε in
comparison with ε calculated taking no SD into account,
manifest themselves. Since k = (ω/c)ñ for an arbitrary
fixed polarization in an isotropic crystal, where ñ is
the complex refractive index, the dispersion equation
ε(ω, k) = ñ2 becomes a quadratic one with respect to
ñ and determines two values for every frequency ω:

ñ2
± =

1
2
(µ + ε0)±

√
1
4
(µ− ε0)2 + b, (4)

where

µ = µ′ + iµ′′, µ′ =
2Mc2

~ω2
0

(ω − ω0),

µ′′ =
2Mc2

~ω2
0

Γ, b =
4πc2Me2

~ω3
0m

Nf.

Dispersions of the refractive indices for photon-like
excitons, calculated by formula (4) in an idealized
case where damping is absent (Γ = 0), are depicted
in Fig. 1 for a positive (panel a) and a negative
(panel b) effective mass of exciton (in every figure,
here and below, the energy ~ω is given in units of
the wave number ν = 1/λ0 cm−1, where λ0 is the
light wavelength in vacuum). Solid curves describe the
“+”- and “−”-waves (following Pekar’s terminology) and
correspond to the root values of Eq. (4) taken with the
sign plus and minus, respectively. In contrast to the
classical theory of birefringence, where the dispersion
branches – they are plotted in Fig. 1 by dashed
curves – have vertical asymptotes, the asymptotes in
Pekar’s theory are inclined, whence the availability of
two solutions for every frequency ω becomes evident.
While moving away from the resonance, one of the
waves becomes asymptotically transformed into an
ordinary wave of classical crystal optics, and the
other fades down, because its amplitude becomes very
small.

The two waves are identically polarized and
propagate in the same direction, but with different
velocities (with different ñ’s). It is their principal
difference from two waves arising in an anisotropic
crystal owing to birefringence, which also have different
ñ’s but are polarized orthogonally to each other.
The two identically polarized waves are transverse
(below, they will be designated by index T ), i.e.
E⊥k for them, and their dispersion equations look
like ε(ω,k) = (ck/ω)2. In work [1], a possibility for
strictly longitudinal waves (they will be designated by
index L) to propagate was also demonstrated; for those
waves, E‖k, and they comprise a macroscopic field
of a moving exciton. The longitudinal waves are the
solutions of the equation ε(ω,k) = 0. According to
Pekar’s theory, the exciton wave transforms into an
additional light one owing to the electromagnetic field
accompanying it; therefore, the number of transverse
ALWs is equal to the number of excitons which undergo
a resonance.

In connection with the appearance of ALWs,
Maxwell boundary conditions – the continuity of the
tangential components of the vectors E and H across the
interface between two media – turned out insufficient for
the determination of the amplitudes of the reflected and
transmitted waves from the amplitude of the incident
one. This is why Pekar has introduced an additional
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Fig. 1. a – dispersion of the refractive indices for photon-excitons calculated in the framework of Pekar’s (solid curves) and classical
(dashed curves) theories for an isotropic crystal and an isolated resonance for the positive effective mass of an exciton. b – the same as
in panel a, but for the negative effective mass of an exciton. c – the dependences n+(ω), n−(ω), and κ−(ω) for M > 0. d – spectrum of
light reflection from semiinfinite crystal R, calculated for the effective quantities neff(ω) and κeff(ω) (panel e). The main parameters
of calculations correspond to those of An=1-exciton in a CdS crystal: ∆LT = 16 cm−1, ω0 = 20585 cm−1, ε0 = 7.4 (except for panels
a and b, for which ε0 = 50 to make the growth of the photon-exciton branch above the frequency ωL evident); M = 0.8me (panels a,
c, d, and e) and −0.8me (panel b); Γ = 0

boundary condition (ABC)

Pex(r) = 0 (5)

at the crystal surface, where Pex is the exciton portion
of crystal polarization. In this case, the crystal surface
is a node surface for both exciton waves and the specific

exciton dipole moment. Condition (5) means that an
exciton wave is specularly reflected from the surface.

Using this ABC and considering the opportunity for
both the transverse and longitudinal waves to propagate,
Pekar has derived new generalized formulas for a light
wave reflected from a crystal in the exciton spectral
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range. The problem concerning the transmission of light
through and its reflection from a plane-parallel plate
was also solved. The results of researches devoted to the
influence of the crystal surface on the solutions obtained
for an infinite crystal testified that there is a possibility
of the existence of surface exciton states. One of the most
important results of Pekar’s theory became a conclusion
about the opportunity for the universal KKRs to be
inapplicable in the range of exciton resonance and at
low temperatures. Thus, new generalized crystal optics
has been created.

2.2. Classical crystal optics

For making a comparison between the experimental and
theoretical results, it is necessary to concisely recall
the formulas and laws of classical crystal optics. An
isotropic medium is characterized by a complex dielectric
permittivity ε = ε′ + iε′′ = ñ2 and a complex index
of refraction ñ = n + iκ, where n = Re ñ is the
ordinary refractive index, and κ = Im ñ is the absorption
coefficient; ε′ = n2 − κ2; and ε′′ = 2nκ. The parameter
κ characterizes the damping of the amplitude and,
therefore, the intensity I of a light wave as it propagates
in the medium. The change of the light intensity I from
the point z = 0 to the point z = d is described by
the Bouguer–Lambert law I(d) = I(0) exp(−4πκd/λ0).
Energy absorption is determined by the imaginary part
of the dielectric permittivity, ε′′.

If the frequency dependences of n and κ are known,
one can use the Fresnel formulas to calculate the spectral
dependences of the reflection coefficient of the crystal, R,
and the phase variations of a light wave at its reflection,
∆ϕ. In the case of normal incidence,

R(ω) =
[n(ω)− 1]2 + [κ(ω)]2

[n(ω) + 1]2 + [κ(ω)]2
, (6)

tg ∆ϕ(ω) =
2κ(ω)

[n(ω)]2 + [κ(ω)]2 − 1
. (7)

In classical crystal optics, where only the frequency
dependence of the dielectric permittivity ε(ω) is taken
into account, the real and imaginary parts are coupled
by the integral KKRs

ε′(ω) = 1 +
1
π

∞∫

−∞

ε′′(x)
x− ω

dx, (8)

ε′′(ω) = − 1
π

∞∫

−∞

ε′(x)− 1
x− ω

dx. (9)

Here, the principal values of integrals are meant. If the
band is isolated enough, relation (8) can be rewritten in
the form

ε′(ω) = ε0 +
1
π

∫
ε′′(x)
x− ω

dx, (10)

where ε0 is a contribution to ε′ made by all other
transitions, except for that under consideration, and the
integration over x is carried out only within the limits
of a given band. According to Eq. (10), in the middle
of the band range, where absorption is substantial, the
refractive index n has to fall down with growing ω,
i.e. there must be a section of abnormal dispersion.
Really, if ω is located towards long waves from the
absorption range, the value of the integral in Eq. (10)
is positive, because ε′′(x) ≥ 0 and x− ω > 0 within the
actual interval of integration. At the same time, if ω is
located towards short waves from the absorption range,
x− ω < 0, and the value of the integral is negative.

If ω is located far enough from the center of the
absorption band, then Eq. (10) yields

n2(ω) = ε0 +
A

ω1 − ω
, (11)

where

A =
1
π

∫
ε′′(ω)dω (12)

is the integral over the band, and ω1 is a definite fixed
frequency. It becomes evident that the strength of the
transition oscillator (it is a multiplier of the constant
A) can be determined by two independent methods:
(i) from the curvature of the dispersion curve far from
the absorption range and (ii) from the area under the
absorption curve. Both methods of measurements are
really applied in practice.

At last, we would like to present the final relations for
a model of the medium which absorbs as a collection of
classical oscillators; such a model is widely used, and the
relations between ε′ and ε′′ become substantially simpler
in this case. In the frequency interval near an isolated
resonance,

ε(ω) = ε0 +
(4πNe2/m)f
ω2

0 − ω2 − iωγ
. (13)

The difference between squared frequencies can be
presented in this case as ω2

0 − ω2 = (ω0 − ω)(ω0 +
ω) ≈ 2ω0(ω0−ω). Then, from Eq. (13), an approximate
relation

ε(ω) = ε0 +
A

ω0 − ω − iΓ
(14)
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Fig. 2. Optical characteristics ε′(ω) and ε′′(ω) (panels a and d), n(ω) and κ(ω) (panels b and e), and R(ω) (panel c and f ) of a classical
oscillator for various values of Γ = ∆LT (panels a, b, and c) and 4×10−4∆LT (≈ 0) (panels d, e, and f ). The parameters of calculations
are the same as in Fig. 1,c, but M = ∞ and Γ 6= 0

follows, where A = 2πNe2f/(mω0), and Γ = γ/2. The
real and imaginary parts of ε look like

ε′(ω) = ε0 +
A(ω0 − ω)

(ω0 − ω)2 + Γ2
(15)

and

ε′′(ω) =
AΓ

(ω0 − ω)2 + Γ2
, (16)

respectively. The plots of these functions are depicted
in Fig. 2,a. The figure demonstrates that the absorption
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curve has a symmetric Lorentzian shape with a halfwidth
H = 2Γ = γ. The dispersion curve has a typical
shape with the section of anomalous dispersion, and the
points where it becomes maximal (ε′max = ε0 + A/2Γ)
and minimal (ε′min = ε0 − A/2Γ) correspond to the
frequencies (ω0 − Γ and ω0 + Γ) which are used to
determine the halfwidth of the absorption band. The
amplitude of curve variation, ε′max − ε′min, is precisely
equal to the maximal absorption at the resonance
frequency (ε′max = A/Γ).

Very interesting is the idealized case Γ = 0 depicted
in Fig. 2,d and corresponding to dashed curves in
Figs. 1,a and b. If ε = 0, the excitation of longitudinal
oscillations in the medium with the frequency ωL

becomes possible; for these oscillations, E||k, but the
group velocity equals zero, because ωL is independent
of κ. From Eq. (14), it becomes obvious that ωL =
ω0 + A/ε0. The dispersion branches tend to ±∞, if
ω → ω0 ≡ ωT ; the limit values of ε remain the
same as those in the presence of damping; namely,
the low-frequency one ε(0) = ε0 + (4πNe2f/mω2

0),
which follows from Eq. (13), and the high-frequency
one ε(∞) = ε0. In the region of longitudinal-transverse
splitting (in the vicinity of ∆LT = ωL − ω0 = A/ε0),
the quantity ε′ < 0 (Fig. 2,d), which corresponds to
a purely imaginary refractive index: n = 0 and κ 6= 0
(Fig. 2,e). In this case, the wave amplitude falls down
exponentially in the crystal and does not oscillate in
space, because k′r =(ω/c)nr = 0 (k = k′ + ik′′).
According to relation (6), a semiinfinite medium must
totally reflect the incident energy in this case, i.e. R = 1
(Fig. 2,f ). True absorption, which is formally described
by the area under the ε′′(ω)-curve, tends at Γ → 0 to
a δ-function located about the frequency ω0 (Fig. 2,d)
and approaches the limit of 2π2Ne2f/(mω0). It should
be emphasized that the limit is not equal to zero. The
same area is contained under the Lorentzian curve at
Γ 6= 0 (see Fig. 2,a).

