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A phenomenological model of hadrons has been developed in terms
of bilocal meson fields with regard for the renormalization of the
wave function of a quark “inside” a meson. A modified Schwinger–
Dyson equation for an arbitrary potential has been proposed, the
solutions of which are free of ultra-violet divergences but preserve
the proper asymptotic properties. A boundary-value problem for
the potential of quark–quark interaction in the form of a sum
of oscillator and Coulomb-like potentials has been formulated,
the solutions of which describe meson spectroscopy and meson–
meson interaction. It is shown that, in contrast to other hadron
phenomenological models based on the effective action of quantum
chromodynamics (QCD), the proposed model describes both the
mass spectrum and the leptonic decay constants of pseudoscalar
mesons on the same basis and at a good quantitative level.

1. Introduction

In recent years, quark potential models (QPMs)
have been used most usefully for the description of
hadron spectroscopy (including that of mesons) and
the dynamics of their formation and decay. These
models are based on the fundamental ideas of QCD
with the phenomenological description of quark–quark
interaction. This class of models includes, in particular,
a bilocal relativistic potential model (BRPM) [1], which
is based on two principles: the minimal quantization
of gauge fields and a definite choice of the axis of
quantization [2].

In this model, the description of the spectroscopy of
mesons, which are a bound state of a quark q and an
antiquark q̄, and the interaction between them is reduced
to the solution of the Salpeter equation (SE) for a bound
qq̄-system and the Schwinger–Dyson equation (SDE) for
the phase function of a quark and its one-particle energy
“inside” a meson, provided that the potential of quark–

quark interaction is given. In this case, the SDE allows
one to calculate the “dynamic” mass of the quark for
the given potential, which is a measure of spontaneous
violation of the chiral symmetry (SVCS). At the same
time, the solutions of the SE correspond to the masses
and the wave functions of free mesons.

One of the basic issues in QPMs, including the
BRPM, is the choice of the shape of the quark–quark
interaction potential. This choice is ambiguous, because
a consecutive theory that would be valid at all distances
is absent. One of the selection criteria is that the quark–
quark potential must be universal and independent of
quarks’ aroma (of course, taking the running coupling
constant and quark masses into account).

In the description of meson spectroscopy, quite
widely used are linear- and quadratic-in-distance
potentials. The reason is that they bring about SVCS
and the emergence of the constituent mass of a quark
[3, 4].

In work [4], the analysis of the solutions of the
SDE and the SE with a linearly growing potential has
demonstrated that this approximation cannot give a
correct wave function for a pion. This means that the
approximation of linearly growing potential does not
allow the correct values of the low-energy hadron physics
parameters to be reproduced.

Concerning the oscillator potential, there are the
rather sound statements that it is a good approximation
at distances of the order of the light quark wavelength
[3]. It was in this approximation and provided the
zero current mass of the quark that the existence of a
nontrivial solution for the SDE, which described SVCS
and the emergence of the constituent mass of a quark,
was proved.
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In works [5–7], the oscillator potential was used to
show that the BRPM reproduces the mass spectrum
of pseudoscalar mesons quantitatively at a satisfactory
level. However, the calculated values for the constants
of their leptonic decay, which is one of the verification
criteria that the wave functions found for mesons are
correct, proved to be underestimated by a factor of about
four in comparison with experimentally determined ones
[6, 7]. The addition of a Coulomb-like term, which
describes the one-gluon exchange between quarks, to the
oscillator potential has allowed the Coulomb correction
to the mass spectrum of pseudoscalar mesons to be
estimated. However, the account of those corrections
turned out insufficient for the theoretical values of the
leptonic decay constants to be increased up to their
experimental values.

It should be noted here that the presence of a
Coulomb-like term in the potential gives rise to ultra-
violet (UV) divergences, the regularization of which is
made by applying the standard renormalization routine
to the wave function of a quark “inside” a meson.

In this work, in order to obtain a self-consistent
description of the spectroscopy of pseudoscalar mesons
and their leptonic decay constants and to eliminate
UV divergences which emerge if the Coulomb-like
term is included into the potential of quark–quark
interaction, we propose to modify the BRPM by
introducing counterterms into the SDE which are used
to renormalize the wave function of a quark “inside”
a meson. In so doing, such counterterms are selected
to be included, which would not break the asymptotic
properties of SDE solutions. Giving the potential in
the form of a sum of the oscillator and Coulomb-like
potentials makes the boundary-value problem to be
formulated, where the SDE contains counterterms. By
choosing proper counterterms from physical reasons and
solving the obtained modified SDE together with the SE,
we demonstrated that the proposed model describes both
the mass spectrum and the leptonic decay constants of
pseudoscalar mesons at a good quantitative level and on
the same basis.

