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The polarization structure of light transmitted through a
homeotropic cell filled with a nematic liquid crystal (NLC) has
been found to be characterized by the availability of polarization
singularities which arise owing to the interference of characteristic
modes in the anisotropic substance. Stokes polarimetry has been
used to measure the polarization-resolved conoscopic images. For a
homeotropic cell, the parameters of polarization singularities in the
angular distributions of polarization ellipses have been calculated
analytically. The results of theoretical calculations agree well with
experimental data.

1. Introduction

Optical properties of liquid crystals (LCs) are known
to be very important for their numerous applications
[1–3]. As a rule, LCs are used as an anisotropic
medium, where the anisotropy is governed by its
orientational structure, the latter being sensitive
to external fields and to a change of boundary
conditions.

Similarly as it is in other anisotropic materials, the
polarization of light propagating in LC varies owing
to the anisotropy of the latter. In an LC cell placed
between crossed polarizers, these anisotropy-induced
polarization changes reveal themselves in variations
of the transmission coefficient. A significant number
of experimental methods developed for studying the
orientational structures in LC cells are based on this
effect.

For instance, the known method of crystal rotation
[4] involves the analysis of the angular dependence of
LC-cell transmission in the configuration with crossed
polarizers. Such a dependence can be considered as a

one-dimensional cross-section of the more general (two-
dimensional) conoscopic image.

Conoscopy is successfully used for studying the LC
systems. In particular, it is applied to revealing the
biaxiality of NLCs [5,6] and measuring the pretilt angle
[7, 8]. The conoscopic images of hybrid NLCs cells were
also studied in work [9].

From the fundamental point of view, the problem
of detailed study of the polarization structure, which
conoscopic images originate from, naturally arises. In
other words, the matter is about the analysis of
the dependence of a light polarization state after the
light transmission through LC cells on the angles of
incidence. We will study the two-dimensional angular
distributions of Stokes parameters, which describe the
field of polarization ellipses; the latter can be referred to
as a polarization-resolved conoscopic image.

Nye [10–12] was the first who demonstrated that
the so-called polarization singularities are important
elements which characterize the geometrical structure of
polarization fields. In particular, these include C-points
(the point of circular polarization) and L-curves (the
curves of linear polarization).

In work [13], the theory of singularities has
been applied to analyze the angular dependence of
polarization (the polarization state of the electric
induction vector) for the plane-wave characteristic
modes of anisotropic crystals, including dichroic and
chiral ones. In work [14], this analysis was extended –
by applying the 4× 4-matrix formalism – to include the
case of bianisotropic crystals.

Experimental results and the results of calculations
obtained in work [15] testify that, when a linearly
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polarized Laguerre–Gauss beam with a vortex on its
axis propagates in an anisotropic crystal, there appears
a complicated structure of polarization singularities.

In this work, we study the polarization structures
that arise owing to the interference of four characteristic
modes of a homeotropic NLC cell excited by a plane
wave incident upon the cell. The method of Stokes
polarimetry was used in order to measure the field of
Stokes parameters which was presented in the form of
a distribution of polarization ellipses. We also present
the analytical results obtained for the characteristics of
polarization singularities and compare the results of our
calculations with experimental data.

2. Experimental Part

In our experiments, we used a homeotropic planar NLC
cell 110 µm in thickness. The thickness spread was
checked taking advantage of the interference technique
and did not exceed ±1 µm. The cell was filled with
nematic E7 which is characterized by the ordinary
refractive index no ≈ 1.5217 and the extraordinary one
ne ≈ 1.7472 in the optical range.

A coherent continuous single-frequency He-Ne laser
with the wavelength λ = 0.633 µm and an emitting
power of 10 mW was used as a radiation source. The
experimental installation, whose scheme is presented
in Fig. 1, was a modification of typical installations
destined for studying the polarization distribution over
the transverse cross-section of light beams [15,16].

Light emitted by the He-Ne laser was collimated by
lenses L1 and L2. Polarizer P1 was used to set the
orientation for the polarization vector of the electric
field of a linearly polarized wave. In experiments with
circularly polarized light, polarizer P1 was followed by
a quarter-wavelength plate.