Note that, since A = ∆LT ε0, relation (3) is often
written down in the following form:

ε(ω,k) = ε0 +
∆LT ε0

ω0 + ~k2/2M − ω − iΓ
;

then

b =
2Mc2

~ω2
0

∆LT ε0 (17)

in solution (4).
The considered case Γ = 0 is an illustration of strong

exciton-photon mixing without taking SD into account.
One can see that there is a strong repulsion between

dispersion branches in this case at a point, where the
“mere” exciton and photon branches intersect each other,
i.e. a strong polariton effect of exciton-photon mixing is
observed, but ALWs do not emerge. The spectrum of
polaritons in the framework of the classical theory of
light dispersion for infrared frequencies has been found
for the first time by Tolpygo [24]. Nowadays, the term
“polariton” is used in case of substantial SD as well.

Before proceeding to the discussion of experimental
confirmations of Pekar’s theory, it should be noted
that the ALW manifestations in various crystals depend
on the relations between the parameters of a specific
exciton transition. The most important among them are
the oscillator strength, which governs the longitudinal-
transverse splitting ∆LT and characterizes the strength
of exciton-photon interaction; the effective mass M ,
which determines the slope of the asymptote in Figs. 1,a
and b; and the damping constant Γ, which governs the
exciton-phonon coupling. The case, where the values of
the refractive index for ALWs at frequencies lower than
the longitudinal frequency ωL are not very much yet, is
most favorable; it can be realized provided that the value
of M is minimal, the value of ∆LT is not very large, and
the value of Γ is very small.

Historically, it happened that a very large body
of experimental confirmations of Pekar’s theory was
obtained making use of CdS crystals. They turned out
to be a good model object with a favorable relation for
the parameters of the lowest exciton, which provided
an opportunity to observe ALWs using various optical
methods. That is why the features of manifestations
of additional waves are considered here using just this
crystal as an example.

From Fig. 1,a, one can see that the frequency ωL

splits the frequency range into two spectral intervals, in
which the manifestations of the additional wave differ
in principle. Above ωL, both waves have positive values
of ñ2, i.e. their refractive indices are real and they
can pass through a crystal without being absorbed.
Below ωL, we have ñ2 > 0 for the “+”-wave, so
that it can be transmitted through a crystal without
absorption, but ñ2 < 0 for the “−”-wave, which means
that n− = 0 and κ− 6= 0 (see Fig. 1,c). In the
framework of classical optics, as was shown above, the
latter wave must be completely reflected by the crystal;
therefore, the medium does not absorb energy at all in
the idealized case Γ = 0. Since the characteristic features
of manifestations of additional waves are different in
those two cases, we consider first the experiments which
confirmed the ALW existence in the spectral interval
above and then below ωL.
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3. Manifestations of Additional Waves at
Frequencies above ωL

The first convincing proofs of the existence of an
additional wave in the spectral range above ωL were
obtained in experiments dealing with Fabry–Perot
interference in thin crystals. Later on, they were
also obtained in a series of works devoted to the
Mandelshtam–Brillouin scattering, measurements of the
picosecond laser pulse transit time, and, at last, in works
on light refraction by wedge-shaped CdS crystals. The
results of three first groups of researches were described
in detail in monographs [10–12]. Therefore, we consider
some basic features of those works only in brief, in order
to analyze the experiments on the light refraction by a
wedge-shaped crystal in more details.

3.1. Interference spectra of thin crystals

In works [25–29], the reflection and absorption spectra
of high-quality superthin plane-parallel CdSe and CdS
crystals at temperatures of 4.2 and 1.6 K were studied.
In these spectra, clearly distinguished was a Fabry–Perot
interference structure that corresponded to the condition

2dn = Nλ, (18)

where d is the crystal thickness, λ the light wavelength
in vacuum, and N an integer number (the order
of interference). Below the frequency ωL, when only
the “+”-wave can propagate through the crystal, this
structure has a single-period character, which correlates
with the variation of n+(ω). Above the frequency
ωL, when both the “+”- and “−”-waves can freely
propagate through the crystal, the structure of the
spectrum is characterized by two periods of oscillations:
the oscillations with a large amplitude and a larger
period correspond to the Fabry–Perot interference of
the “−”-wave; they interfere with oscillations with a
small amplitude and a small period, which are the
manifestation of the Fabry–Perot interference of the “+”-
wave.

On the basis of the measured spectral positions
of interference extrema and crystal thicknesses, the
authors of works [25–29] evaluated the parameters
of the theory and calculated both the dispersion
of polariton branches and the reflection spectra of
crystalline plates. In all cases, the agreement between
the experimentally measured spectra and the spectra
theoretically calculated in the framework of Pekar’s
theory was excellent. The results of those works are
summarized and discussed at length in monograph [12].

3.2. Mandelshtam–Brillouin resonance
scattering

For the first time, the light scattering by acoustic
phonons, taking ALWs into account, was examined
theoretically in work [30]. A laser beam with frequency
ω and wave vector k was considered to propagate
into the crystal depth normally to the crystal surface
(k > 0). The beam was scattered in all directions, but
theoretically was considered only light that was reflected
by the crystal into vacuum normally to the crystal
surface (k < 0). In the course of scattering, the energy
and momentum conservation laws,

ω′ = ω + ∆ω (19)

and

k′ = k − |∆ω|/V, (20)

respectively, are satisfied, where ω′ and k′ are the
frequency and the wave vector, respectively, of the
scattered photon; ~|∆ω| is the energy of a phonon that
participates in the scattering; V the sound velocity; and
|∆ω|/V the modulus of the phonon’s wave vector. At
the Stokes scattering, the elementary event of scattering
is accompanied by the phonon emission, and ∆ω < 0; at
the antiStokes one, a phonon is absorbed, and ∆ω > 0.

Provided that the polariton dispersion branches and
the sound velocity are known, one can calculate the
frequency shift ∆ω for every initial frequency ω. At
ω < ωL, an ordinary Stokes–anti-Stokes doublet, which
corresponds to jumps between the states of the n+-
branch (from states with k > 0 into states with k < 0), is
to be observed in the scattered light. If ω > ωL, another
three Stokes and three anti-Stokes peaks corresponding
to jumps between n+- and n−-branches should appear
in the spectrum of scattered light.

Starting from 1977, experiments on the
Mandelshtam–Brillouin resonance scattering (MBRS)
have been carried out for a number of crystals:
GaAs, CdTe, CdS, ZnSe, HgJ2 [31–34]. In all cases,
the emergence of additional scattering peaks in the
resonance region has been registered. The number of
additional satellites can be more than three, if the
structure of exciton bands is more complicated than
that corresponding to Fig. 1 (the presence of heavy-
and light-exciton bands), as well as because scattering
can occur not only by longitudinal acoustic (LA) but
also by transverse acoustic (TA) phonons. A detailed
statement of the MBRS theory and the experimental
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results are given in Koteles’s review [11]. Thus, ALWs
manifest themselves in scattering spectra by means of
the emergence of additional satellites near the frequency
of primary light, if ω > ωL.

3.3. Direct measurements of the group velocity
of light waves

In work [35], the transit time of a picosecond laser pulse
was measured for its passage through a CuCl crystalline
plate, and the time of delay was used to determine the
group velocity Vg. The results obtained were compared
with those calculated from the dispersion curves.

Only the pulse of the “+”-wave with a frequency
below ωL was shown to be transmitted through
the crystal. Moreover, in accordance with theoretical
calculations, at a frequency where the n+(ω)-dependence
had an inflection point, the group velocity Vg was found
to slow down by more than three orders of magnitude.
The “−”-wave was observed only above ωL, and its Vg

proved to be in good agreement with values calculated
from the n−(ω) dependence. But the most important
fact was that two pulses with identical polarizations
and frequencies (in the vicinity of ωL) but separated
in time were managed to be registered at the plate’s
output, whereas only one pulse had fallen onto the
plate’s surface. This was a direct proof of the existence
of an additional wave in a CuCl crystal.

3.4. Light refraction by a wedge-shaped crystal

The results of experiments dealing with the light
transmission through a wedge-shaped crystal appeared
the most straightforward proof of the ALW existence.
As early as in 1958, S.I. Pekar suggested to make
such a experiment due to its theoretical transparency,
visualization, and maximal persuasiveness [36]. For the
first time, this method was applied by Broser et al. in
1981 to study excitons in CdS [37], but, owing to large
systematic difficulties (in particular, strong absorption),
the authors were not succeeded in registering the
simultaneous transmission of two identically polarized
waves. The maximal among other measured values
of the refractive index, n ≈ 6.4, was observed at a
frequency of approximately ωT , which is far from ωL

that starts the interval where two waves could propagate
simultaneously. The problem was solved only in 1984
[16]. A theoretical consideration of the light transmission
through an absorbing prism taking ALWs into account
was made in work [38]. The relevant experiment was
described in detail in work [39].

In works [16, 39], a CdS crystal with an average
thickness of 0.5 µm and a refraction angle of 50′′ was
studied at a temperature of 1.8 K. The light source was
a tunable dye laser on dye with a spectral width of about
0.3 Å. The specific power was lower than 10−4 W/cm2,
so that nonlinear variations of the refractive index
could be neglected. Measurements were carried out at
light polarization E⊥C, where C is the optical axis
of the crystal, and two parallel polarizers – located
before and behind the crystal – were used for the best
polarization extraction. The specimen was illuminated
with a collinear light beam about 1 mm2 in cross-section.
The beam deflected by the crystal was focused in the
focal plane of a lens into a spot about 15 µm in diameter.
The spot displacement was monitored visually by means
of a measuring microscope. Photo-electric registration
with the help of an OMA-2 optical multichannel analyzer
allowed the spot intensity to be controlled as well.
To enhance the accuracy of angular measurements, the
latter were carried out at a large angle of incidence
θ = 55.5◦.

While the laser frequency was varied in the interval
of ω lower that ωL of An=1-exciton, a single bright spot
corresponding to the “+”-wave was observed. As the
laser frequency approached ωL, this spot faded out and
became more and more shifted in the visual field of a
microscope (see Fig. 3,a). Starting from the frequency
ωL, a second spot appeared, which corresponded to
the “−”-wave and whose intensity quickly grew as ω
increased. In a certain frequency region, two spots were
observed simultaneously; in this case, they had identical
frequencies ω and polarizations of the vector E. Careful
measurements in the frequency range ω < ωL allowed
another, substantially weaker spot to be registered,
whose angle of deviation was three times as large as
the deviation angle of the first spot. The third spot
corresponded to a triple transmission of the “+”-wave
through the wedge as a result of the reflection from
its surfaces. Being reduced by a factor of three, these
displacements fitted well the dependence l(λ) for light
passed through the wedge only once.