2. Model Equations

The Bethe–Salpeter equation is known to be the most
general relativistic equation which describes a state
of the bound system formed as a result of quark–
antiquark interaction in a meson. In the momentum

representation, the equation looks like [1]

Γ(p, P ) = −ı

∫
d4q

(2π)4
V (|p− q|) 6 ηGΣa,b

×

×
(

q +
P

2

)
Γ(q, P )GΣa,b

(
q − P

2

)
6 η. (1)

Here, 6 η = ηµγµ; ηµ is a unit time-like vector directed
along the time axis of the gauge field, which, while
describing the bound state, is selected proportional to its
complete momentum: ηµ ∼ Pµ; GΣa,b

(q, P ) is Green’s
function of a quark (antiquark) “inside” a meson; and
V (|p− q|) is the potential of quark–quark interaction.

In Eq. (1), Γ(q, P ) is the vertex function, which
describes the q̄q-system and is connected with its
relativistic wave function ΨP (q⊥, P ) through the
relation

Γ(q⊥, P ) = −Sa(q⊥)
{

[Et(q⊥)−MP ]ΛP
+ΨP (q⊥, P )ΛP

−

+[Et(q⊥) + MP ]ΛP
−ΨP (q⊥, P )ΛP

+

}
S−1

b (q⊥), (2)

where

ΛP
± =

1
2

(
1± 6 P

M

)

are the projection operators;

Sa,b(q⊥) = sin ϕa,b(q⊥) +
q⊥

|q⊥| cos ϕa,b(q⊥)

is a transformation matrix of the Foldy–Wouthuysen
type [1];

Et(q⊥) = Ea(q⊥) + Eb(q⊥);

ΨP (q⊥) = γ5

[
L1(q⊥) +

6 P
MP

L2(q⊥)
]

;

q⊥ = q − q‖; q‖ = qP/
√

P 2;

6 P = γµPµ; 6 q = γµqµ;

ϕa,b and Ea,b(q⊥) are the phase functions and one-
particle energies, respectively, of a quark (antiquark)
“inside” a meson; L1,2(q⊥) are the components of the
wave function; and MP is the mass of a pseudoscalar
meson.

While describing meson spectroscopy and meson–
meson interactions, the SE for a coupled qq̄-system,
which follows from Eq. (1) under definite assumptions, is
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used as a rule. In our case, this equation can be derived
from Eq. (1) by substituting Eq. (2) into the latter and
integrating the result with respect to the variable q‖. We
obtain

MP L2(1)(q⊥) = EtL1(2)(q⊥)−

−
∫

d3q⊥

(2π)3
V (|p⊥ − q⊥|)(c∓p c∓q + s∓p s∓q ξ)L1(2)(q⊥), (3)

where c±p = cos[ϕa(q⊥) ± ϕb(q⊥)], s±p = sin[ϕa(q⊥) ±
ϕb(q⊥)], ξ = p⊥q⊥/(

∣∣p⊥
∣∣ ∣∣q⊥

∣∣), p⊥ = p − p‖, and p‖ =
pP/

√
P 2. In this case, the normalization of the meson

wave functions is determined by the following relation:

2Nc

Mp

∫
d3q⊥

(2π)3
[
L1(q⊥)L∗2(q

⊥) + L2(q⊥)L∗1(q
⊥)

]
= 1,

(4)

where Nc is the number of color degrees of freedom of a
quark (antiquark).

From Eq. (3), it is evident that, in order to solve the
SE with a given potential of quark–quark interaction,
it is necessary to obtain first the phase function of the
quark (antiquark) and its one-particle energy. In the
BRPM, they are determined by solving the SDE with
the same potential:

Ea,b(p) sin ϕa,b(p) =

= m0
a,b +

1
2

∫
dq

(2π)3
V (|p− q|) sin ϕa,b(q),

Ea,b(p) cos ϕa,b(p) =

= p +
1
2

∫
dq

(2π)3
V (|p− q|)ξ cos ϕa,b(q), (5)

where m0
a,b is the current mass of the quark.