Microobjective L3 was used to produce a divergent
light beam. Microobjective L4 and lens L5 collimated
the beam after its having transmitted through NLC cell
NLC. Further, the beam was analyzed by a Stokes-
analyzer (a quarter-wavelength plate and polarizer P2).

To determine the parameters of light polarization,
we measured the intensities of four linearly polarized
components with azimuths of 0, π/4, π/2, and 3π/4:
I(0), I(π/4), I(π/2), and I(3π/4), respectively; as well
as the intensities of right- and left-circularly polarized
components: I+ and I−, respectively. The values of the
measured intensities were applied to calculate the Stokes

He-Ne CCD
L1 L2 P1 P2l/4L3

NLC
L4 L5

Fig. 1. Scheme of the experimental installation (see notations in
the text)

parameters by formulas [17]

S0 = I(0) + I(π/2) =
√

S2
1 + S2

2 + S2
3 , (1a)

S1 = I(0)− I(π/2) = S0 cos 2χp cos 2φp, (1b)
S2 = I(π/4)− I(3π/4) = S0 cos 2χp sin 2φp, (1c)
S3 = I+ − I− = S0 sin 2χp, (1d)

where the Poincaré sphere is parametrized in terms of
the polarization azimuth φp (0 < φp ≤ π) and the
ellipticity angle χp (−π/4 ≤ χp ≤ π/4).

The geometrical characteristics of the polarization
ellipse are the polarization azimuth φp, which sets the
orientation of the long semi-axis of the ellipse in the
plane that is perpendicular to the wave vector, and the
ellipticity εell, whose amplitude is the ratio between the
lengths of the short and long semi-axes of the ellipse.
From Eqs. (1), one can see that those characteristics
are coupled with the Stokes parameters in the following
manner:

φp = 2−1 arg S, S ≡ S1 + iS2, (2)

εell = − tg χp, χp = 2−1 arcsin(S3/S0). (3)

In our installation, the required intensities of the field
polarization components were fixed by a CCD-chamber.
The data obtained were processed by a computer, and
the Stokes parameters for every pixel were calculated by
formulas (1).

The geometrical image of the distribution of Stokes
parameters in the plane of a CCD-chamber is a two-
dimensional field of polarization ellipses, with every
ellipse being characterized by the polarization azimuth
and the ellipticity which are calculated by formula (2)
for every pixel. The results obtained are discussed in
Section 4..

3. Polarization Singularities

3.1. Transmission matrix

Consider an NLC cell with thickness d, sandwiched
between two substrates, the normals to which are
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Fig. 2. Cross-section of the NLC cell in the plane of light incidence

directed along z axis: z = 0 and z = d. The general form
of the dielectric tensor of NLC is [1]

ε = ε⊥I3 + ∆ε d̂⊗ d̂, (4)

where d̂ is the NLC director, ∆ε = ε‖ − ε⊥, and I3 is
the unitary 3×3-matrix. For the overwhelming majority
of known nematics, the anisotropy is uniaxial, and the
eigenvalues of tensor (4) are equal to the ordinary and
extraordinary refractive indices, no =

√
µε⊥ and ne =√

µε‖, respectively, where µ is the magnetic permeability
of the NLC.

Let the external medium be isotropic, with the
dielectric constant εm and the magnetic permeability
µm. Figure 2 shows that there are two plane waves
in the half-space z ≤ 0: an incident wave {Einc,Hinc}
and a reflected one {Erefl,Hrefl}. The transmitted wave
{Etr,Htr} and the reflected one are excited by the
incident wave and propagate in the parallel direction
in the half-space z ≥ d. Therefore, the field outside the
cell can be written down as

E|z<0 = Einc(k̂inc)ei(kinc·r) + Erefl(k̂refl)ei(krefl·r), (5a)

E|z>d = Etr(k̂tr)ei(ktr·r), (5b)

where the wave vectors kinc, krefl, and ktr, owing to the
boundary conditions

P(ẑ) · [E|z=0+0 −E|z=0−0

]
= (6a)

= P(ẑ) · [E|z=d+0 −E|z=d−0

]
= 0,

P(ẑ) · [H|z=0+0 −H|z=0−0

]
= (6b)

= P(ẑ) · [H|z=d+0 −H|z=d−0

]
= 0,

where P(ẑ) = I3 − ẑ⊗ ẑ is the projector operator onto
the cell plane (x−y plane), lay in the plane of incidence.