The experimentally measured displacements of the
laser beam were used to calculate the dispersion of the
refractive index; the corresponding calculation results
are plotted by dots in Fig. 3,b. On the basis of the data
obtained, the parameters of Pekar’s theory (ε0, M , ∆LT ,
and Γ) were determined, and the dependences n+(ω) and
n−(ω) were calculated (they are depicted by the solid
and the dashed curve, respectively, in the same figure).
An agreement between the theory and the experiment
proved to be quite good.
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Fig. 3. a – dependence of the spot displacement in the focal plane
on the incident light wavelength (circles); points correspond to
the displacements of the spot of the “+”-wave, transmitted three
times through the prism (see beam I+ in the inset); semisolid
circles correspond to the previous dependence reduced by a factor
of three. b – experimentally measured dispersion of the refractive
indices n+ (points) and n− (circles); theoretical curves for the
same quantities (solid and dashed curve, respectively) calculated
by Pekar’s formulas. c – relative transmission coefficient for the
“+”- (points) and “−”-waves (circles) on logarithmic scale; the
curves are eye guides drawn through experimental points. T

and L are the positions of transverse and longitudinal excitons,
respectively [16,39]

Owing to the spatial separation of the “+”- and
“−”-waves, their transmission spectra were managed
to be measured for the first time (Fig. 3,c). The
figure demonstrates that the envelope of the partial
transmission curves for the “+”- and “−”-waves has a
two-humped shape and is similar to the transmission
curves for a plane-parallel thin crystal (see Fig. 4,b). In
the framework of Pekar’s theory, a complicated shape
of the absorption curve, provided that the exciton band
is simple and parabolic, can be explained by the fact
that, besides the absorption coefficients of each waves
(κ±), the shape also depends on the spectral dependence
of the ratio between the amplitudes of those waves
at the moment when the latter are excited by light
incident on the crystal. A better agreement between
the experiment and the theory was obtained after the
frequency dependence of the damping constant Γ(ω) had
been taken into account [39,40].

4. Manifestations of Additional Waves below
the Frequency ωL

As was already emphasized above, the manifestations
of an additional wave are implicit and veiled in this
spectral interval. Therefore, they can be observed only
in the course of simultaneous researches of all optical
characteristics of the crystal, namely, the dispersion
of the refractive index, the transmission and reflection
spectra.

4.1. Violation of KKRs

As early as in his first works dealing with additional
waves, Pekar put forward a new viewpoint concerning
the exciton absorption of light. According to works
[1, 36], this absorption “originates from the transitions
of the system from the exciton states created by light
into any other states, except for the initial ones. If
those transitions are accompanied by light emission,
the Raman scattering of the primary light takes place.
If those transitions are thermally induced and are
accompanied by the excitation of thermal vibrations, an
ordinary light absorption takes place”. Thus, absorption
is associated with a finite lifetime of an exciton with
respect to radiationless transitions. If there are no
such transitions, absorption is absent as well, whatever
large the oscillator strength is. S.I. Pekar repeatedly
emphasized that if SD of ε is essential, the oscillator
strength of exciton transition should be determined
making use of the curvature of the refractive index
dispersion curve only, rather than the area under the
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absorption curve. Actually, this means that KKRs are
violated.

The first experimental evidence that these relations
may be invalid in the range of exciton absorption at
low temperatures was obtained in works [3–6] which
have demonstrated that the amplitude of variation of
the refractive index dispersion curve n(ω) is always
larger than the maximal coefficient of absorption κmax.
The problem was solved more comprehensively and in
a wider scope, when the spectrum κ(ω) was managed
to be measured reliably [41], and the behavior of the
curve n(ω) was determined within the whole absorption
band interval rather than only in its “wing” sections.
In the work by Brodin, Davydova, and Strashnikova
[42], the dependence n(ω) for a CdS crystal 0.33 µm in
thickness and at a temperature of 4.2 K was obtained
for the first time by the straightforward method of
measuring the phase of the transmitted wave. It turned
out that, within the halfwidth H of the An=1-exciton
absorption band, no anomalous section was observed,
whose presence is obligatory if KKRs are satisfied. The
refractive index steadily increased as the frequency grew
up to the longitudinal one, and the general profile of the
experimentally measured dispersion curve completely
corresponded to the theoretical one (see Fig. 1,c). In
work [43], it was shown that the variation range of the
curve n(ω) is about an order of magnitude larger than
the κmax-value measured in work [41].

4.1.1. Comparison of the dependences calculated by
KKRs and measured experimentally

A. The real and imaginary parts of the complex
refractive index ñ, i.e. n and κ, are also coupled with
each other by integral relations [44–46]

n(ω) = 1 +
2
π

∞∫

0

xκ(x)dx

x2 − ω2
, (21)

κ(ω) = −2ω

π

∞∫

0

n(x)dx

x2 − ω2
. (22)

On the basis of the absorption spectrum κ(ω) in the
range of An=1- and Bn=1-exciton states (curves 1 in
Figs. 4,a and b) experimentally measured in work [41]
and making use of formula (21), one can calculate
the dispersion of the refractive index n(ω) (curves 3 )
and compare it with that measured experimentally
in works [16, 42] (curves 2 ). (Figure 4,b depicts the

lower part of Fig. 4,a, scaled up.) As is seen from
the figure, the calculated dependence contains sections
of anomalous variation of n(ω) located within the
width intervals of absorption bands, and the ranges
of variation are approximately equal to the maximal
values κmax. At the same time, all the curves n(ω)
measured by various methods in works [16, 28, 42]
revealed no anomalous sections in the range of An=1-
exciton, and their ranges of variation were substantially
larger than κmax. But the most important fact was the
experimental registration of simultaneous transmission
through the crystal of two waves with different n’s,
whereas relation (21) brings about the existence of only
one wave. Thus, Figs. 4,a and b demonstrate how the
dispersion n(ω) calculated by KKRs differs from that
measured experimentally in the case where SD ε(ω,k) is
considerable.

B. Experimentally measured values of n(ω) and κ(ω)
can be used to calculate the real and imaginary parts
of the dielectric permittivity function. The dependences
obtained are shown in Fig. 4,c by solid curves 1 and 2,
respectively. While carrying out calculations according
to formulas (21) and (22) for every frequency ω, only
one of the measured n(ω)-values was taken, namely,
which corresponded to a wave with higher intensity.
Therefore, starting from the longitudinal frequency ωL,
the values of the refractive index for the “+”-wave were
discarded.

For the sake of comparison between the experiment
and the theory, relations (8) and (9) were rewritten in
the forms valid for positive ω’s [19]:

ε′(ω) = 1 +
2
π

∞∫

0

xε′′(x)
x2 − ω2

dx, (23)

ε′′(ω) = −2ω

π

∞∫

0

ε′(x)
x2 − ω2

dx. (24)

Relation (23) can be used to calculate the dependence
ε′(ω) on the basis of the known dependence ε′′(ω); and
vice versa: relation (24) can be used to calculate the
dependence ε′′(ω) on the basis of the known dependence
ε′(ω). The corresponding results of calculations are
depicted in Fig. 4,c by dashed curves 3 and 4,
respectively. Their cardinal difference from the initial
dependences – curves 1 and 2 – is evident, which testifies
that the use of relations (23) and (24) is incorrect in cases
where SD ε(ω,k) is substantial [47].
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Fig. 4. a and b – dispersion n(ω) measured experimentally (2 )
and calculated theoretically (3 ) by relation (21) on the basis of
the absorption spectrum κ(ω) (1 ). c – dependences ε′(ω) and
ε′′(ω) (curves 1 and 2 ), derived from experimentally measured
dependences n(ω) and κ(ω), and the dependences conjugated
to them (i.e. calculated by relations (23) and (24) (curves 3
and 4) [47]

4.2. Invalidity of Fresnel formulas

4.2.1. Spectral dependence of the reflection coefficient

In work [43], it was shown for the first time that if the
κ(ω)- and n(ω)-dependences experimentally measured
in works [36, 37] should be substituted into the Fresnel
formula (6), the calculated spectrum of reflection from
a semiinfinite medium R(ω) would drastically differ
from the experimentally measured one. In particular,

the calculated dependence R(ω) would increase with
the frequency ω owing to the growth of n(ω) within
the absorption band halfwidth, whereas the experimental
one revealed an anomalous section there (Fig. 5,a).
This contradiction of the single-wave theory was
overcome in work [48], where the experimental data were
demonstrated to be in good agreement with the results
of theoretical calculations in the framework of Pekar’s
theory.

First, three points from experimentally measured
κ(ω)- and n(ω)-curves were used to determine the
parameters of the theory ε0, A, ω0, and Γ, which
are needed for carrying out further calculations. Then,
the dependences κ(ω) and n(ω) for the “+”- and “−”-
waves were calculated and agreed well with experimental
ones. Moreover, it turned out that the “+”-wave was
transmitted through the crystal only at frequencies
below the frequency of a longitudinal exciton ωL, and
the “−”-wave only at frequencies above ωL (similarly to
solid curves in Fig. 1,c).

According to Pekar’s theory, the expression for the
reflection coefficient R(ω) in the case of a semiinfinite
crystal looks like [1, 36]

R =
∣∣∣∣
ñ+ − 1− q(ñ− − 1)
ñ+ + 1− q(ñ− + 1)

∣∣∣∣
2

, (25)

where

q = |q|eiΦ ≡ ε0 − ñ2
+

ε0 − ñ2−
= −E−

E+
,

E+ and E− are the complex amplitudes of the “+”- and
“−”-waves, respectively, which emerge in the crystal. In
work [9], it was shown that the expression for R(ω) can
be rewritten in the form of the usual Fresnel formula (6),
where the refractive index ñ(ω) = n(ω) + iκ(ω) of the
single-wave theory must be substituted by an “effective”
one, ñeff = neff + iκeff , which is a complicated function
of ñ+ and ñ−:

R =
∣∣∣∣
ñeff − 1
ñeff + 1

∣∣∣∣
2

, ñeff =
ε0 + ñ+ñ−
ñ+ + ñ−

≡ ñ+

1− q
+

ñ−
1− 1/q

.

(26)

Therefore, the higher the amplitude of either wave, the
larger its contribution to ñeff . Hence, the manifestation
of the “+”- and “−”-waves in reflected light is reduced
to the formation of an “effective” value for the refractive
index in formula (26). The corresponding dependences
neff(ω) and κeff(ω) are depicted in Fig. 1,e. They are
similar to the relevant curves of a classical oscillator
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Fig. 5. Spectral dependences of the intensity (a) and the phase (b, c) of the reflected wave in the range of An=1-exciton in the CdS
crystal, E⊥C, T = 4.2 K. Crosses in panel a correspond to values experimentally measured in work [43], circles in panel b to experimental
values of work [49], and the dashed curve in panel c to experimental values of work [50]. The results of calculations in the framework
of single-wave theory: a – solid circles; b, c – dotted curves. The results of calculations in the framework of the ALW theory with a
dead layer on the crystal surface are plotted by solid curves (Γ = 0 and d = 8 nm (b); Γ = 1.37 cm−1 and d = 8.35 nm (c))

(Fig. 2,b) and are responsible for the formation of
a classical profile of the reflection spectrum with
anomalous section (Fig. 1,d), which agrees well with
experimentally measured one [48] (see Fig. 5,a).

4.2.2. Spectral dependence of the phase variation of a
reflected wave

On the basis of the measured dependences n(ω) and κ(ω)
and using the Fresnel formula (7), one can also calculate
the phase variation ∆ϕ(ω) at light reflection (the dotted
curves in Figs. 5,b and c). The experimental dependences
∆ϕ(ω) measured for “thick” CdS crystals are shown in
Fig. 5,b by circles and in Fig. 5,c by a dashed curve. It is
evident that they are quite different from the dependence
calculated by formula (7) of the single-wave theory.

