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We study the forced flow of an electrically conducting viscous
incompressible fluid bounded by the porous medium and an
infinite impervious rotating disk. A uniform magnetic field is
applied in the direction normal to the flow. It is assumed that
the flow between the disk and the porous medium is governed
by the Navier–Stokes equations and that in the porous medium
by the Brinkman equations. The flows in the two regions are
matched at the interface by assuming that the velocity and stress
components are continuous at it. At the interface (the boundary
between the porous medium and the clear fluid), a modified set of
boundary conditions suggested by Ochao–Tapia and Whittaker is
used. The analytic expressions for the velocity and the shearing
stress are obtained, and the effects of various parameters on them
are examined.

1. Introduction

The requirements of modern technology have stimulated
the interest in the studies of fluid flows which involve
the interaction of several phenomena. In the present
work, we consider the case where a viscous fluid flows
over a porous surface because of its importance in many
engineering problems (e.g., the flow of a liquid in a
porous bearing [1] and the water flow in river beds),
in petroleum technology (the movement of natural gas,
oil, and water through the oil reservoirs), in chemical
engineering (the processes of filtration and purification),
etc. Cunningham and Williams [2] also reported several
geophysical applications of flows in porous media, viz.
porous rollers and its natural occurrence in the flow of
rivers through porous banks and beds, and the flow of
oil through underground porous rocks.

The mathematical theory of the flow of a fluid
through a porous medium was initiated by Darcy [3].
For a steady flow, he assumed that viscous forces were
in equilibrium with external forces due to the pressure
difference and the body forces. Later on, Brinkman [4]
proposed a modification of the Darcy’s law for porous

media. In most of the examples, the fluid flows through
the porous medium have two regions. In region I, the
fluid is free to flow and, in region II, the fluid flows
through the porous medium. To link the flows in two
regions, the matching conditions are required at their
interface. Coupled flows of this type with different
geometries and several kinds of matching conditions
have been examined by several authors, viz. William
[5] and Ochoa-Tapia et al. [6–7]. Srivastava et al. [8]
discussed the flow and the heat transfer of a viscous
fluid confined between a rotating plate and a porous
medium, by assuming that the flow in the porous
medium was governed by the Brinkman equation [4]
and the free flow is described by the Navier–Stokes
equations. The problem (in which the liquid occupies
the semiinfinite region on one side of the disk and
the motion is axially symmetric) concerning the steady
forced flow of an incompressible viscous fluid against
a rotating disk was studied in [9]. A complete review
of this paper and some related works has been given
in [10]. Recently, Chaudhary et al. [11] discussed the
flow of a viscous incompressible fluid confined between
a rotating disk and a porous medium. The subject of
hydromagnetics has attracted the attention of many
authors due not only to its own interest, but also due
to many applications to the problems of geophysics
and astrophysics. It is desirable to extend many of the
available viscous hydrodynamic solutions to include the
effects of a magnetic field in those cases where the
viscous fluid is electrically conducting. In view of the
wide applications in industrial and other technological
fields, the problem of a flow near a rotating disk has been
extended to hydrodynamics initially by Sparrow et al.
[12] and Katukani [13]. Kumar et al. [14] and Watanabe
et al. [15] studied a MHD flow near a rotating disk. The
computational analysis of a MHD flow near a rotating
disk was carried out by Ariel [16].
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Fig. 1. Schematic of the problem

v disk near it. The gap between them is filled with
an incompressible electrically conducting fluid. In what
follows, we will describe the variations in the velocity
and the shear stress in the flow induced in the fluid by
the rotating disk in the presence of a magnetic field.