Quarks “inside” a meson are known to possess a
finite energy at low momenta, and to behave as free
particles (the asymptotic freedom) at larger momenta.
Those conditions for the meson wave function look like

lim
p→0

ϕa,b(p) =
π

2
,

lim
p→∞

ϕa,b(p) = arcsin
m0

a,b√
m0

a,b
2 + p2

. (6)

Not every potential used in the description of meson
spectroscopy and meson–meson interactions allows one
to obtain the solutions of Eq. (5), which would satisfy the
boundary conditions (6). In this connection, it should be
emphasized that, if the potential contains a Coulomb-
like term, the SDE solutions for such a potential have
UV-divergences.

In order to obtain the SDE solutions for an
arbitrary potential, which satisfies Eq. (6) but is free
of UV-divergences even if the potential does contain
a Coulomb-like term, we have to modify Eq. (5) by
introducing the additional functions f1(q) and f2(q),
which do not change the asymptotic properties of its
solutions, into it:

Ea,b(p) sin ϕm
a,b(p) = m0

a,b[1− Zm(p)]+

+
1
2

∫
dq

(2π)3
V (|p− q|) sin ϕm

a,b(q),

Ea,b(p) cos ϕm
a,b(p) = p[1− Z(p))+

+
1
2

∫
dq

(2π)3
V (|p− q|)ξ cosϕm

a,b(q), (7)

where

Zm(p) =
1

2m0
a,b

∫
dq

(2π)3
V (|p− q|)f1(q),

Z(p) =
1
2p

∫
dq

(2π)3
V (|p− q|)ξf2(q), (8)

and ϕm
a,b(p) are the solutions of the modified SDE

with the given potential of quark–quark interaction. If
f1(q) = 0 and f2(q) = 0, Eq. (7) transforms into Eq. (5).

By introducing the notations

I1(p) =
1
2

∫
dq

(2π)3
V (|p− q|) sin ϕm

a,b(q), (9)

I2(p) =
1
2

∫
dq

(2π)3
V (|p− q|)ξ cos ϕm

a,b(q), (10)

I11(p) =
1
2

∫
dq

(2π)3
V (|p− q|)f1(q), (11)
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I22(p) =
1
2

∫
dq

(2π)3
V (|p− q|)ξf2(q). (12)

Eqs. (7) read

Ea,b(p) sin ϕm
a,b(p) = m0

a,b + I1(p)− I11(p),

Ea,b(p) cos ϕm
a,b(p) = p + I2(p)− I22(p). (13)

In Eqs. (11) and (12), the counterterms I11(p) and
I22(p) are selected from physical reasons and taking the
boundary conditions (6) into account. For definite I11(p)
and I22(p), one can obtain a modified SDE with an
arbitrary potential, the solutions of which will satisfy
conditions (6) and will be free of UV-divergences.

From Eq. (13), we obtain the following expression for
the energy of a quark “inside” a meson:

Ea,b(p) = [m0
a,b + I1(p)− I11(p)] sin ϕm

a,b(p)+

+[p + I2(p)− I22(p)] cos ϕm
a,b(p). (14)

A common solution of Eqs. (3) and (13) obtained
for the given counterterms I11(p) and I22(p) allows one
to calculate also the leptonic decay constant fp of a
pseudoscalar meson, which plays a fundamental role in
the description of low-energy hadron physics. In the
framework of the BRPM,

fp =
Nc

π2
√

πMp

∞∫

0

L2(q⊥) sin
[
ϕm

a (q⊥) + ϕm
b (q⊥)

2

]
q⊥dq⊥.

(15)

From Eqs. (3) and (13) and relation (15), it follows
that, fixing the counterterms I11(p) and I22(p), which
correspond to a definite scheme of SDE modification
with the given potential of quark–quark interaction, and
fitting the eigenvalues of the SDE and the SE to the most
accurate experimental mass values of the known mesons
(by varying the values of free parameters, in particular,
the masses of current quarks and the parameters of the
potential), one can calculate both the mass spectrum and
the leptonic decay constants of pseudoscalar mesons.

3. Mass Spectrum and Wave Functions of
Pseudoscalar Mesons

To calculate the mass spectrum and the wave functions
of mesons on the basis of Eqs. (3) and (13), it is necessary
to preliminarily choose the modification scheme for an

SDE with a given potential and to fit the values of the
free parameters of the model. In works [8, 9], the values
of the current mass of quarks (m0

u,d, m0
s, m0

c , and m0
b)

were fitted by comparing the solutions of the SE with
the masses of π, K, D, and B-mesons.