If one takes advantage of the effective refractive
index, which makes allowance for both Pekar waves (the
solid curves in Fig. 5,b and c), a very good agreement
with experimental data is attained. In this case, one is
forced to apply Pekar’s ABCs at some distance from the
crystal surface, i.e. to introduce a dispersionless “dead”
layer (DL) with the thickness d equal to two to three
times rex, which excitons cannot penetrate into, not
being destroyed, and where ε = ε0. The concept of ABC
was introduced by Hopfield in work [9]. Note that the
introduction of a DL while calculating ∆ϕ(ω) in the

framework of the single-wave theory, i.e. while using the
measured values of n(ω) and κ(ω), does not give rise to
agreement with experiment.

Different kinds of curves in Figs. 5,b and c correspond
to different values of the parameter Γ, which evidences
for different degrees of perfection of crystals in specimens
that were used for measurements. Later on, similar
∆ϕ(ω) spectra were obtained in work [51], where the
transformation of curves from type (b) to type (c)
occurred under temperature elevation, i.e. under growing
Γ. Figure 6 illustrates the ranges of a possible variation
of the exciton transition parameters – the DL thickness
d and the damping constant Γ,– for which the phase
curves and the reflection spectra turn out of different
types [50].

Thus, in order to put the theoretical spectra of
reflection and phase variation at reflection in agreement
with the experimental ones, the additional wave has to
be taken into consideration, i.e. the effective refractive
index has to be used in calculations.

4.3. Dependence of the refractive index on the
crystal thickness

In the works cited above, it was reliably established that
only the “+”-wave can be transmitted through a CdS
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Fig. 6. Ranges of the parameters Γ and d which correspond to
the ∆ϕ(ω)-solutions of different types. Points correspond to Γ

and d values, which were used for calculating ∆ϕ(ω) and R(ω).
Circles are drawn around those points, for which the agreement
between the calculated and experimental curves at T = 4.2 and
77 K was the best. Curves ∆ϕ(ω) typical of every parameter range
are depicted in the inset. In the hatched region, the R(ω)-curves
have a spike structure [50]

crystal at low temperatures and in the frequency
range below ωL of An=1-exciton. Therefore, Fabry–
Perot formula (18) seemed reasonable to be applied
for measuring the dependence n(ω) for transmitted
light. In works [52, 53], where formula (18) was used,
the dispersion curve n(ω) in the resonance region
was found to be shifted towards short waves, as the
crystal thickness diminished. The authors of work [52]
associated this displacement with the variation of the
resonance frequency ω0 ≡ ωT . In work [53], it was
demonstrated that the shift of the dispersion curve is
not accompanied by the variation of the longitudinal
frequency ωL position; the latter remains constant,
which means that it is ∆LT that changes. In Figs. 7,a
and b, the experimental data taken from those works are
exhibited.

Recent calculations [54] demonstrated that the effect
observed was caused by an ineligible application of
the single-wave-theory formula to a situation where
the presence of an additional wave was substantial.
According to Pekar’s theory, the expressions for the
transmission, T , and reflection, R, coefficients of a
crystalline plate with finite thickness look like [12]

T =
4|G|2

|(1 + iF )2 + G2|2 , (27)

Fig. 7. a – Dependences of the resonance frequency ω0 shift for
An=1-excitons in CdS and CdSe crystals on their thickness d; T =

1.6 K (according to data of work [52]); b – Experimental (points)
and theoretical (solid curves) dispersion curves for CdS crystals
with various thicknesses d = 0.18 (1 ), 0.27 (2 ), and 0.36 µm (3 ).
L denotes the corresponding position of the longitudinal exciton
energy. T = 4.2 K, E⊥C (according to data of work [53])

R =

∣∣1 + F 2 −G2
∣∣2

|(1 + iF )2 + G2|2 , (28)

where

F =
ñ+

(1− q)
ctg(k+d) +

ñ−
1− 1/q

ctg(k−d),

G =
ñ+

(1− q) sin(k+d)
+

ñ−
(1− 1/q) sin(k−d)

,

k± =
ω

c
ñ±.
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Fig. 8. a – Transmittance spectra for three CdS crystals, calculated in the framework of Pekar’s theory; the thicknesses of the crystal
plates are (in µm units) 0.09 (thin curve), 0.18 (medium curve), and 0.36 (thick curve). Numbers near maxima correspond to interference
orders. b – Results of calculations of dispersion curves n(ω) from interference extrema (panel a) by the Fabry–Perot formula: d =

0.36 (points), 0.18 (squares), and 0.09 µm (triangles); the thick curve corresponds to the n+(ω)-dependence, the thin curves are the
approximations of shifted curves under the reduction of ∆LT ; similar curves are obtained under shifting ω0 as well. c – Dependences
of crystal transparency T (thick curve) and reflection R (thin curve) on the crystal thickness, calculated in the framework of Pekar’s
theory for ω = 20584.2 cm−1. The numbers correspond to interference orders. d – Dependences of the “effective” refractive index for
transmitted light on the crystal thickness for various frequencies from the exciton resonance range of the spectrum. Solid lines parallel
to the horizontal axis denote the values of n+ for the same frequencies [54]

In Fig. 8,a, three theoretical transmission spectra for
CdS crystal plates with the thickness ratios 1:2:4,
calculated by formula (27), are depicted. It is evident
that, in contrast to relation (18), their multiple
interference orders do not coincide with one another
by frequency. But if formula (18) is applied to every
spectrum and the corresponding dispersion curves of
the refractive index are taken into account, as was
done in works [52, 53], the spectra prove to be shifted
towards a short-wave side – the thicker the specimen,
the larger the displacement,– just as was registered

in experiment (Fig. 8,b). It should be emphasized
that, while calculating the transmission spectra, the
theoretical parameters for all three curves were constant,
i.e. neither ω0 nor ∆LT was varied.

One can use formulas (27) and (28) to calculate
the dependences of the transmission and reflection
coefficients on the crystal thickness (Fig. 8,c). Then, it
happens that the interference extrema are not spaced
equidistantly from one another. It turns out that the
thinner is the crystal, the larger is the period of
oscillations; i.e. in order that the following interference
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extremum may be formed, light has to cover a longer
distance in a thin crystal than it does in a thick
one. The plotted dependences T (ω) for three ω-values
from the ∆LT range, being treated by the classical
formula (18), give rise to curves presented in Fig. 8,d.
The latter clearly illustrate the dependence of the
“effective” refractive index for the transmitted wave on
the crystal thickness. It is obvious that the effect in the
considered interval of thicknesses was obtained owing to
the application of formulas of the single-wave theory to
the situation where SD is essential.

Moreover, the “effective” absorption coefficient for
the transmitted wave also depends on the specimen
thickness. The failure of the Bouguer–Lambert law was
unequivocally demonstrated in experiments carried out
with a paradichlorobenzene crystal in the range of the
pure electron transition resonance frequency and at T =
4.2 K. The dependence to the logarithm of transparency
on the crystal thickness has a characteristic cusp, which
separates two linear sections, with the slope of each of
them being determined by different, by value, absorption
coefficients. The description of this phenomenon and its
theoretical consideration is expounded in work [14] in
detail.

5. Temperature Dependence of Spatial
Dispersion Effects and Transition
to Classical Crystal Optics

As the temperature of the crystal grows, the exciton-
phonon interaction becomes stronger and, as a
consequence, the constant Γ, inverse to the exciton
lifetime, becomes larger. Therefore, in order to
predict the temperature dependence of the SD effects
theoretically, one has to trace the variations of crystal
optical characteristics with growing Γ. For the first time,
it was done for an anthracene crystal in work [56];
it was shown that there exists the so-called critical
temperature Tcr, which corresponds to a certain critical
value of the constant Γcr and above which the optical
properties of the medium with the SD can be described
by the formulas of classical crystal optics. In work
[57], analogous calculations were executed for a CdS
crystal.

As was already emphasized above, according to
Pekar’s theory, there is no energy absorption in the
crystal if Γ = 0. In this case, the transmission and
reflection coefficients of a plate with finite thickness obey
the relation T + R = 1. At interference transmission
maxima, T = 1 and R = 0; at corresponding minima,
T = 0 and R = 1 [12].

If Γ 6= 0, there appears the true energy absorption
in the crystal, and the refractive indices of both waves
become complex: the “+”-wave acquires a κ+-branch,
and the n−- and κ−-branches of the “−”-wave become
prolonged to the both sides from the frequency ωL. In
this case, the κ+-branch, which has an asymmetric bell-
shaped profile, sharply rises as the parameter Γ grows,
which – from the theoretical viewpoint – should give rise
to a strong enhancement of absorption, while the crystal
is heated up. In the n−-branch, near the frequency
ωT ≡ ω0, there emerges a characteristic maximum, the
amplitude of which drastically increases as Γ grows. At
the critical value Γcr, this maximum reaches the n+-
branch, and the refractive indices of both waves become
identical. If the parameter Γ grows further, each branch
has a discontinuity point at this frequency, with the
corresponding continuations being different; therefore,
each curve is a combined one: the n+- and κ+-branches
transform into the n−- and κ−-ones, respectively, and
vice versa, the n−- and κ−-branches transform into
the n+- and κ+-ones, respectively. The “plus-to-minus”
curves have ordinary classical profile (in particular,
this concerns a dispersion n(ω)-curve with anomalous
section), while the “minus-to-plus” ones demonstrate a
nonclassical behavior (see Figs. 9,a and b below). In
the case of a semiinfinite crystal, the spectrum of the
reflection coefficient R(ω) has an ordinary classical shape
with anomalous section at all Γ-values, as if a single wave
with neff and κeff propagates in the crystal.

Thus, it follows from the consideration above that
the area under the absorption curve should drastically
increase, as the parameter Γ varies from 0 to Γcr (mainly
owing to the growth of the parameter κ+), and then
it should remain constant, because the broadening of
the absorption curve is compensated by a reduction of
its maximum. The profiles of dispersion curves should
undergo a characteristic transformation, from a curve
with discontinuity at the frequency ωL to a curve with
anomalous section. These theoretical predictions were
confirmed experimentally.

5.1. Absorption

In work [58], it was found that, if the temperature
is increased from 1.8 to 180 K, the area under the
absorption curve of An=1-exciton in a CdS crystal
0.3 µm in thickness sharply grows first, approximately
by an order of magnitude, and then, above 77 K,
becomes stabilized. The authors of work [59] successfully
explained this effect in the framework of Pekar’s theory
and, hence, obtained a very important experimental
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Fig. 9. Dispersion of the refractive index in the range of An=1-exciton at various temperatures. Points correspond to the experimental
data, solid curves to the theoretically calculated n+(ω)- and n−(ω)-dependences, dashed curves to the neff(ω)-dependence [17]

proof of its prediction ability. At the same time, the area
under the curve of the pure electron absorption band
in paradichlorobenzene crystals was shown in work [55]
to become almost 6 times larger, when the temperature
grew from 1.8 to 100 K. In Davydov’s book [14], these
experiments were described in detail, and the analytical
expressions concerning the dependences of the integrated
absorption coefficient, halfwidth, and maximum of the
exciton band on the damping constant of an exciton were
presented.

