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Elastic diffraction scattering of hadrons at high transferred
momenta has been studied making use of the overlap function.
The unitarity condition for the amplitude of elastic diffraction
scattering with a modified overlap function has been solved.
A comparison between theoretical and experimental differential
cross-sections for pp- and π±p-scattering at various energies has
been made.

Experimental data measured at the IHEP, FIAN, and
ISR accelerators and the collider demonstrate that (i)
the total cross-sections grow with the energy; (ii) the
differential cross-sections are characterized by a “cusp”
structure in the vicinity of t ≈ −0.1 GeV and a
”dip” moving along the energy axis; (iii) the amplitude
contains a positive real part; and (iv) polarization effects
do not disappear. A large energy range provided by
ISR accelerators and the SPS collider makes it possible
to verify various phenomenological models which were
proposed to describe experimental data for energies
below those of ISR. It is known that the calculation of
the amplitudes of nuclear processes with low transferred
momenta requires going beyond the framework of
perturbation theory which is valid only in the range
of high transferred momenta. For this reason, various
phenomenological models – such as optical, Regge, dual,
quasipotential, and control ones, and the U -matrix
theory – are widely used for the description of scattering
processes with a low transferred momentum [1]. The
scattering theory of light nuclei, to the development of
which A.G. Sitenko made an essential contribution [2],
helps to understand, in many respects, a qualitative
picture of problems that exist today in high-energy
physics.

One of the existing methods of studying the elastic
interactions is a solution of the unitarity condition at
a given Van Hove inelastic overlap function [3] which

characterizes the overlapping of the wave functions of
two inelastic final states obtained from two-particle
initial and final states in the elastic process. In other
words, the Van Hove overlap function describes a
contribution of inelastic processes to the imaginary
part of the elastic scattering amplitude making use
of the unitarity condition. Provided that the law of
the inelastic process is known, then, proceeding from
unitarity, one can calculate the corresponding elastic
(shadow) scattering; and vice versa, having a certain
information concerning the elastic scattering, it is
possible to draw a conclusion about the inelastic one.
Therefore, the form of the overlap function has a decisive
meaning in such an approach. If this function is known
for some reason, the fundamental unitarity condition can
be considered as an initial dynamical controlling factor
while calculating the amplitude of elastic scattering.
An approach based on the solution of the unitarity
equation was intensively developed in works [1, 4, 5].
In the framework of his model of uncorrelated jets,
Van Hove obtained an exponential dependence of this
function on the square of the momentum transferred

G(t) = σineαt. (1)

The differential cross-section of elastic scattering
at low transferred momenta in the diffraction peak
region obtained from Eq. (1) describes – at a
qualitatively good level – the available experimental
data on the elastic scattering of hadrons at high
energies. Moreover, the model under consideration
makes a certain prediction with respect to the angular
distribution at high transferred momenta, which is
also in rather a good qualitative correspondence with
experiment. However, this model does not provide a
quantitative agreement with experiment. For example,
the available experimental data on pp-scattering are
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hard to be put in a quantitative agreement with the
Van Hove model – even in the diffraction cone region
– without violating the unitarity condition. In order
to determine the shape of the overlap function, the
unitarity condition can be used, by substituting the
diffraction peak well established experimentally into it;
such a procedure was made analytically in works [6–10].
In this case, the overlap function includes the difference
of two exponents, rather than a single exponent:

G(t) = aeαt − beβt, (2)

where β = α/2, and, according to the normalization
condition G(0) = σin,

a− b = σin. (3)

Note that expression (2) for the overlap function
is more realistic than expression (1). In this work,
we consider the elastic scattering corresponding to
the overlap function (2) in details with the main
attention being focused on the scattering with high
transferred momenta t which is more sensitive to the
G(t)-dependence shape than the scattering with low t
[9, 10].