Consider the scheme of SDE modification, according
to which the functions f1(q) and f2(q) correspond to
the asymptotics of its free solution. As a quark–quark
potential, we choose the potential that is a sum of the
oscillator and Coulomb-like terms:

V (|p− q|) =
4
3

[
(2π)3V0∆qδ3(|p− q|) +

4παs

|p− q|2
]

,

(16)

where V0 and αs are the parameters of the potential. The
potential was selected in form (16), because, first, it is
simple enough from the viewpoint of the wave function
calculation procedure; second, this potential allowed
the quantitative description of the mass spectrum of
pseudoscalar mesons to be obtained; and third, its
oscillator part confirms a conclusion about the strong
splitting between the π- and ρ-meson masses owing to
SVCS [3].

It is known that the solutions of the SDE with a
potential including a Coulomb-like term contain UV-
divergences. To eliminate them and to preserve the
asymptotic properties of the solutions, let us take
advantage of the modification scheme, according to
which the functions I11(p) and I22(p) look like [8, 9]

I11(p) = IO
11(p) + IC

11(p), I22(p) = IO
22(p) + IC

22(p),
(17)

where

IO
11(p) = 0, IO

22(p) = p exp(−λp), (18)

IC
11(q) =

αs

2π

∞∫

0

dqV1(p, q)
m0

√
m02 + q2

,

IC
22(q) =

αs

2π

∞∫

0

dqV2(p, q)
q√

m02 + q2

. (19)

Here, λ is an extra free parameter, and

V1(p, q) =
q

p
ln

∣∣∣∣
p + q

p− q

∣∣∣∣ ,
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V2(p, q) =
q

p

[
p2 + q2

2pq
ln

∣∣∣∣
p + q

p− q

∣∣∣∣− 1
]

.

In this case, the SDE with regard for Eqs. (12)–(19)
reads

ϕ′′(p) +
2
p
ϕ′(p)+

+
1
p2

sin 2ϕ(p) + 2m0 cosϕ(p)− 2p sin ϕ(p)+

+[I1(p)− IO
11(p)− IC

11(p)] cos ϕ(p)−

−[I2(p)− IO
22(p)− IC

22(p)] sinϕ(p) = 0, (20)

where

I1(q) =
αs

2π

∞∫

0

dqV1(p, q) sin ϕ(q),

I2(q) =
αs

2π

∞∫

0

dqV2(p, q) cos ϕ(q). (21)

In Eq. (20), the prime means a derivative with respect
to the variable p.

It becomes evident that, provided the counterterms
are given, the solution of Eq. (20) depends on the values
of the current mass of the quark m0 and has to satisfy
the boundary conditions (6). By fixing definite values for
m0, the solutions of the modified SDE with the given
potential can be obtained. These solutions should be
substituted into Eq. (3), the solutions of which, as is
known, are the mass spectrum and the wave functions
of pseudoscalar mesons. Inserting them into expression
(15), one can calculate the leptonic decay constant of
pseudoscalar mesons as well.

4. Discussion of Results Obtained and the
Conclusion

The boundary-value problem for the SDE and the
SE, which describes the mass spectrum of pseudoscalar
mesons and meson–meson interactions and which was
formulated in this work, comprises a system of ordinary
integro-differential equations; the solutions of the latter
are found, as a rule, by numerical methods. The method
of numerical solution of such equations, which is based
on a continuous analog of the Newton method, was
expounded in work [11].

To calculate the mass spectrum and the wave
functions of pseudoscalar mesons on the basis of Eqs. (3),
(4), (6), and (20), the modification scheme for the SDE
is to be preliminarily selected and the values of the
free parameters of the model to be fitted. In their
turn, the values of the free parameters, which depend
on the potential shape, are determined by fitting the
eigenvalues of the SE to the mass values of the known
mesons which have been measured in experiments most
reliably.

In Table 1, the values of the free parameters m0, λ,
and V0, which were obtained by solving numerically the
modified SDE and SE with potential (16), are tabulated.
The procedure also included the fitting of the obtained
solutions for the SE to the masses of π, K, D, and
B-mesons at fixed values of the parameter αs (for all
quark aromas, the value of the parameter αs was the
same). The table makes it evident that each αs-value is
associated with definite values of the free parameters.