In works [60–63], this direction of researches has
obtained a new impetus. In work [60], Akhmediev
derived a simplified relation which describes the
dependence of the integrated coefficient of exciton
absorption (IEAC) on the damping constant. According
to the results of work [60], the IEAC linearly depends
on Γ at small Γ’s and tends to zero at Γ → 0. Starting
from Γcr, the IEAC becomes stabilized. In works [61–63],
the effect concerned was studied experimentally in the
range of An=1-exciton of CdS and CdSe crystals. In
all cases, the temperature growth was accompanied
by a substantial increase of the IEAC. In work [63],
measurements were carried out in the mixed photon-
like-exciton mode, at various angles of light incidence
onto the crystal surface, and in the temperature interval

4.2–120 K. According to the theory, the larger is the
angle of light incidence, the larger is the longitudinal-
transverse splitting in the mixed mode, and the higher is
the critical temperature, starting from which the IEAC
becomes stabilized.

5.2. Dispersion of the refractive index

The transition to classical crystal optics, which is
induced by the transformation of dispersion curves,
was first traced experimentally by monitoring the
interference pattern of polarized beams in a superthin
plane-parallel CdS crystal in the course of heating
the latter up [64]. Afterwards, the temperature-induced
variation of the “+”- and “−”-wave dispersion was
studied in detail in work [17], where the method of
light refraction by a wedge-shaped CdS crystal was used.
This method of registration allowed the characteristic
features emerging in the course of reconstruction of
dispersion curves to be observed (see Fig. 9). The
points in the figure are the experimental data, and
the solid curves are the dependences n(λ) calculated
in the framework of Pekar’s theory for various Γ-
values. For the plots to be most illustrative, the
temperatures, at which the most typical features
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of spectrum reconstruction manifest themselves, were
chosen.

We would like to emphasize two most characteristic
issues. As a temperature T = 7.7 K is achieved (cf. the
case T = 1.8 K, Fig. 3,b), the whole ∆LT range becomes
suddenly “translucent” for the “−”-wave, so that the
spectral interval of coexistence of two transmitted light
waves becomes substantially broadened (see Fig. 9,a),
and the “−”-wave starts to manifest itself explicitly.
This occurs when the parameter n−, in the course of
Γ growing, reaches a unity value, and the “−”-wave
changes its status from the reflected by the crystal to
that which can propagate inside. On the other hand,
the fact that this phenomenon has a threshold character
testifies that the amplitude of the “−”-wave is large in
the whole ∆LT range.

At the further elevation of the temperature, besides
the variation of the n±(λ)-curves behavior, the growth
of absorption becomes of great importance. The “+”-
wave range becomes more and more truncated from its
high-energy side (Figs. 9,b and c), so that the range
of wave overlapping becomes substantially narrowed at
T = 15.7 K and practically disappears at T = 25.5 K.
The absence of the anomalous dispersion section and the
jump of experimentally measured values from the n+-
branch onto the n−-one remain to be the characteristic
features of the curves. The jump point is located
within the ∆LT interval and gradually approaches the
frequency ωT .

At last, at a temperature that corresponds to
the critical value Γcr, the branches of the measured
dispersion curve merge together (Fig. 9,d). Before
the frequency ωT , experimental points fit the “+”-
wave branch; after ωT , they permanently transit to
the “−”-wave branch, thus forming a single dispersion
curve with anomalous section. A characteristic feature
of this curve is that its dip occupies an extremely
narrow spectral interval. In this case, the laser beam in
the focal plane of a measuring microscope transforms
from a round light spot into a light strip in the
experiment, which corresponds to rather a wide variation
of the refractive index from 5.5 to 3.5 (the double
line in Fig. 9,d). Notwithstanding the presence of the
anomalous section, the measured dispersion curve is still
appreciably different by shape from the calculated profile
of the effective refractive index, which should be used for
the approximation of the reflection spectrum (the dashed
curve).

An interesting method of transition to classical
crystal optics has been demonstrates in work [65], where
the refractive index dispersion was measured for a

wedge-shaped CdS crystal in the mixed mode and at
T = 1.8 K. By varying the angle of light incidence,
the authors changed the effective values of ∆LT and,
hence, of Γcr. They consistently traced the variation of
the n(ω)-curves until the dispersion curves manifested
anomalous sections, but the overlapping of “+”- and
“−”-waves was not observed owing to a relatively large
thickness of specimens.

Note that, in different specimens, the value Γcr can be
attained at different temperatures, which is associated
with the degree of crystal perfection, the presence of
impurities and defects, the deformation state, and so on.
For instance, Tcr ≈ 60 K in “free” perfect CdS crystals,
and Tcr ≈ 20 K in specimens which are in optical contact
with the substrate. In this case, the simplest, but rough
enough, criterion for the determination of Tcr of a specific
crystal could be a temperature, at which the width of
its absorption band – or the corresponding width of the
reflection spectrum – starts to grow at specimen heating.
This suggestion was confirmed by calculations carried
out in work [62] taking SD into account in the framework
of Pekar’s theory, as well as experiments which were
analyzed in detail in work [66].

It is of interest to confront the parameters of exciton
transitions and, correspondingly, the values of Γcr and
Tcr in some substances (see Table). As one can see,
the variation ranges of the parameters are very large;
therefore, the ALW manifestations can be different.
In an anthracene crystal, for instance, the effective
mass and ∆LT are very large, and the asymptote
deviates insignificantly from a vertical line; therefore,
an additional wave arises near the resonance frequency
without going beyond the ∆LT limits. This crystal
exhibits very strong polariton effects, but ALWs are not
actual already at T > 15 K. Light, which propagates in
the crystal, is described by a single normal wave, and
the corresponding value of the refractive index slightly
differs from those calculated without taking SD into
account [14]. In the case of the simplest amorphous
xenon cryocrystal with the intermediate type of coupling
between atoms, the value of ∆LT is large, while the value
of M is relatively small. The whole temperature interval,
where the solid phase exists, is located below Tcr, which

Substance ∆LT , M Γcr, Tcr, Reference
cm−1 cm−1 K

Semiconductor
CdS 16 0.8me 5.6 ∼60 [17]
Antracene
molecular crystal 400 1000me 0.4 ∼15 [14]
Xenon
cryocrystal 800 2.2me ∼88 >100 [15]
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is favorable for the observation of the additional-wave
and polariton effects [15].

6. Influence of the Surface on the Reflection
Spectra of Crystals and the Features of
Their Approximation

The reflected light wave is a carrier of information about
the bulk properties of the crystal, on the one hand,
and about the state of the crystal surface, on the other
hand. Therefore, the determination of such theoretical
parameters, which would make the description of the
bulk and the surface of the crystal possible using the
measured characteristics of only the reflected wave, is a
difficult task, and, in some cases – e.g., provided that
the SD effect is important – ambiguous.

6.1. ABCs and theoretical models of surface
influence

From the viewpoint of theoretical consideration of
even a perfect crystal, the presence of SD gives rise
to the necessity of introducing ABCs, which depend
substantially on the type of the exciton state under
consideration. Pekar’s ABC (5) has been derived for a
Fresnel exciton with small radius. For a Wannier–Mott
exciton with large radius rex, Hopfield, as was indicated
above, has introduced a dispersion-free “dead” layer on
the crystal surface (7).

Later on, the issue of ABCs was examined in tens
of theoretical works; nevertheless, the discussion about
the correctness of these or those ABCs, as well as
about a possibility to obtain the solution of the problem
in general, without introducing ABCs, is still being
continued. The problem has been analyzed in detail
in works [10, 12, 14] and in the work by Ivchenko in
collective monograph [11]. Pekar repeatedly emphasized
that “ABCs cannot be postulated, adopted without any
proof, or introduced as a working hypothesis which
is to be checked experimentally. While considering
a system of charged particles that interact with an
electromagnetic field, the latter is determined by the
Maxwell equations, and the state of particles by the
temporal Schrödinger equation. Therefore, . . . every
boundary condition in the problem concerned – in
particular, ABC – has to follow from the Schrödinger
equation and the Maxwell ones” [12]. Pekar showed
that “knowing the laws of exciton reflection is not
only necessary, but also sufficient for the derivation
of a necessary number of ABCs and the unambiguous
solution of the problem dealing with the reflection and

transmission of light waves through a vacuum–crystal
interface”. He has derived ABC (5) under conditions that
the exciton wave is reflected from the crystal surface.

In some works (see, e.g., work [67]), it is the
derivative of polarization at the crystal bounary that
is supposed zero:

(dPex/dz)z=0 = 0. (29)

In this case, the exciton wave function has an antinode
at the surface rather than a node, as was for Pekar’s
ABC. In works [68–71], specific models were used to
demonstrate that the general form of the ABC is
[
α(ω)Pex + β(ω)

dPex

dz

]

z=0

= 0. (30)

The same relation was derived in work [10], proceeding
from general phenomenological ideas concerning the
polarizability kernel in Eq. (1).

Concerning the works, where ABCs for a finite
crystal were asserted to be of no use at all, Pekar in
work [72] wrote: “ . . . if photon-like exciton solutions are
deduced as linear combinations of solutions obtained for
an infinite crystal, the ABC are necessary. But if the
polarization response of a semiinfinite crystal is known,
. . . no ABCs are needed any more”.

In a number of works (see, e.g., works [73, 74]),
“a dielectric approximation” is applied while solving
the problem without using ABCs. In works [10, 12],
this approximation was shown to be incorrect, because
it contradicts the conservation law of energy. In his
work [75] and book [14], Davydov, without introducing
ABCs, used the method of extraneous currents on the
crystal surface. The following expression was obtained
for a constant q which determines the ratio between the
amplitudes of normal waves,

q =
(ε0 − ñ2

+)ñ+

(ε0 − ñ2−)ñ−
, (31)

and which differs from Pekar’s one (25) by an extra
multiplier. The same ratio between the amplitudes of
transmitted waves can be derived from ABC (29).

Recently, work [76] which invoked a fierce discussion
[77–80] had been published. Its author asserted that the
introduction of additional boundary conditions by Pekar
for the solution of problems in crystal optics, provided
that there are additional light waves, was “a historical
mistake”, and one can do without using ABCs at all. But
the results of works [77,80] have demonstrated that the
author of work [76] had obtained a well-known result,
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which is similar to that obtained by Davydov in work
[14]; therefore, this result also corresponds to ABC (29).

It should be noted that the surface of real crystals
can be distorted owing to various defects of growth,
a high concentration of adsorbed atoms, and so on. If
defects and adatoms are charged, the surface gets a total
electric charge, which, together with the electrostatic
image forces, affects the surface-induced band bending,
and, therefore, the variation of the surface potential of
excitons, which can give rise to the modification of the
reflection spectrum profile in comparison with that for a
perfect crystal.

The most fruitful for the explanation of characteristic
features in the reflection spectra of real crystals are the
theories by Sugakov [68–70], Davydov and Myasnikov
[81], and Kiselev [82]. Those theories consider an
opportunity for a non-intrinsic surface layer caused by
the difference between near-surface and bulk properties
of real crystal – in particular, the dependences ω0(z)
and Γ(z) – to be created. In Kiselev’s theory [82],
SD was taken into account both in the bulk and
the transition layer of a crystal. Various versions of
the potential, which could be expected to occur in
real crystals, have been examined: a potential drop
into the depth, a rigid wall near the surface, and a
potential well near the surface. The reflection spectra
have been shown sensitive to the surface state, i.e.
such phenomena as the emergence of spikes, contour
inversion, and the appearance of an extra structure
have been explained. The author of work [82] specially
emphasized: “The inverse problem – the restoration of
the potential profile from scattering data, i.e. from the
shape of a reflection contour – has no unambiguous
solution”.