1. The amplitude of elastic scattering in the model of
uncorrelated jets is expressed by a nonalternating series

F (t) ' 2i
√

πa

∞∑
m=1

(2m− 3)!!(g0/2)m

mm!
exp

(
αt

m

)
, (4)

where the quantity g0 = 1 − η2
0 is determined by

the partial inelastic cross-section in the s-state, and,
according to the unitarity condition, 0 ≤ g0 ≤ 1. At
low transferred momenta and near the diffraction peak,
this formula can be written down as follows:

F (t) ' F (0) exp(a1αt + a2α
2t2 + . . . ), (5)

where the coefficients ai (i = 1, 2, . . . ) are expressed
through sums (see works [9,10]). At |t| > |td|, where td '
1 (GeV/c)2 determines the diffraction cone boundary,
the summation in Eq. (4) can be replaced – with a
high accuracy – by integration. Then, the scattering
amplitude reads [9, 12,13]

F (t) ' i
√

π| ln g0||t|−1(1 + 0, 25(αt ln g0)−1/2×

× exp(−2
√

αt ln g0), (6)

where the inequality g0 < 1 is supposed.

In the case of maximal absorption in the s-state, we
obtain

F (t) ' iα(2/3)Φ (3/2, 5/2; α) =

= iα(2/3)eαtΦ(1, 5/2;−αt) , (7)

where Φ(α, γ, z) is the degenerate hypergeometric
function [11]. The second equality in Eq. (7) is especially
convenient for making the qualitative analysis in the
diffraction cone region; assuming Φ ' 1, we obtain
the diffraction pattern F ∼ eαt. For the momentum
transfers beyond the diffraction cone, it is convenient
to express the right-hand side of Eq. (7) in terms of
the probability integral Φ(z) [11]. Using the known
formulas (9.212.2), (9.215.1), and (9.236.1) from [11] for
degenerate hypergeometric functions, we obtain

F (t) ' i|t|−1
(
(π/4αt)1/2Φ

√
α|t| − eαt

)
. (8)

Hence, in the Van Hove model, the scattering
amplitude beyond the diffraction cone is given by
formulas (7) and (8) at |g0| < 1 and g0 = 1,
respectively. These results, which are valid in a wider
region of momenta transferred in comparison with the
case considered by Van Hove, attracted no attention.
However, it is the study of the general formulas (6) and
(8) that gives a clear general picture [8].

Consider the consequences which follow from using
the modified overlap function (2). The parameters of this
model are connected with the quantity g0 by the relation

4πg0 ' aα−1 − bβ−1. (9)

Whence, according to the unitarity condition, we obtain

0 ≤ aα−1 − bβ−1 < 4π. (10)

The most general consideration discussed in works
[7, 10] brought about the lower limit of the overlap
function derivative. Using this relation for the total
cross-section, we obtain

σt =
2π

k2

∞∫

0

(
1−

√
1− ge

)
d(l + 1/2)2 =

= −2π

k2

∞∫

0

(
1−√1− z

) [
dge

d(l + 1/2)2

]−1

dz. (11)
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The calculation of the integral gives rise ultimately to
the following result:

σt = 8πα

[
1− η0 + ln

(
cη0 +

√
1− cg0 + c− 1

2c

)
+

+
1√
c

ln

(
1 +

√
c√

1− cg0 + η0
√

c

)]
, η0 =

√
1− g0. (12)

In contrast to the nonalternating series (4) in the
Van Hove model, the scattering amplitude in model (2)
is an alternating series

F (t) = 2i
√

πα

∞∑
m=1

(2m− 3)!!
m!

m∑
n=0

(
m

n

) (
− c

2

)n

×

× xm+n

m + n
e−

α|t|
m+n . (13)

Carrying out the Laplace transformation with
respect to the quantity α |t|, one can obtain the following
integral representation for the amplitude:

F (t)
2i
√

πα
= xeαt + 2

∞∫

0

J0

(
2z

√
α|t|

)
×

×
[
1− xe−z2 −

√
1− 2xe−z2 + cx2e−2z2

]
zdz. (14)

This implies immediately that, at c = 1,

F (t) = 2i
√

παxeαt. (15)

This case was considered in works [8–10]. Note that,
if the transferred momenta are low, the scattering
amplitude near the diffraction peak can be presented by
a formula of type (5). The slope of the diffraction peak
in the Van Hove model is equal to σin/2πg0 > σin/2π
which is larger than the experimental value in the case
of pp-scattering. In the advanced model (2), this slope is
equal to (σin − b)/2πg0, which agrees with experiment.