2. Formulation of the Problem

We consider the steady flow of an incompressible viscous
fluid confined between a rotating disk and a porous
medium fully saturated with the fluid. Let (r∗, θ∗, z∗) be
the set of cylindrical polar coordinates, and let the disk
rotate with angular velocity Ω about an axis r∗ = 0 and
be positioned at z∗ = d. A uniform magnetic field B is
applied in the direction normal to the flow. The problem
we consider here is represented geometrically by Fig. 1.
We assume that the magnetic Reynold’s number is small
so that the induced magnetic field can be neglected.
The conductivity of the fluid is not very large. Since,
no external electric field is applied, and the effect of
polarization of the ionized fluid is negligible. Thus, it
can be assumed that the electric field is zero. The region
z∗ ≤ 0 is filled with the porous material and is fully
saturated with the liquid. The region 0 ≤ z∗ ≤ d is
called region I, the region z∗ ≤ 0 is called region II, and
z∗ = 0 is the interface between the two regions.

The Navier–Stokes equations and the continuity
equation in region I look as

ρ[u∗u∗r + w∗u∗z − v∗2/r∗] =

= −p∗r + µ[∇2u∗ − u∗/r∗2]− σB2u∗, (1)

ρ[u∗v∗r + w∗v∗z − u∗v∗/r∗] =

= −p∗θ/r∗ + µ[∇2v∗ − v∗/r∗2]− σB2v∗, (2)

(r∗u∗)r/r∗ + w∗z = 0 (3)

where ρ is the density, p is the pressure, σ is the electrical
conductivity and B is the intensity of the magnetic field.
The velocity components are u∗, v∗, and w∗ in the r∗, θ∗,
and z∗ directions, respectively. The porous region z∗ < 0
is called region II, and the flow in this region is governed
by the Brinkman equations [4]. These equations together
with the continuity equation are given by

−P ∗r + µe(∇2U∗ − U∗/r∗2)− µU∗/k − σB2U∗ = 0,
(4)

−P ∗θ /r∗ + µe(∇2V ∗ − V ∗/r∗2)− µV ∗/k − σB2V ∗ = 0,
(5)

(r∗U∗)/r∗ + W ∗
z = 0 (6)

where k is the porous medium permeability, µe is the
effective viscosity for the Brinkman flow model, which
is different from µ, the viscosity of the fluid, P ∗ is the
pressure in the porous medium, and U∗, V ∗, and W ∗ are
the velocity components in the porous medium in the r∗,
θ∗, and z∗ directions, respectively. Givler and Altobelli
[17] have determined experimentally µe for a steady
flow through the wall-bounded porous medium, and
their result shows that µe = (7.5+3.4

−2.4)µ. The boundary
conditions of the problem are

u∗ = ar∗, v∗ = r∗Ω, w∗ = 0, at z∗ = d, (7)

U∗ → 0, V ∗ → 0, as z∗ → −∞. (8)

We use the matching condition at the interface as
suggested by Ochao –Tapia and Whittaker [6–7]. These
conditions, which are investigated theoretically and
experimentally, state that the equation requires a
discontinuity in the shear stresses, while retaining the
continuity of the velocity. The steady fully developed
laminar flow in the parallel plate and the cylindrical
channel partially filled with the porous medium and
partially with the clear fluid was investigated by
Kuznetsov [18] using the matching conditions from [6–7].
Using these conditions, Srivastava [19] has also discussed
the flow of a viscous fluid confined between a torsionally
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oscillating disk and the porous medium fully saturated
with the liquid. At the interface of the porous medium
and the clear fluid z∗ = 0, we assume the velocity
components and the pressure are continuous and the
jumps in the shear stresses τzθ and τzr as given by
Ochao–Tapia and Whittaker [6–7]. In our notation,
these assumptions can be written as

u∗ = U∗, v∗ = V ∗, w∗ = W ∗, p∗ = P ∗, at z∗ = 0,

µeU
∗
z − µu∗z = βµU∗/

√
k,

µeV
∗
z − µv∗z = βµV ∗/

√
k, at z∗ = 0.