6.2. Comparison with experiment

Since work [9] was published, a lot of other authors have
demonstrated that, for many semiconductor crystals, the
reflection spectra of high-quality specimens measured at
low temperatures are well described by Pekar’s theory,
which takes the DL on the crystal surface into account.
In work [9], the appearance of a spike in the R(ω)-curve
minimum, which is often observed in the spectra of CdS
crystals at low temperatures, was explained for the first
time. It arises owing to the interference between light
beams that are reflected from the crystal surface and
the internal DL boundary. The hatched region in Fig. 6
denotes the narrow range of values for the parameters d
and Γ, at which the calculated spectra contain the spike
structure.

The results of calculations carried out in work [83]
showed that the increase of the DL thickness d gives
rise to characteristic modifications of the R(ω)-curve
shape; in particular, these are a reduction of the main
maximum height at a frequency of about ωT and the
emergence and the further growth of a maximum in
the vicinity of ωT up to the “inversion” of the curve
shape. As the parameter d increases further, the curve
returns back to its initial form. The complete cycle of
the curve shape variation corresponds to the growth of
the phase difference between the interfering beams up
to θ = 4πdn0/λ = 360◦, when 2dn0 = λ (n0 is the
background refractive index). The experimental results
obtained in work [83] became a convincing confirmation
of the existence of an intrinsic DL for Wannier–Mott
excitons, because there is a correspondence between the
DL thickness d and the exciton radius, in particular, for
states An=1 and An=2.

Especially sensitive to the presence of a DL on the
crystal surface are phase spectra which, depending on
the Γ- and d-values, have either an S - or an N -like
shape. In Fig. 6, the corresponding ranges of An=1-
exciton parameters in a CdS crystal are separated
by a solid curve. The DL is also responsible for the
emergence of a negative section in the an N -like curve,
which is preserved in the phase spectra at large Γ-
values as well. In work [50], on the basis of measuring
the ∆ϕ(ω)-dependence at 4.2 and 77 K, practically
identical values were deduced for the DL thickness (8.35
and 7.65 nm, respectively); in work [49], the values of
8 nm was obtained, which proves the validity of the
theoretical model for the intrinsic DL. The phase and
intensity reflection spectra of a β-AgI crystal, which
were experimentally measured in work [84] at various
angles of incidence, are also described very well by this
model.

Of great interest are works, where various theoretical
ABCs were used for the simulation of experimental
results. In works [51, 85, 86], the phase and angular
measurements of the reflection and thermoreflection
spectra were carried out in the range of An=1-exciton
in a CdS crystal and at various spatial orientations
between the axis C and the vectors E and K of the light
wave. It turned out that, in high-quality semiconductor
crystals, where Wannier–Mott excitons with a large
radius are excited, the reflection spectra and the spectra
of phase variation at reflection are described well by
Pekar’s ABC with an intrinsic DL on the surface. The
other ABCs, in particular, ABC (29) and the dielectric
approximation, describe experimental data considerably
worse.
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In this connection, it is of interest D.F. Nelson’s
statement in his report at the 9-th International
Symposium “Continuum Models and Discrete Systems
(CMDS9)”, which was held in Turkey in 1998: “ . . . We
came to a conclusion that Nature virtually uses Pekar’s
ABCs.”

The reflection spectra of real crystals, measured in
various works at low temperatures, are very diverse,
which is associated to a great extent with the state of
crystal surfaces. The available features are not always
managed to be described quantitatively by means of
Pekar’s theory, ABC (5), and Hopfield’s DL for a perfect
crystal; but they are succeeded to be put in agreement
with more realistic models of surface potential, cited
above [87–91]. It is significant that the spike structure of
the spectrum can be obtained, provided the availability
of a DL and without SD [47,92–94].

Very many experimental works were devoted to
studying the purposeful influence of various external
factors on crystals: preliminary light-striking [95, 96],
etching [97], electron bombardment [98, 99], laser
irradiation [100], strong electric fields [101–103], and
sputtering a metal onto a semiconductor [104]. In
monograph [105], those experiments were described and
analyzed in detail, and the most probable mechanisms of
the non-intrinsic surface layer formation were indicated.
It was demonstrated that such a layer could strongly
change the reflection spectrum of a real crystal in
comparison with that of a “perfect” one, which should be
taken into account while analyzing experimental results.

7. Applicability Scope of KKRs in the
Presence of ALW

7.1. Dispersion and absorption curves

It was shown above that the dispersion and absorption
curves experimentally measured at low temperatures do
not obey relations (21) and (22) or (23) and (24) (see
Fig. 4). A detailed analysis of the KKR applicability
was carried out in work [47]. One should bear in mind
that the KKRs for the function ε(ω) have been derived
on the basis of the principle of causality, provided that
the coupling between an electromagnetic wave and the
crystal polarization is local. In work [19], the complex
function ε(ω̃) = ε′ + iε′′ was demonstrated to be single-
valued and not to tend to infinity in the upper half-
plane of the complex variable ω̃ = ω′ + iω′′, i.e. it has
no singular points here. It was just for functions of such
a type that Kramers and Kronig [106, 107] derived the
integral relations between their real and imaginary parts.

(Below, if the whole plane of the complex variable ω̃ is
not considered, the notation ω for the real part ω′ ≡ Re ω̃
is used.)

Provided that SD is substantial and ALWs emerge,
there are two ε(ω)-values for every ω-value; this
situation corresponds to the propagation of two
waves through the crystal. In this case, the practical
application of integral relations becomes impossible even
from a formal point of view, because it is not clear, which
of the values of ε′ and ε′′, or their combinations, should
be substituted into these relations.

A generalization of the KKRs to media with SD,
provided that the variables ω and k are independent
of each other, was given for the first time by Leontovich
[108]. Further, the issue was considered in works by
Davydov [109], Mead [110], Ginzburg and Meiman [111],
Agranovich and Ginzburg [10]. An important progress in
this direction is related to a cycle of works by Solov’ev
and co-authors [112–116], where the supplementary
dispersion relations were derived.

In work [47], relations (21)–(24) were tested on their
applicability to the calculations – in the framework of
Pekar’s theory – of the dispersion and absorption curves
in the range of An=1-exciton in a CdS crystal for various
values of the damping constant Γ. All other parameters
of the theory were chosen to provide the best agreement
between the theoretical and experimentally measured
[16, 43] n(ω)- and κ(ω)-curves in the range of An=1-
exciton at T = 4.2 K.

Before the results obtained will be discussed, we note
that the function ñ2

± has a branch point in the plane of
the complex variable ω̃ = ω′ + iω′′, and the position of
this point can be determined if one puts the expression
under the root in Eq. (4) equal zero:

ω′ = ω0 +
ε0

α
,

ω′′ = 2

√
∆LT ε0

α
− Γ, (32)

where α = 2Mc2/(~ω2
0). The analysis of the branch

point motion in the complex plane was carried out by
V.M. Pisokovoi [117]. If

Γ = Γcr = 2
√

∆LT ε0/α, (33)

we have ω′′ = 0, and the branch point is on the real axis
at the frequency

ω′ = ωcr = ω0 + ε0/α. (34)

In this case, ñ+(ωcr, Γcr) = ñ−(ωcr, Γcr), and the
dispersion curves intersect at real ω̃-values. If Γ < Γcr,
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the branch point is located in the upper half-plane of
complex frequency ω̃, while, at Γ > Γcr, it transits
into the lower half-plane. Therefore, if Γ < Γcr, the
contour of integration C, which runs along the real axis
and becomes closed at infinity, encircles the singularity
point, so that the usual KKRs in form of Eqs. (23) and
(24) cannot be applied. If Γ > Γcr, the branch point
is located outside the contour of integration, and the
KKRs can be valid. But now, they are satisfied by only
one of the waves, with the classical asymptote and shape,
while the other, for which the value of n tends to infinity
at ω → ∞, does not satisfy the condition of function
finiteness, and KKRs cannot be written down for it.

Let us illustrate this circumstance by the results
of calculations. In Figs. 10,a and b , the solid curves
correspond to Pekar’s curves n(ω) and κ(ω), which
were calculated for Γ = 8 cm−1 > Γcr = 5.64 cm−1.
The dashed curves are the corresponding dependences
calculated by relations (21) and (22). Panel a exhibits
the data for a classical “plus-minus” wave, for which
KKRs are satisfied; panel b does it for a nonclassical
“plus-minus” wave, for which the curves diverge sharply.

As was pointed out in work [109], if two waves
of different types and with different dependences n(ω)
and κ(ω) can propagate in a medium, “each such wave
can be associated with its own ε(ω)-value”. Therefore,
the curves ε′(ω) and ε′′(ω) for each of the waves were
also confronted with the relevant dependences calculated
in accordance with relations (23) and (24). It turned
out that these relations are obeyed for the classical
wave and are not for the nonclassical one. It should
be emphasized that, in this case, the amplitude of the
additional nonclassical wave tends to zero in accordance
with ABC (5).

Afterwards, a series of calculations have been carried
out for Γ = 1 cm−1 < Γcr. First, Pekar’s curves
n±(ω) and κ±(ω) were calculated; then, KKRs (21)
and (22) were applied to them; and the conjugated
dependences obtained were compared with the initial
ones. Such a comparison was done for the “+”-, “−”-,
“minus-plus”-, and “plus-minus”-waves. In addition, the
case of a combined wave, for which the jump from the
“+”- to the “−”-branch occurs at the frequency ωL, was
considered, because, in work [60], a wave of just this
type was used to obtain a good approximation for the
contour of integrated absorption. It turned out that in
none of the cases considered by the authors did the initial
and calculated dependences coincide. Figures 10,c and d
illustrate two variants taken from the whole series of
calculations. Similar results were also obtained for the
dependences ε′(ω) and ε′′(ω).

Thus, KKRs are well satisfied, if the additional wave
becomes insignificant, i.e. at Γ > Γcr. But, if Γ < Γcr, the
KKRs are not satisfied, neither for each wave separately
nor for any of their combinations.

7.2. Application of KKRs to reflection spectra

The KKRs are widely used in modern physics to
determine optical constants of a substance on the basis of
the measured reflection spectrum. It especially concerns
semiconductor materials with strong absorption, because
direct measurements of their absorption and dispersion,
n(ω), spectra are difficult to be carried out (see,
e.g., work [118]). The integral dependence between
the reflection coefficient R(ω) and the phase variation
at light wave reflection ∆ϕ(ω) is determined by the
relations [44]

∆ϕ(ω) = −2ω

π

∞∫

0

ln
√

R(x)
x2 − ω2

dx, (35)

ln
√

R(ω) = 1 +
2
π

∞∫

0

x∆ϕ(x)dx

x2 − ω2
, (36)

where R = r̃r̃∗, and r̃ = |r̃| exp(i∆ϕ) is the amplitude
reflection coefficient. On the basis of those relations and
the Fresnel formulas (6) and (7), one can determine the
optical constants n and κ of the substance.