To calculate the amplitude, we use the results of our
works [8–10]. Supposing that c 6= 1 (the case c = 0
corresponds to the model of uncorrelated jets), let us
expand the expression in the brackets in Eq. (14) in a
series in xe−z2

:
[
1− xe−z2 −

√
1− 2xe−z2 + cx2 − e−2t2

]
=

=
∞∑

m=2

(m− 2)!
(
xe−z2

)m

Am(c). (16)

If z = c = 0, we find

Am(0) =
2m− 3

m!(m− 2)!
.

Of great interest is the case of scattering beyond the
diffraction cone. The relevant amplitudes are

F (t)

2i
√

2α (1− c−1)1/4
=

√
π

γe−2u
√

γ

[
(u + 1/2

√
γ)×

× cos
(
2v
√

γ +
ϕ

2

)
+ v sin

(
2v
√

γ +
ϕ

2

)]
, (17)

where the following notations were introduced:

β ≡ ∣∣ln x
√

c
∣∣ , γ ≡ α |t| , ϕ1 ≡ π

2
− ϕ,

√
2u ≡

√
ϕ2

1 + β2 + β,

√
2v ≡

√√
ϕ2

1 + β2 − β.

Squaring Eq. (17) and neglecting √γ/2 in comparison
with u, we obtain the expression for the differential
cross-section

dσ

dt
≈ 4πα2

(
1− c−1

) 1
2 γ−2 exp (−4u

√
γ)

[(
ϕ2

1+

+β2
) 1

2+β cos
(
4v
√

γ + ϕ
)
+ϕ1 sin (4v

√
γ + ϕ)

]
(18)

which coincides with the result of work [12], where the
issue concerning the oscillations of the differential cross-
section with respect to the momentum was mentioned
for the first time. Note that these oscillations stem from
the choice of the overlap function just in form (2), i.e.
when the amplitude is represented by an alternating
series, unlike the case of the Van Hove model (1).

2. In a number of works [5–7, 12, 17], the method to
solve the unitarity condition for the elastic scattering
amplitude of two spinless particles in the high-energy
range, provided that the contribution of all inelastic
reaction channels (the inelastic overlap function) is
given, was proposed, and, on the basis of this solution,
the asymptotic behavior of the scattering amplitude
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was studied in detail. The expansion series of the
scattering amplitude in terms of Legendre polynomials
were evaluated by the saddle-point method. The results
obtained turned out simpler and, to some extent, more
general than, e.g., the corresponding expansions in the
potential approach or the Regge expansions. Therefore,
the approach used in those works is more convenient
for studying the angular distribution in a wide range of
scattering angles. In the cited works, the spectral density
of the overlap function was taken in a general form as

ϕg(ρ) = a1 (ρ) e−β(ρ) (19)

in the impact parameter representation. Although such
an approximation does allow the basic regularities in
the behavior of the differential scattering cross-section
of two protons to be described, it contradicts the results
of numerical calculations of the overlap function for pp-
scattering [10], according to which the function ϕg(ρ)
should most likely be given as a superposition of two
exponents (see Section 1):

ϕg (ρ) = a1 (ρ) e−β(ρ) − a2e
−2β(ρ). (20)

In this case, the zero point of the overlap function G(t)
and the change of its sign determined by numerical
calculations [4, 16] are obtained in the natural manner.
The solution of unitarity condition in the specific
case where the function ϕg(ρ) was selected in the
form of a superposition of two Gaussian-like profiles
(β(ρ) = ρ22b) was examined in works [7, 9], where the
characteristics of elastic scattering were demonstrated
to depend substantially on the model parameters.
In this section, the unitarity condition [10, 20] for
the scattering amplitude is solved, provided that the
spectral function ϕg(ρ) is given in the general form;
in addition, we take here into account the real
part of amplitude which can play an essential role
in the scattering at large angles [6, 10, 12–25] and
allows the fine structure of differential cross-section
to be studied. The consideration of a more general
problem can enable the study of angular distribution
to be carried out in a wider range of momenta
transferred.