Another consequence of the boundary conditions (6)
is that the tangential components of the wave vectors
are equal. Assuming that the incidence plane is the
coordinate plane x− z, we obtain

kα = kmk̂α = kx x̂ + k(α)
z ẑ, α ∈ {inc, refl, tr}, (7)

where km/kvac = nm =
√

µmεm is the refractive index
of the external medium, kvac = ω/c = 2π/λ is the wave
number in vacuum, kx = km sin θinc, and k

(inc)
z = k

(tr)
z =

−k
(refl)
z = km cos θinc.
The vector amplitudes of the electric fields of plane

waves are

Eα(k̂α) = E
(α)
‖ ex(k̂α) + E

(α)
⊥ ey(k̂α), (8)

ex(k̂α) = k−1
m

(
k(α)

z x̂− kx ẑ
)
, ey(k̂α) = ŷ. (9)

The solution of the transmission problem has the
form of a linear relation between the components of the
incident and transmitted waves
(

E
(tr)
‖

E
(tr)
⊥

)
= T

(
E

(inc)
‖

E
(inc)
⊥

)
, (10)

where T is the transmission matrix. The main difficulty
consists in calculating this matrix.

Mathematical details, which are relevant to the
exact solution of the transmission problem for uniform
anisotropic media and the general theory of polarization-
resolved images, can be found in work [18]. Below,
we repeat in brief only the basic results obtained for
a homeotropic NLC cell in the case where d = ẑ.
In this case, the transmission matrix is diagonal, and
the following expressions for its elements (transmission
coefficients) can be derived [18]:

T = diag(tx, ty), tx, y = 2µm n−1
m cos θincτ

−1
x, y, (11a)

τx = 2µm n−1
m cos θinc cos δe − i[q(e)

z ]−1 sin δe ×[
(µmnon

−1
m cos θinc)2 + (n−1

o q(e)
z )2

]
, (11b)

τy = 2µm n−1
m cos θinc cos δo − i[q(o)

z ]−1 sin δo ×[
cos2 θinc + (µmn−1

m q(o)
z )2

]
, (11c)

where

q(o)
z =

√
n2

o − n2
m sin2 θinc,

q(e)
z = non

−1
e

√
n2

e − n2
m sin2 θinc

and δα = q
(α)
z kvacd.
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3.2. C-points and L-curves

It is convenient to characterize the state of polarization
in terms of the circular components of vector amplitudes

E(k̂) = E+e+(k̂) + E−e−(k̂), (12a)

E± = 2−1/2
(
E‖ ∓ iE⊥

)
=

∣∣E±
∣∣ exp{iφ±}, (12b)

where
√

2e±(k̂) = ex(k̂)± iey(k̂). The main axes of the
polarization ellipse are directed along the unit vectors
e′x(k̂) = cos φp ex(k̂) + sin φp ey(k̂) and e′y(k̂) =
− sin φp ex(k̂) + cos φp ey(k̂).

The polarization azimuth (2) and the ellipticity
parameter (3), whose signs are different for the right
and left polarizations, are determined by the formulas

φp = (φ− − φ+)/2, εell =
|E−| − |E+|
|E−|+ |E+| . (13)

For the Stokes parameters (1), we have

S1 = 2ReE∗
+E−, S2 = 2ImE∗

+E−, (14a)

S3 = |E+|2 − |E−|2, S0 = |E+|2 + |E−|2. (14b)

If |Eν | = 0, the wave is circularly polarized, and
the phases φν and φp are indefinite. Therefore, such
a polarization singularity can be regarded as a phase
singularity of the complex Stokes field S = S1 + iS2.
The points, where |Eν | = 0 and εell = ν, will be referred
to as Cν-points.