According to Pekar’s theory, if SD in the medium
is substantial, the spectra of reflection and phase
variation at reflection are described by the same Fresnel
formulas, but the “effective” values of n and κ, which
are determined from relations (26) and (26), should
be substituted into them. In Fig. 11,a, the spectral
dependences neff(ω) and κeff(ω) in the range of An=1-
exciton in a CdS crystal are depicted (curves 1 and 2,
respectively). They were calculated for Γ = 1 cm−1 <
Γcr. A pair of dependences, conjugated to them by
relations (21) and (22), were also calculated (curves 3
and 4, respectively). One can see that the agreement
between dependences 1 and 3, as well as between 2 and
4, is excellent; hence, KKRs (21) and (22) hold true,
if being applied to the “effective” quantities neff(ω) and
κeff(ω). Relations (23) and (24) are also obeyed if, by the
formal analogy with the single-wave theory, one writes
down that ε′2eff = n2

eff − κ2
eff and ε′′eff = 2neffκeff , in spite

of the fact that the parameter ε′′eff does not now describe
energy losses in the crystal. Afterwards, using Pekar’s
theory and the “effective” quantities neff and κeff , the
spectra of reflection RP(ω) and reflected wave phase
∆ϕP(ω) were calculated (Pekar curves 1 and 2,
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Fig. 10. Pekar’s dependences n(ω) (1 ) and κ(ω) (2 ) and the corresponding conjugated dependences calculated on their basis by relations
(21) and (22) (curves 3 and 4, respectively) for the “plus-minus”-(a) and “minus-plus”-(b) waves at Γ > Γcr and, at Γ < Γcr, for the
“+”-(c) and “plus-minus”-waves with matching the solutions at ωL (d) [47]

respectively, in Fig. 11,b). KKRs (35) and (36) were
applied to those spectra to calculate the Kramers
dependences RK(ω) and ∆ϕK(ω) (Kramers curves 4
and 3, respectively). A good agreement between the
two curves depicted in Fig. 11 testifies that KKRs (35)
and (36) are fulfilled at length, if being applied to the
reflection spectra R(ω) and ∆ϕ(ω) calculated with the
use of neff and κeff .

But, in the case of a DL on the crystal surface, the
experimental phase curves ∆ϕ(ω) have either the S -
like or the N -like shape, depending on the values of
parameters Γ and d (Fig. 6). Let us call the curve, which
separates the corresponding ranges of parameters I and
II as a threshold curve Lthresh. In works [119, 120], it
was shown that if the parameters of reflection spectra
correspond to those in curve Lthresh, the minima of the
R(ω)-curves reach zero.

In works [112–116], the issue of applicability of KKRs
(35) and (36) to treat the reflection spectra has been
analyzed in detail. It was demonstrated that, at small
values of Γ, the following supplementary dispersion
relations are valid:

∆ϕ(ω) =
ω

π

∞∫

0

ln[R0/R(x)]
x2 − ω2

dx + 2arctg
Γthresh − Γ
ωthresh − ω

+ a,

(37)

ln
R(ω)
R0

=
4
π

∞∫

0

x[∆ϕ(x)− a]
x2 − ω2

dx+

+2 ln

[
1 +

(
Γthresh − Γ
ωthresh − ω

)2
]
. (38)
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Fig. 11. a – Pekar’s dependences neff(ω) (1 ) and κeff(ω) (2 ) and the conjugated dependences calculated by relations (21) and (22)
(3 and 4 ). b – Pekar’s spectra of reflection RP(ω) (1 ) and phase variation at reflection θP(ω) (2 ) and the conjugated dependences
calculated by relations (35) and (36) (3 and 4 ). c and d – RP(ω) (1 ) and θP(ω) (2 ) calculated in the framework of Pekar’s theory
with a “dead” layer on the crystal surface. Kramers phase spectra θK(ω) calculated on the basis of RP(ω) by relation (35) (3 ) and
supplementary relation (37) (4 ) (Γ > Γthresh (c) and Γ < Γthresh (d)) [47]

Here, R0 is the value of the reflection coefficient far
from the resonance; Γthresh is the threshold value of
the damping constant: the phase curve is S -like for
Γ < Γthresh and N -like for Γ < Γthresh; ωthresh is the
frequency, at which the first additional term in formula
(37) is equal to ±π; and a = 0 at ω < ωthresh and 2π at
ω > ωthresh.

The additional terms in KKRs appear owing to a
singular zero point in the R(ω) spectrum. If Γ < Γthresh,
this point is located in the upper half-plane of the
complex variable ω̃ = ω′ + iω′′, and, while integrating
along the contour C, it has to be gone around, which
gives rise to the appearance of an additional term in

formula (35) and the necessity to add 2π at frequencies
ω > ωthresh. If Γ = Γthresh, the zero point is located
on the real axis at the frequency ωthresh, and, if Γ >
Γthresh, it transits into the lower half-plane, so that
the additional terms must be rejected. Hence, the curve
Lthresh simultaneously demonstrates that the application
of usual KKRs (35) and (36) is eligible in region II,
and the application of KKRs (37) and (38) is eligible
in region I.

In work [47], the intensity and phase reflection
spectra in the range of An=1-exciton in a CdS
crystal were calculated taking the DL into account;
the results of calculations are depicted in Figs. 11,c
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and d. The DL thickness was assumed to be
7 nm. First, in the framework of Pekar’s theory
and taking the DL into account, the spectra RP(ω)
and ∆ϕP(ω) were calculated. Then, the obtained
reflection spectrum RP(ω) was used to calculate
the corresponding Kramers phase curve ∆ϕK(ω)
– by either relation (35) or (37), – which was
compared afterwards with the Pekar phase curve
∆ϕP(ω).

The results of comparison made for two values
of Γ, larger and smaller than the threshold value
Γthresh = 1.21 cm−1, are presented in Figs. 11,c and
d, respectively. From Fig. 11,c, one can see that, in
the presence of a DL and at Γ > Γthresh, the relation
between the phase and amplitude reflection curves is
described well by the usual KKR (35). But, in this
case, the N -like dependence has a negative section;
therefore, the optical constants n and κ determined
by formulas (6) and (7) are incorrect. Moreover –
and this is more important – a section of negative
values, which have no physical sense, automatically
appears in the curve κ(ω) as well. Therefore, a more
complicated inverse problem, which takes the DL into
consideration, must be solved. Figure 11,d demonstrates
that, if Γ < Γthresh, the supplementary dispersion
relation (37) is fulfilled well, because phase curves 2
and 4, which are S -like, practically coincide with each
other. But, if relation (35) had been applied, following
the conventional technique of the determination of
optical constants, to such reflection spectrum, the
incorrect phase curve 3 rather than the correct curve
2 would have been obtained no later than at the
first stage of calculations, and, as a result, wrong
values for n, κ, ε′, and ε′′ would also have been
calculated.

Analogous calculations, which were executed for a
model of classical oscillator with a DL on the surface,
demonstrated that the phase curves also have either an
S - or an N -like shape. Therefore, it is the DL rather than
the spatial dispersion effect that is responsible for such
a shape of the curves ∆ϕ(ω), because, if the medium
absorbs, the interference effect is the reason of why the
dependence R(ω) becomes zero. Therefore, N -like curves
with negative section can be observed both at relatively
high temperatures and in media with negligibly small
SD.

Recently, it was shown in work [121] that, in the case
of the oblique incidence of light onto a plane-parallel
CdSe plate and in the presence of an ALW, a drastic
phase jump by 6π is possible for the reflected wave at
ω ≈ ωL.

8. Topicality of ALW Researches

At the end of the description of the activity devoted to
studying the SD effects in three-dimensional structures,
owing to the restriction imposed upon the review’s
length, we only briefly indicate those works, where the
essential influence of ALWs on optical characteristics of
crystals has been demonstrated.

In works [17, 122, 123], the properties of excitons
with a complicated band structure, owing to which the
propagation of two additional waves in the vicinity of a
resonance becomes possible, were studied. In particular,
in works [122, 123], the optical activity of a special
type and the inversion of the crystal optical axis were
observed in CdS crystals in the range of its Bn=1-exciton;
these phenomena were described in detail in the review
by E.L. Ivchenko [11]. The dispersion of the refractive
index with a discontinuity at the frequency ω0 was
measured in the same crystals in work [17].

In works [40, 124], the analysis of experimental
researches of dispersion and absorption in CdS crystals
was made, and the data concerning the temperature
and frequency dependences of the damping constant of
excitons in this medium were obtained. The dependence
Γ(ω) was demonstrated to have a step-like character,
with every step being associated with a next, higher-
located exciton state. A delta-like peak was associated
with the effect of “anticrossing” between the dispersion
branches of allowed and forbidden An=1-excitons, which
was paid attention to in work [28]. At the frequency
ωL, the value of Γ grows drastically in comparison
with that in the ∆LT region. This phenomenon was
registered for the first time in works [27,29]. It is caused
by umklapp processes – induced by exciton-phonon
interaction – between the upper and the lower polariton
branches, as well as by possible mutual transformations
of the “+”- and “−”-waves at collision with an arbitrary
obstacle (e.g., an impurity), similarly to what takes
place at the reflection from the crystal surface. The
processes of mutual transformations of the “+”-, “−”-,
and longitudinal waves at spherical inclusions was
considered theoretically in work [125].

Very important is the issue concerning the energy
propagation in the resonance range of the spectrum in
the presence of ALWs. In work [126], the fluxes of energy
in a medium with SD were examined making allowance
for absorption; it was shown that the interference
between normal waves gives rise to the emergence of
interference energy flows. In work [127], expressions for
the energy density, the density of energy flow, and the
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specific thermal emission in crystals with SD in the
spectral range of a quadrupole exciton resonance were
obtained. It was shown that the total energy flow is
not a simple sum of contributions made by every wave
separately: the interference-related flows are substantial
and have to be taken into consideration.

Since the speed of signal transfer in a dispersion
medium is determined by the group velocity of a wave
packet, it is of interest to consider the problem in the
presence of ALWs. In work [40], the interference method
[128, 129] was used to measure the spectral dependence
of the group velocity of the “+”-wave in the range of
An=1-exciton of a CdS crystal at T = 4.2 K. The speed
of a wave packet at its maximal deceleration turned out
1.3 × 104 times as lower as the speed of light, which
is in good agreement with the result of calculations.
By its order of magnitude, this value is close to the
value obtained in work [35] for a CuCl crystal, which
was measured by the time delay of the picosecond pulse
transmission.

An entire domain in optics, exciton luminescence,
is also unbrokenly connected with the polariton model.
The necessity to engage this model in order to give
a qualitative explanation to experimental features of
resonance emission has been demonstrated in works
by Gross and coauthors [130, 131]. The authors found
that the states of the upper polariton branch, which
were initially excited, due to their interaction with
LO phonons, jump onto the lower polariton branch,
and, afterwards, relax along it towards the bottleneck
region, where they are accumulated before the emission.
Thus, in spite of the fact that the exciton-like branch,
which corresponds to the “+”-wave, is not excited by
light directly (i.e. its excitation energy considerably
exceeds ω0), it plays a large role in the formation of the
luminescence spectrum. The kinetics and luminescence
of polaritons were considered in detail in work [132]; in
the same work, a large review of the literature on this
subject was made.

At last, we would like to note that the account
of the dispersion of polariton branches is mandatory
in nonlinear optics in the cases where high levels
of excitation stimulate the strong exciton-exciton
interaction, so that the formation of biexcitons and the
hyper-Raman light scattering (see the review by Koteles
in collective monograph [11]) become feasible.