The solution of the unitarity condition in terms of
spectral functions at asymptotically high energies and
in the zero-order approximation looks like

ϕ (ρ) = 1− e2iα(ρ) + e2iα(ρ)

(
1−

√
1− ϕg (ρ)

)
, (21)

where an arbitrary real function α(ρ) can be interpreted
as a phase shift of purely elastic scattering. We take it

in the form [4,5]

2α = −d(ρ)e−ψ(ρ), (22)

and the functions d(ρ) and ψ(ρ) in Eq. (22) and a1(ρ),
a2(ρ), and β(ρ) in Eq. (20) can be regarded as certain
even functions of the impact parameter.

The scattering amplitude can be presented in the
accepted model [Eqs. (20) and (22)] as a sum of three
terms:

F0(t) = i
√

π

∞∫

0

(
1− e2iα(ρ)J0

(
ρ|t| 12

))
ρdρ, (23)

F1(t) = i
√

π

∞∫

0

e2iα(ρ)−β(ρ)a(ρ)J0

(
ρ|t| 12

)
ρdρ, (24)

F2(t) = i
√

π

∞∫

0

(m− 2)!Am(c)
[
a(ρ)e−β(ρ)

]m

×

×e2iα(ρ)J0

(
ρ|t| 12

)
ρdρ, (25)

where a(ρ) = a1(ρ)/2, δ2 = |1 − c(ρ)|, c(ρ) =
4a2(ρ)/a2

1(ρ), β(ρ) = ρ2/2b1, and ψ(ρ) = ρ2/2b2.
Equation (25) was obtained making use of equality (16).
Let c(ρ) < 1 for every ρ. Using the values for sums Am(c)
found in works [8–10], Eq. (25) can be rewritten as

F2(t) =
i

2

∞∑
m=2

∞∑
n=0

inAmn

n!m
3
2

, (26)

where

Amn ≡
∞∫

0

2δ

(1 + δ)
[
(1 + δ)ae−β

]m (−de−ψ
)n×

×J0

(
ρ|t| 12

)
ρdρ. (27)

One can see that, at c(ρ) < 1, the expression F2(t) in
model (20) differs from the corresponding one in model
(19) in that the former contains the subintegral factor
2δ/

√
1 + δ and the replacement a1 −→ a1(1 + δ)/2 is

made.
3. Compare the results obtained with experimental

ones for pp- and π±p-scattering. In models (19), (21),
and (24), the differential cross-section in the diffraction
cone region is described by five parameters: b1, a, c, d,
and b2. The parameter a is determined by the optical
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theorem (ab1 ≈ σin/4π), knowing the measured b1-value
(it is the slope of the diffraction peak) and the total cross-
section. The values of the parameter c can be determined
from the exponential factor in the differential cross-
section of the scattering at high momenta transferred.
The well-measured ratio between the real and imaginary
parts of the forward scattering amplitude is determined
by the formula [8–13]

δ (0) ≈ − (db2/ab1) (1− ab1 (b1 + b2)) . (28)

The parameter b2 is determined by fitting the results
of calculations to experimental data at low momenta
transferred. Expression (21), as well as (18) one, is the
zero-order approximation. It is evident from Eq. (27)
that the quantity δ(0) equals zero only if d = 0, because,
in experiment, a ≈ 1. But the equality d = 0 means
that the amplitude in model (18) has a pure imaginary
value at every t, which has no sense. Moreover, the
substitution d → −d induces an unsubstantiated change
of the sign of δ(t) at every t. Therefore, it is expedient
to take

2α (ρ) = −d1 (ρ) e−ψ1(ρ) + d2 (ρ) e−ψ2(ρ) (29)

instead of expression (21).
As was noted in works [4,9], the formula of type (19)

is the first terms of a more exact expansion series for
the overlap function obtained in the eikonal approach
[10,19]. Really, taking the overlap function in the impact
parameter representation in the form

ϕg (ρ) = 1− exp ( −xg (ρ)) (30)

and considering xg = 2ae−β as the Born term, we see
that formulas (18) and (19) correspond to the first and
second Born approximations, respectively.

While making a comparison with experiment, we will
use the exact expressions (19), (21), (24), (28), and (29):

F0 (t) = −i
√

πb2

∞∑
n=1

( −id)n

n!n
exp

(
b2t

2n

)
, (31)

F1(t) = i
√

πa

∞∑
n=0

(−id)n

n!