(9)

3. Equation of Motion

We assume that the velocity components in region I have
the form

u∗ = r∗Ωf ′(y), v∗ = r∗Ωg(y), w∗ = −2dΩf(y),
ρ∗ = −µΩp1(y), y = z∗/d,

}

(10)

where the prime denotes the differentiation with respect
to y. This form of the velocity components satisfied the
equation of continuity (3). Substituting Eq. (10) in Eqs.
(1) and (2), we get the following equations of motion in
the directions of r and θ, respectively:

R[(f ′2)− 2ff ′′ − g2] = f ′′′ −M2f ′, (11)

2R[f ′g − fg′] = g′′ −M2g, (12)

where R (Reynolds number) = ρΩd2/µ, and M

(Hartmann number) =
√

σB2d2

µ . The equation in the
direction of z serves merely to determine the axial
pressure gradient and hence is not given. We assume
the following form of velocity components for region II:

U∗ = r∗ΩF ′(y), V ∗ = r∗ΩG(y),

W ∗ = −2dΩF (y), P ∗ = −µΩP1(y). (13)

The forms of velocities in Eq. (13) are chosen so that
the equation of continuity (6) is satisfied. Substituting
Eq. (13) in Eqs. (4) and (5), we get the equations in the
directions of r and θ, respectively:

γ2F ′′′ − (σ2 + M2)F ′ = 0, (14)

γ2G′′ − (σ2 + M2)G = 0. (15)

Here, σ ( Darcy number) = d/
√

k, and γ2 = µe/µ.
The boundary conditions (7), (8), and (9) at interface
can be written as

f = 0, f ′ = S, g = 1, at y = 1, (16)

F ′ → 0, G → 0, as y → −∞, (17)

f = F, f ′ = F ′γ2F ′′ − f ′′ = βσF ′, at y = 0
g = G, γ2G′ − g′ = βσG, at y = 0

}
,

(18)

where S = a/Ω is the dimensionless forced parameter
assumed to be small (S ≤ 1).

4. Solution of the Problem

The solutions of Eqs. (14) and (15) satisfying the
boundary conditions (17) are given as

F ′(y) = Aeαy, F (y) = (A/α)eαy + C,

G(y) = Beαy, (19)

where α =
√

σ2+M2

γ2 . The integration constants A, B,
and C can be determined from the matching conditions
(18). In our present effort, we use the approximation of
the small Reynold’s number for the equations involving
the viscosity. We consider the distance d between the
rotating disc and the porous interface as small, hence
Reynold’s number may be also taken small. For small
values of R, a regular perturbation scheme can be
developed for Eqs. (11) and (12) by expanding f and
g in powers of R as

f =
∞∑

n=0

Rnfn, g =
∞∑

n=0

Rngn. (20)

As f and g have to be matched with equation (19) at
the interface, the constants A, B and C must also be
expanded in power of R as:

A =
∞∑

n=0

RnAn, B =
∞∑

n=0

RnBn, C =
∞∑

n=0

RnCn.

(21)

Using this perturbation scheme, we get the solutions of
Eqs. (11) and (12) for region I as

f ′(y) = a3e
My + a4e

−My + R[(k1 − d15y)eMy+
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+(k2 + d16y)e−My − d13e
2My + d14e

−2My − d17], (22)

f(y) =
a3

M
eMy − a4

M
e−My + a5+

+R

[(
k1

M
+

d15

M2
− d15

M
y

)
eMy−

−
(

k2

M
+

d16

M2
+

d16y

M

)
e−My−

− d13

2M
e2My − d14

2M
e−2My − d17y + k3

]
, (23)

g(y) = a1e
My + a2e

−My + R[(h1 + d6y)eMy+

+(h2 − d5y)e−My − d4], (24)

and the solutions of Eq. (19) in the porous medium are
given by

F ′(y) = eαy

[
(a3 − a4)

M

a

]
+ Reαy

[
1
a
(k1M − k2M−

−2Md13 − 2Md14 − d15 + d16)

]
, (25)

F (y) = eαy

[
(a3 − a4)

M

aα

]
−

−a3

(
M

aα
− 1

M

)
+ a4

(
M

aα
+

1
M

)
+ a5+

+R

[
eαy

aα
d20 +

1
2M2

(2k1M − 2k2M−

−d13M − d14M + 2d15 − 2d16 + 2M2k3)− 1
αa

d20

]
,

(26)