9. Modern Trends in Studying ALWs

As was already pointed out in Introduction, the rapid
development of nanophysics in the early 1990s brought

about a substantial reduction of the number of works
devoted to studying the SD effects. But recently, the
interest to this subject has been renewed, which is
associated with the search for a non-local response
to electromagnetic excitations just in new systems.
Consider a few directions of studying the SD effects
developed within recent years.

The theoretical consideration of various ABCs, as
well as the elucidation of their validity in comparison
with experiment, has been continued [76, 77, 79, 80, 133,
134]. To the same scope of works can be attributed works
[121,135]. In work [135], the method of exact calculation
of the properties of exciton polaritons with SD was
developed; it is based on the microtheory of boundary
conditions and includes continuum states. The results
were compared with those obtained in the framework
of macrotheory for various ABCs. The best agreement
was attained for Pekar’s ABC with a DL on the surface
and taking the continuum states into account, whereas
the ABCs proposed in works [67,76] could not be put in
agreement at any values of the parameters.

In experiment, the greatest attention is focused
on the researches of the properties of GaAs and
AlGaAs/GaAs systems: from the elementary cases of
a single quantum well and the structures composed of
many quantum wells separated by wide barriers to the
formation of a superlattice, where the wave functions
overlap in the periodic system of quantum wells. The
band structure of GaAs is more complicated than that
of CdS, because the degeneration of light (l) and heavy
(h) holes at the point K = 0 is not removed. In GaAs,
therefore, there are two exciton bands with different
effective masses, and, correspondingly, there may exist
two additional waves with different asymptotes.

Very interesting results were obtained in works
[136, 137], while studying very thin (500, 200, and
50 nm in thickness) GaAs films by the method of
femtosecond spectroscopy, the pump-probe technique. A
weak oscillatory structure (a “fringe”) of the absorption
spectrum was revealed at T = 20 K; this structure
is similar to that observed in works [25–29] but is
located much higher than the basic exciton state,
in the range of interband transitions. Two periods
of oscillations could be neatly distinguished in this
structure; therefore, the authors explained the structure
as the interference between a photon-like and two
exciton-like polariton branches, which corresponds to
light and heavy excitons, respectively. The periods
of oscillations were used to determine the effective
exciton masses in the corresponding bands. Oscillations
in the spectrum were observed only after an 80-fs
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pump pulse had created a significant (from 1014 to
1016 cm−3) concentration of free carriers along the path
of a 17-fs probe pulse. Therefore, the emergence of
the “fringe” structure in the absorption spectrum was
explained by the authors as that associated with the
effective damping of exciton-like polarization owing to
the exciton scattering by free carriers. In other words,
the pump pulse, being scattered by phonons, fills the
states of exciton-like branches which are not excited
by photons directly (the process is similar to what
happens in luminescence phenomena). This enables them
to interfere with a photon-like polariton branch at
the probe pulse transmission, whereas, if there is no
pumping, the states are not filled and the interference
structure is absent.

In works [138, 139], the precision measurements of
the intensity and the phase of light transmitted through
a high-quality GaAs layer 0.25 µm in thickness, which
was sandwiched between AlGaAs layers, were fulfilled.
The specimen was imbedded into superfluid helium, and
the laser with a pulse duration of 100 fs was used. The
authors also developed a microscopic theory which is
based on the straightforward solution of the Schrödinger
equation for an exciton in specimens, the thickness of
which ranges from ten to one – or even less – Bohr radii
of an exciton. Theoretical calculations took into account
the spatial dispersion, the quantization of the motion
of the exciton center of mass, confinements imposed on
carriers’ motion, and the characteristic features of the
band structure. Agreement between the experimental
and calculated curves proved to be very good.

At the same time, the macroscopic theory cannot
explain the important features of the transmission
spectrum, because the effects of exciton center-of-mass
quantization and SD are approximately identical by
amplitude. Among various macroscopic models, Pekar’s
ABC is always in much better agreement with the
complete theory and experiment than the boundary
conditions proposed in works [67, 76]. The combination
of Pekar’s ABC with a “dead” layer allows one to obtain
full agreement with the microtheory. Nevertheless, the
thickness of this layer is an extra parameter of the
theory and should be determined for every frequency:
for exciton states, which are located higher, it becomes
reduced. Therefore, a conclusion was drawn that a
simultaneous description of the measured amplitude and
phase of the transmitted electric field could be obtained
only in the framework of the complete model.

Very interesting are the researches of the SD effects
in photon crystals, where a spatial periodicity is created
by alternating materials with very different dielectric

permittivities. In work [140], theoretical calculations
of the optical properties of a multilayered dispersion
medium, in which quantum wells were arranged at a
distance of λ/2 from one another (the condition of
Bragg reflection), were fulfilled in the framework of the
semiclassical consideration and making allowance for
SD. It turned out that the non-local optical response
of the system depends very much on the number
of quantum wells. The parameters of calculations
corresponded to those of the AlGaAs/GaAs system.
Polariton dispersion curves were calculated. A large
review of the literature was made.

At last, it should be emphasized that the polariton
model is used to analyze the luminescence spectra in
semiconductor microresonators (see, e.g., work [141]
and references therein). The energy relaxation of
polaritons in GaAs-based structures differs strongly
from the relaxation of bulk polaritons and depends
substantially on the conditions of optical excitation and
the temperature.

Nowadays, a tendency to look for the SD effects
in the long-wave (tera- and gigahertz) frequency range
was outlined. For instance, in work [142], the optical
properties of layered superconductors in the vicinity
of the Josephson plasma resonance were studied.
Propagation and reflection of light were theoretically
considered for its normal and oblique incidence onto the
surfaces of these strongly anisotropic crystals with SD;
the surfaces were considered to be oriented normally
or in parallel to the layers. The case with a negative
effective mass, M < 0, attracts a special attention
(Fig. 1,b). At the frequency which corresponds to the
return point of real n2-values and where the n+- and n−-
branches transform into each other, the group velocity
of the wave packet becomes zero. In an ideal case where
the damping is absent, i.e. at Γ = 0, light has to stop.
Under those conditions, the Fresnel approximation was
shown to become incorrect near the return point. (The
authors do not seemingly know the works concerning
the invalidity of the Fresnel formulas in the whole
resonance range rather than at a single point only, which
were discussed in Section 4.) An assumption was made
that, in media with SD, conditions could be provided
for the light pulse to stop, which would open ample
opportunities for the implementation of the method in
quantum information science.

These researches were continued in work [143],
phonon polaritons in ionic crystals being the matter
of interest. The influence of SD of phonon modes
on the reflection spectrum has been studied. It has
been demonstrated that, provided the values of the
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damping constant are very small, the reflection spectra
for positive and negative effective masses are strongly
different in the region of the R(ω)-curve minimum.

In work [144], an artificial medium (metamaterial)
was considered. The medium was formed by a grid of
thin parallel wires. SD of this system was shown to
be very strong at any frequency, including very long
waves. A dramatic difference in the predicted behavior
of this medium with respect to the propagation of
electromagnetic waves in it was demonstrated for the
local and non-local models of susceptibility. Therefore,
to describe such media, one must use a theory that takes
SD into consideration.

10. Conclusions

The experimental data, which were discussed in this
review, convincingly evidence for the existence of
additional light waves predicted by S.I. Pekar in 1957.
These waves may manifest themselves if one studies light
that is reflected by, scattered in, or transmitted through
a crystal. They were managed to be separated in space
from the ordinary waves and directly observed after light
transmission through a wedge-shaped crystal.

At present time, generalized crystal optics, which
takes SD into account, is an integral part of solid state
physics. It does not only explain the features of observed
spectral characteristics, but also produces results that
agree with them quantitatively. The interaction between
light and crystals at low temperatures has to be
described by the relations of this theory, because
classical single-wave crystal optics proves to be incorrect:
the KKRs and the Fresnel formulas are not obeyed;
measurements of the refractive index, which are based on
the phase variation of a light wave transmitted through a
crystal, give such “effective” values in the actual range of
exciton spectrum that depend on the specimen thickness.

The transition to single-wave crystal optics occurs
when the constant of exciton damping exceeds some
critical value, which corresponds to a certain critical
temperature. The critical values of Γ depend on
parameters that characterize the exciton band and
differ very strongly for different substances. Moreover,
the critical temperature may be different for the
same substance, because it depends on the degree
of crystal perfection, impurities, and distortion of a
specific specimen. Therefore, the determination of the
critical temperature of the specimen and, hence, the
establishment of whether the relations of the single-wave
theory are applicable in every specific case demand that
an additional analysis should be done.

Special care should be exercised while determining
the optical constants of a substance from its reflection
spectra – the method, which is widely used in optics
owing to its relative simplicity and the availability of
the required facilities. First, one should bear in mind
that, in the case where SD is essential, the reflection
spectrum is formed by the effective refractive index,
which is an involved combination of the parameters of
both waves that are excited in the crystal. Therefore, if
the KKRs of the single-wave theory were applied in this
case to determine n and κ, the basis for a wrong result
might be laid already at the initial stage of calculations.
Second, additional difficulties arise due to the presence
of an intrinsic “dead” layer on the crystal surface. At
last, the properties of a crystal in the near-surface region
can differ from those in the bulk, so that the formation
of a non-intrinsic surface layer also becomes possible,
which would introduce additional complications into the
problem.

The researches of the SD effects and Pekar’s
ALWs become more intense as modern technologies
are developed aiming at growing high-quality layered
structures with quantum wells and superlattices. The
search for a non-local response to electromagnetic
excitation is carried on in wider and wider ranges
of wavelengths and in novel media, including
superconductors and metal-wire gratings. A possibility
of creating the media with SD to delay light pulses
is examined. In the media with a negative effective
mass, the deceleration effect for the wave-packet group
velocity should be maximal.

Taking the aforesaid into account, one can expect
that, in the nearest future, the number of works dealing
with the study of the SD effects in novel media should
increase, especially in connection with the search for
their implementations in new devices.
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ВПЛИВ ДОДАТКОВИХ СВIТЛОВИХ ХВИЛЬ ПЕКАРА
НА ОПТИЧНI СПЕКТРИ КРИСТАЛIВ
(ОГЛЯД)

М.I. Страшнiкова

Р е з ю м е

Зроблено огляд експериментальних робiт, котрi пiдтверджують
iснування додаткових свiтлових хвиль (ДСХ) в областi екси-
тонних резонансiв, якi були передбаченi С.I. Пекаром у 1957 р.
Огляд охоплює роботи з вимiрювання спектрiв поглинання,
вiдбиття, розсiяння, змiни фази свiтлової хвилi при вiдбиттi, а
також з вимiрювання дисперсiї показника заломлення. Доклад-
но розглянуто роботи з просторового вiдокремлення хвиль Пе-
кара в тонких клиноподiбних кристалах. Вiдслiдковано перехiд
до однохвильової класичної кристалооптики, який вiдбуваєть-
ся пiсля досягнення деякого критичного значення константи
затухання екситонiв. Наведено критерiї застосовностi класич-
них спiввiдношень Крамерса–Кронiга (СКК) i формул Френе-
ля для визначення оптичних характеристик кристалiв. Розг-
лянуто особливостi апроксимацiї спектрiв вiдбиття з рiзними
додатковими граничними умовами, а також вплив обробки по-
верхнi на контури екситонних спектрiв вiдбиття.
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