(
n

b2
+

1
b1

)−1

×

× exp

(
t

2
(
nb−1

2 + b−1
1

)
)

, (32)

F2 (t)= i
√

π2
∞∑

m=2

(m− 2)!
−cm/2∑

k=1

k (1− c)k
am

22k(k!)2(m−2k)!
×

×
∞∑

n=0

(−id)n exp
(
t/2

(
nb−1

2 + mb1

))

n!
(
nb−1

2 + mb−1
1

) . (33)

In models (24), (28), and (29), the solution of the
unitarity condition it a sum of three terms [9, 10,17]:

F0 (t)
i
√

π
= −

∞∑
n=1

∞∑

l=0

(−id1)
n (d2/d1)

l

l! (n− l)!
(
nb−1

2 + l
(
b−1
3 − b−1

2

))×

× exp

(
t

2
(
nb−1

2 + l
(
b−1
3 − b−1

2

))
)

, (34)

F1 (t)
i
√

π
=

= a

∞∑
n=0

n∑

l=0

(id1)
n (−d2/d1)

l

l!(n− l)!
(
nb−1

2 + l
(
b−1
3 − b−1

2

)
+ b−1

1

)×

× exp

(
t

2
(
nb−1

2 + l
(
b−1
3 − b−1

2

)
+ b−1

1

)
)

, (35)

F3 (t)
i
√

π
= 2

∞∑
m=2

∞∑
n=0

n∑

l=0

E(m
2 )∑

k=1

(id1)
n (−d2/d1)

l

22k (k!)2 l! (n− l)!
×

× (m− 2)!amk (1− c)k

(m− 2k)!
(
nb−1

2 + l
(
b−1
3 − b−1

2

)−mb−1
1

)×

× exp

(
t

2
(
nb−1

2 + l
(
b−1
3 − b−1

2

)
+ mb−1

1

)
)

. (36)

The scattering amplitude is written down as a sum
of three terms which are determined by formulas (31)–
(33) and (34)–(36) in the cases of models (28) and (29),
respectively. The differential cross-sections calculated by
those formulas were compared with experimental data
on elastic proton-proton and pion-proton diffraction
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Fig. 1. Differential cross-sections of pp-scattering and the
corresponding theoretical curves in models (30)–(32) (solid curves)
and (33)–(35) (dashed curves) at various energies

scattering. The parameters, which enter those formulas,
were fitted to obtain the best agreement with the
experimental angular distribution.

The parameters for models (31)–(33) and (34)–
(36) are given in work [15]. We did not succeed to
satisfactorily describe the experimental data measured

Fig. 2. The same as in Fig. 1, but for π±p-scattering

at ISR energies within the latter model. In Tables 1
and 2, we give the theoretical values for total cross-
sections which agree satisfactorily with experimental
data (see works [5,16]). In Figs. 1 and 2, the experimental
dependences of the differential cross-sections for elastic
pp- and π±p-scattering are plotted, as well as the
corresponding dependences calculated in models (30)–
(32) (solid curves) and (33)–(35) (dashed curves). The
calculations for ISR energies were carried out for two

T a b l e 1

Interaction type pl, σexperiment
t σtheory

t σexperiment
el σtheory

el σexperiment
ln σtheory

ln

GeV/c mb
19.2 38.9±0.3 38.639 9.69±0.73 9.139 29.21 30.68
12 39.4±0.6 39.426 9.87 8.63 29.53 30.8

pp 8 40.0±0.6 39.010 8.79 8.705 31.21 31.51
5 44.0±1.0 47.805 – 11.17 – 27.515

10 26.87±0.08 28.082 – 6.119 – 22.543
8 27.5±0.3 28.408 – 6.692 – 21.24

π−p 6 28.072±0.025 29.658 5.5 6.736 22.57 22.572
5 29.12±0.01 30.192 5 7.072 24.12 24.12
5 26.483±0.01 26.634 5.94 6.084 20.54 20.543

π+p 4 27.721±0.01 27.394 6.42 6.093 21.304 22.293
3.5 28.224±0.015 28.83 5.9 6.118 22.324 22.324
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T a b l e 2