G(y) = 2Meαy/[(a + M)eM + (M − a)e−M ]+

+Reαy

[
1
a
(h1M − h2M − d5 + d6)

]
, (27)

where

α =
√

(σ2 + M2)/γ2, a = γ2α− βσ,

a1 = (a + M)/[eM (a + M) + e−M (m− a)],

a2 = (M − a)/[eM (a + M) + e−M (m− a)],

a3 = S(M + a)/[eM (M + a) + e−M (M − a)],

a4 = S(M − a)/eM (M + a) + e−M (M − a),

a5 = (a4e
−M − a3e

M )/M,

d1 = 4a2a3 + 4a1a4, d2 = 2a2a5M,

d3 = −2a1a5M, d4 = d1/M
2,

d5 = d2/2M, d6 = d3/2M, d7 = d5 − d6 − ad4,

h1 = [d4(M + a) + d5(M + a)e−M − d6(M + a)eM−

−h3(M + a)eM ]/[eM (M + a) + e−M (M − a)] + h3,

h2 = [d4(M − a) + d5(M − a)e−M − d6(M − a)eM−

−d7e
M ]/[eM (M + a) + e−M (M − a)],

h3 = d7/(M − a), d8 = a2
1 + a2

3, d9 = a2
2 + 3a2

4,

d10 = 2a3a5M, d11 = 2a4a5M,

d12 = 2a1a2 + 2a3a4, d13 = d8/3M2,

d14 = d9/3M2, d15 = d10/2M,

d16 = d11/2M, d17 = d12/M
2,
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Fig. 2. Radial (F ′) velocity components in the porous medium for
β = 0.5 and R = 0.2

d18 = d13(2M − a) + d14(2M + a) + d15 − d16 − ad17,

d19 = d13e
2M − d14e

−2M + d15e
M − d16e

−M + d17,

k1 = (M2 − a2)d19/[eM (M + a) + e−M (M − a)+

+d18e
M ] + d18/(M − a),

k2 = (M − a)d19/[eM (M + a)+

+e−M (M − a) + d18e
M ],

k3 = [eM (2d15M − 2d15 − 2k1M) + e−M (2k2M+

+2d16M + 2d16) + d13Me2M + d14Me−2M+

+2M2d17]/2M2,

d20 = k1M − k2M − 2Md13 − 2Md14 − d15 + d16.

Having determined the velocity fields, we can
calculate the shear stresses at the rotating disc as

[τrz]z=1 =
µΩr

d
f ′′(y) =

µΩr

d
f ′′1 (1), (28)

where

f ′′(1) = a3MeM − a4Me−M + R[M(k1 − d15)eM−

Fig. 3. Axial (−F ) velocity components in the porous medium for
β = 0.5 and R = 0.2

−d15e
M −M(k2 + d16)e−M + d16e

−M−

−2Md13e
2M − 2Md14e

−2M ],

and

[τzθ]z=1 =
µΩr

d
g′(1), (29)

where

g′(1) = a1MeM − a2Me−M + R[M(h1 + d6)eM+

d6e
M −M(h2 − d5)e−M − d5e

−M ].

5. Discussion

We have determined the velocities and the shear stress
of the MHD flow of a viscous, incompressible, electrically
conducting fluid through a porous medium induced by
an impervious rotating disk. This enables us to carry out
the numerical computations for the velocities and the
shear stress at the rotating disk for various values of the
Hartmann number (M), ratio of viscosities (γ2), forced
parameter (S), and Darcy number (σ). The velocity
components in the porous medium against the distance
from the interface (−y) have been plotted in Figs. 2,
3, and 4 for various values of the parameters which are
consistent with the results in [17,19]. Figure 2 reveals
that the radial velocity components (F ′) are maximum
at the interface and decay exponentially, as we enter the
porous medium, by vanishing at a large distance from
the interface. It is observed that the radial velocity
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Fig. 4. Transverse (−G) velocity components in the porous
medium for β = 0.5 and R = 0.2