In Table 2, the mass spectrum of pseudoscalar
mesons π, K, D, Ds, B, Bs, and Bc, as well as their
leptonic decay constants (fπ, fK , fD, fDs , fB , fBs ,
and fBc , respectively), calculated in the framework of
the modified BRPM with potential (16), are quoted.
In the course of calculations, the values of the free
parameters m0, V0, and λ at fixed values αs =
0 and 0.4 were taken from Table 1. For the sake
of comparison of the results obtained, Table 1 also
includes the values of the masses of these mesons and
their leptonic decay constants that were calculated in
the framework of other phenomenological models (the
effective QCD-Hamiltonian, lattice QCD, the relativistic
meson model, and others) and their experimental values.
From this table, one can see that, in contrast to other
phenomenological models where an agreement between
the descriptions of the spectroscopy of pseudo-scalar
mesons and their interactions was not attained, the
modified BRPM with potential (16) self-consistently
reproduces the experimental values for both the mass
spectrum and the leptonic decay constants of the mesons
concerned.

T a b l e 1. Values of free parameters for the modified
bilocal relativistic potential model

Parameter αs

0 0.2 0.4 0.6 0.8
(4V0/3)1/3 (MeV) 289 299 315 340 376

(MeV)−1 1483 1161 1030 895 649
m0

u,d (MeV) 2.0 2.3 2.6 2.8 3.0
m0

s(MeV) 59 68 76 84 92
m0

c(MeV) 1228 1273 1310 1342 1370
m0

b(MeV) 4667 4720 4762 4794 4820
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T a b l e 2. Mass (in MeV) spectrum of pseudoscalar mesons and their leptonic decay constants in the modified
bilocal relativistic potential model

Pseudoscalar Theory Experiment Other Leptonic Theory Experiment Other
meson αs = 0 αs = 0.4 [13] models decay constant αs = 0 αs = 0.4 models

π 140 138 138 658[12] fπ 131 131 130.7 [13] 20 [3], 37 [4]
49 [14], 34 [6]

K 494 494 493 825[12] fK 168 167 159.8 [13] 47 [6]
D 1866 1869 1869 2079[12],

1880[16] fD 337 336 300 [17] 129 [15]
Ds 1882 1860 1968 2131[12] fDs 366 367 280 [18] 141 [15]
B 5275 5275 5270 5701[12],

5303[16] fB 268 268 163 [15]
Bs 5286 5140 5285[12] fBs 287 287 173 [15]
Bc 6209 6080 6495[12] fBc 432 432 306 [15]

Thus, the above-presented results imply that the
modified BRPM with a potential consisting of a
sum of oscillator and Coulomb-like potentials, in
contrast to other phenomenological models, describes
the spectroscopy and interactions between pseudoscalar
mesons at a good quantitative level and from the mutual
viewpoint. Whence it follows that the renormalization
procedure has probably a general character, so that
it should be used in the cases of other potentials of
quark–quark interaction as well. Note that the procedure
discussed is necessary not only for the elimination of UV-
divergences.

In conclusion, the author expresses his gratitude to
Kh. Ablakulov for his interest to the work and useful
discussions of the results obtained.
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СПЕКТР МАС ПСЕВДОСКАЛЯРНИХ МЕЗОНIВ
ТА КОНСТАНТИ ЇХ ЛЕПТОННИХ РОЗПАДIВ

Т.З. Насиров

Р е з ю м е

Розвинуто феноменологiчну модель адрона в термiнах бiло-
кальних мезонних полiв з урахуванням перенормування хви-
льової функцiї кварка “всерединi” мезона. Запропоновано мо-
дифiковане рiвняння Швiнгера–Дайсона з довiльним потенцiа-
лом, розв’язки якого не мають ультрафiолетових розбiжностей
i при цьому зберiгають його асимптотичнi властивостi. Потен-
цiал мiжкваркової взаємодiї було вибрано у виглядi суми осци-
ляторного та кулоноподiбного потенцiалiв. З цим потенцiалом
сформульовано межову задачу, розв’язки якої описують спек-
троскопiю мезонiв та їхнiх взаємодiй. Показано, що на вiдмiну
вiд iнших феноменологiчних моделей адронiв, що ґрунтуються
на ефективнiй дiї КХД, дана модель з єдиної точки зору на
хорошому кiлькiсному рiвнi описує як спектр мас псевдоска-
лярних мезонiв, так i їхнi константи лептонних розпадiв.
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