In the case of linear polarization, the equality |E+| =
|E−| is valid, and the sign of polarization is indefinite.
The curves of linear polarization are called L-curves.

The transmission matrix

T̃ (ρ, φ) = exp(−iφσ3)T c(ρ) exp(iφσ3), (15)
ρ = r tg θinc, φ = φinc, (16)

where T c = CT C†, C = 2−1/2

(
1 −i
1 i

)
, and σ3 =

diag(1,−1), describes a conoscopic image on the plane,
for which ρ and φ are the polar coordinates (the
corresponding Cartesian coordinates are x = ρ cosφ and
y = ρ sin φ), and r is the scale factor dependent on the
aperture.

Let the incident wave be linearly polarized along
the vector cos ψp ex(k̂inc) + sin ψp ey(k̂inc). In this
case, E

(inc)
ν = exp(−νψp)|Einc|, and, for the transmitted

wave, we have

Ψν =
[
(tx + ty) + (tx − ty) exp(−2iνψ)

]
exp(−iνψp),

(17)

where Ψν = 2E
(tr)
ν /|Einc| and ψ = φ− ψp.

The C-points are located on circles, whose radii are
found from the equation

R(ρ)Re(txt∗y) = |tx| · |ty| cos δ = 0. (18)

For weakly anisotropic NLCs, the δ-phase difference
slightly differs from the phase taper δ ≈ δe − δo. From
Eq. (18), it is evident that δ = π/2 + πk, where the
number k = 0, 1, . . . , N − 1 enumerates circles, ranging
their radii ρk in ascending order.

From the expression for the amplitude

|Ψν(ρk, φ)|2 = 2 |t|2[1 + cos 2{ψ − ν(−1)kα}], (19)

|t|2 = |tx|2 + |ty|2, tan α =
|ty|
|tx| , (20)

it becomes clear that every circle contains two pairs of
C-points with the azimuthal angles

φ
(ν)
±k = ψp ± π/2 + ν(−1)kα. (21)

It can be demonstrated that the C-point index, which
is twice lower than the topological index of the complex
field S [19], is calculated by the formula

IC =
ν

2
sign

[
Im(∂xΨν ∂yΨ∗ν)

]
x=xν
y=yν

= (22)

=
ν

2
sign

[
Im(∂ρΨν ∂φΨ∗ν)

]
ρ=ρν
φ=φν

.

Accordingly, the following result is obtained:

IC = −1
2

∂ρR(ρ)
∣∣∣
ρ=ρk

=
(−1)k

2
. (23)

The effect of the alternation for the polarization and C-
point index signs is illustrated in Fig. 3 (panels b and d,
respectively).

We can derive an analytical expression for the
discriminant DL, the sign of which determines the type
of a C-point according to the classification by the
number of straight rays NC crossing the singularity [20].
The discriminant looks like

DL = (R1/|t|2 + 1)2 + α2
1 − 1, (24)

R1 ≡ (ρ∂ρR)
∣∣∣
ρ=ρk

, α1 ≡ (ρ∂ρα)
∣∣∣
ρ=ρk

. (25)

If DL > 0, then NC = 3, and the C-point will be
of the star or monstar type, depending on IC = −1/2
or IC = +1/2, respectively. It is easy to see that, at
IC = −1/2, the derivative R1 is positive, so that such
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Fig. 3. Angular polarization patterns are shown as the fields of polarization ellipses in the plane with coordinates x = ρ cos φ and
y = ρ sin φ. The lemons and monstars are depicted as rhombs and triangles, respectively. Curves correspond to L-curves. Incident light
is polarized linearly. Grayed ellipses correspond to the right polarization of light

points are always of the star type. The monstar type
arises if the amplitudes of the transmission coefficient
gradients are large enough. For example, let R1 <
−2|t|2. In cells that are thick enough, all C-points with
k > 1 and IC = +1/2 will be monstars. If k = 0 (the
conditions are close to normal incidence), then DL < 0,
and C-points are always of the lemon type, which is
characterized by the equalities NC = 1 and IC = +1/2.