component increases with the magnetic parameter (M)
and the forced parameter (S), but it decreases with
increase in σ. The radial velocity falls sharply with
increase in the Darcy number. We conclude that the
radial velocity in the porous medium increases if the
magnetic field is strong. The depth of penetration is
greater for γ2 = 1 as compared to that for γ2 = 5.
The axial velocity component in the porous medium has
been shown in Fig. 3. We have drawn (−F ) against the
distance from the interface for R = 0.2 and β = 0.5,
by taking the different values of γ2, M , S, and σ. As
seen, the axial velocity component at a large distance
from the interface does not vanish. A boundary layer is
formed at the interface, whose thickness is reduced with
increase in σ and attains a constant value. It decreases
with increase in M and σ, but it increases with γ2 and
S. As the large parameter grows, its magnitude increases
sharply. It is concluded that the rotation of a disk near a
porous medium fully saturated with a fluid extracts the
fluid from the porous medium. This fact may be used
by geologists to extract fluids from the porous ground
or rocks. We have plotted the graph of the transverse
velocity (−G) in the porous medium (Fig. 4) against the
distance from the interface for R = 0.2 and β = 0.5,
taking the different values of γ2, M , S, and σ. It is

The shear stress components [f ′′
1 (1)] and [g′(1)] for R =

0.2 and β = 0.5

γ2 S M/σ f ′′1 (1) g′(1)

3 5 7 3 5 7
2 0.5 0.5 0.2101 0.2029 0.1989 0.4979 0.4810 0.4708
2 0.7 0.5 0.3852 0.3776 0.3733 0.7741 0.7563 0.7137
5 0.5 0.5 1.4160 1.4048 1.3975 4.9239 4.8575 4.8298
2 0.5 0.8 0.3291 0.3223 0.3220 1.4641 1.4069 1.3216

observed that the transverse velocity decreases
exponentially, as we enter the porous medium. It
decreases with increase in both M and σ, whereas
the inverse effect is observed for γ2 and S. Further,
we observed that if the magnetic field is strong, the
transverse velocity in the porous medium decreases. It
is concluded that the flow in the porous medium in the
transverse direction reaches a maximum value at the
interface and decays exponentially, as we enter into the
porous medium, by vanishing as y →∞.

In the Table, we have presented the shear stress
components at the rotating disk. The Table shows that
they increase with γ2, S, and M but decrease with
increase in σ. Further, it is observed that if we take
γ2 = 1, β = 0, M = 0, and S = 0 in our analysis and
φ = λ = 1 and α = 1 in work [20], the results of both
the studies are comparable. Further, if we take M = 0
and S = 0 in our analysis, the results reduced to those
in [11].
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РУХ ПРОВIДНОЇ В’ЯЗКОЇ РIДИНИ КРIЗЬ ПОРУВАТЕ
СЕРЕДОВИЩЕ У МАГНIТНОМУ ПОЛI,
СПРИЧИНЕНИЙ ОБЕРТАННЯМ ДИСКА

Б.К. Шарма, А.К. Джха, Р.С. Чаудхарi

Р е з ю м е

Дослiджено рух електропровiдної в’язкої нестисливої рiдини,
обмеженої поруватим середовищем та протяжним непроник-
ним диском, що обертається. Вся система перебуває в однорiд-
ному магнiтному полi, перпендикулярному до напрямку пото-
ку. Вважається, що рух рiдини описується рiвняннями Нав’є–
Стокса, а порувате середовище – рiвняннями Брiнкмана. Течiї
в двох областях пов’язанi умовами на межi, якi вимагають
неперервностi швидкостi та зсувних напружень. На межi подi-
лу “порувате середовище – чиста рiдина” використано також
модифiкованi межовi умови Очао–Тапiа та Уiттекера. Одер-
жано аналiтичнi вирази для швидкостей i зсувних напружень
та дослiджено вплив на цi величини рiзних параметрiв.
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