Interaction type pl, σexperiment
t σtheory

t σexperiment
el σtheory

el σexperiment
ln σtheory

ln

GeV/c mb
1480 43.3±0.6 43.276 7.6±0.3 7.426 35.6 35.85
1068 42.5±0.5 42.388 7.5±0.3 7.483 35.0 34.905
496 40.5±0.5 39.881 7.0±0.2 7.454 33.5 32.427

pp 19.2 38.9±0.3 39.241 9.69±0.73 8.562 29.21 30.679
12 39.4±0.6 40.295 9.87 9.492 29.53 30.803
8 40.0±0.6 41.443 8.79 9.79 31.21 32.653
5 44.0±1.0 46.8 – 10.93 – 35.87

10 26.87±0.08 27555 – 5.012 – 22.543
8 27.5±0.3 26.745 – 4.507 – 22.248

π−p 6 28.07±0.025 26.681 5.5 4.731 22.57 21.95
5 29.12±0.01 28.516 5 5.657 24.12 22.859
5 26.483±0.01 25.227 5.94 4.795 20.543 20.432

π+p 4 27.724±0.010 26.713 6.42 7.192 21.304 21.521
3.5 28.224±0.015 30.912 5.9 7.815 22.324 23.098

sets of parameters: the data corresponding to curves 1
were calculated to obtain a good agreement of
all the quantities dσ/dt, σt, σin, and δ(0) with
experiment simultaneously, while the calculations of
curves 2 included only fitting to angular distributions.
Figures 1 and 2 demonstrate that both models describe
satisfactorily the structure of the differential elastic
scattering cross-section, in particular, the positions and
the amplitudes of peaks and second maxima. The
analysis of the scattering amplitude in model (30)–(32)
testifies that the slope of the differential scattering cross-
section b(t) slightly diminishes at low |t| as the value
of |t| decreases [9]. Very interesting is the variation of
the δ(t)-dependence behavior with the change of the
momentum transferred: as the value of |t| grows, the
absolute value of δ(t) first increases and the δ(t)-sign
does not change; then, having reached its maximum,
the value of δ(t) drastically decreases, changes its
sign, and continues to grow by absolute value. The
overlap function in model (19) has a zero point for
pp-scattering in the interval t ≈ 0.5 ÷ 0.7 (GeV/c)2,
where this t-value diminishes as the energy grows, and
a zero point for π±p-scattering in the interval t ≈
0.8 ÷ 0.9 (GeV/c)2. In model (29), the dependence
G(t) becomes zero, with the change of its sign, three
times in the considered region of momentum transferred
|t| ≤ 6 (GeV/c)2: for pp-scattering, at t0 ≈ 0.5
and 4.5 (GeV/c)2; and for π±p-scattering, at t ≈ 1.3
and 6 (GeV/c)2. The value of the overlap function
ϕg(ρ = 0) depends very weakly on the energy for
all processes under consideration; it is especially true
for model (29), where ϕg(ρ = 0) ≈ 0.95, whereas
ϕg(ρ = 0) ≈ 0.8 ÷ 0.9 in model (19). It means that
the hypothesis of geometrical scaling [7–9] of the overlap

function is valid even at energies of the order of a
few GeV.

The considered overlap functions (19) and (29)
differ substantially from a Gaussian-like dependence,
especially in the central area. Models (19) and (29)
result in a slower – in comparison with the Gaussian-like
behavior – decrease of the overlap function in its central
region as the value of the impact parameter grows. This
means that the corrections for absorption are essential.
At larger ρ, dependences (19) and (29) transform into
Gaussian-like ones.
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ФУНКЦIЯ ПЕРЕКРИВАННЯ ВАН ХОВА ТА ПРУЖНЕ
ДИФРАКЦIЙНЕ РОЗСIЯННЯ АДРОНIВ
ВИСОКИХ ЕНЕРГIЙ

Є.I. Iсматов, К.А. Кутербеков, Б.О. Сарсенбаєв

Р е з ю м е

За допомогою функцiї перекривання дослiджено пружне ди-
фракцiйне розсiяння адронiв в умовах передавання великих iм-
пульсiв. Розв’язана умова унiтарностi для амплiтуди пружного
дифракцiйного розсiяння з модифiкованою функцiєю перекри-
вання. Отриманi значення диференцiальних перерiзiв порiвня-
но з вимiряними у експериментах з pp- та π±p-розсiяння для
рiзних енергiй.
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