The equation

Im(txt∗y) sin 2ψ = 0 (26)

describes L-curves. There are evidently two straight
lines φ = ψp and φ = ψp + π/2, where the polarization

vectors of the incident and transmitted waves are
parallel to each other: φp = ψp. The other L-curves
are circles, the radii of which are the solutions of the
equation δ = πk with k = 1, . . . , N − 1. It can be
demonstrated that φp ≈ ψp for even k’s and φp ≈ ψp+2φ
for odd ones. It is also evident from Fig. 3 (panels
a and c).

4. Comparison of the Theory with Experiment

While making theoretical calculations, the value of
aperture-dependent scale factor (see Eq. (16)), which
determines the radii of circles containing C-points, was
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taken to be 7 mm. This factor depends on the angle of
the beam divergence aperture: the smaller the divergence
angle of the beam, the smaller are the radii of the
circles, on which the C-points are located. If the value
of the quantity r tan θinc (see Eq. (16)) is less than that
of ρ0 (see Eq. (18)), the C-points cannot be resolved
experimentally; it is the case close to normal incidence.

In Fig. 3, the angular polarization structures,
both experimentally measured (panels a and c) and
theoretically calculated (panels b and d), are depicted.
The presented patterns illustrate the alternation effect
for the topological sign of C-points, which is described by
Eq. (23). In full accordance with the theory (Eq. (23)), at
the center of the polarization-resolved conoscopic image
(Fig. 3) there are four C-points of the lemon type. On
the next circle, where the gradient amplitudes for the
transmission coefficients start to increase, there appear
C-points of the star – according to Eq. (18) – and
monstar – according to Eq. (24) – types. It should be
noted that the polarization structure does not change
as the polarization azimuth of incident light varies, but
only rotates by the angle equal to the azimuthal one (see
Eq. (21)).

The L-curves in the theoretically calculated angular
polarization patterns (Figs. 3,b and 3,d) form two
coordinate axes, which rotate together with the
azimuth, and concentric L-circles, which separate circles
containing C-points. In the experimentally obtained
patterns, the L-curves do not form a continuous grid
of straight lines and circles. Instead, the grid of L-
curves decays into a set of closed contours (Figs. 3,a and
3,c), which is explained by the inhomogeneity of the LC
cells, as well as by the influence of the light scattering
by director’s fluctuations, which gives rise to a change
of the light polarization state after light having been
transmitted through the LC cell.

5. Conclusions

The angular distributions of polarization ellipses, which
reflect the polarization structures – the origin of
conoscopic images, – have been obtained. On the basis of
the exact solution derived for the transmission problem,
the characteristics of the polarization singularities in
those distributions have been analyzed theoretically.
In particular, C-points were demonstrated to form
symmetrically located radial structures, and the
topological index of C-points was shown to alternate its
sign while crossing the boundaries of those structures.
The comparison of theoretical results with experimental
data evidences for good agreement between them.
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КУТОВА ПОЛЯРИЗАЦIЙНА СТРУКТУРА
ПРОПУСКАННЯ ГОМЕОТРОПНОЇ
КОМIРКИ НЕМАТИКА

Р.Г. Вовк, О.Д. Кисельов, I.О. Буйний, М.С. Соскiн

Р е з ю м е

Знайдено, що поляризацiйна структура свiтла пiсля проход-
ження гомеотропно орiєнтованої комiрки, заповненої нематич-
ним рiдким кристалом (НРК), характеризується наявнiстю по-
ляризацiйних сингулярностей, якi виникають внаслiдок iнтер-
ференцiї власних хвиль анiзотропного середовища. Вимiрю-
вання поляризацiйно роздiлених коноскопiчних зображень бу-
ло виконано за допомогою методу стокс-поляриметрiї. Для
гомеотропної комiрки характеристики поляризацiйних сингу-
лярностей в кутових розподiлах елiпсiв поляризацiї обчислено
аналiтично. Показано, що результати теоретичних розрахункiв
добре узгоджуються з експериментальними даними.
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