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The T -violating triple-product correlations in the decay processes
B± → D∗K∗±, D∗ → Dπ0, Dγ, D → f , where the neutral D(D∗)
meson is a superposition of D0(D∗0) and D̄0(D̄∗0) ones, have been
studied. In the framework of the standard model, it has been
shown that the large T -violating asymmetries (∼30% for the weak
phase γ = 62◦) are possible for such final hadronic states f that
the decay D0 → f is a doubly Cabibbo-suppressed mode, while
D̄0 → f is a Cabibbo-allowed one.

1. Introduction

In the framework of the standard model (SM), the
violation of CP symmetry in weak interactions arises
owing to the presence of a phase in the Cabibbo—
Kobayashi—Maskawa (CKM) quark-mixing matrix [1].
The available experimental data testify that it is very
probable that the CKM phase is a prevailing source of
CP violation in the flavor-changing processes. However,
our knowledge about the origin of CP violation is still
incomplete, because it is known that the CKM phase
cannot explain the observable magnitude of asymmetry
between the matter and antimatter in the Universe [2].
Therefore, the search for new sources of CP violation is
one of the challenging problems for B-factories.

The nonzero asymmetry between the probabilities for
the pair of CP -conjugate decay processes is known to
evidence for CP violation most directly. For channels
with two (pseudo-)scalar mesons or one (pseudo-)scalar
and one vector meson in the final state, only CP
asymmetries of this kind can be observed. However,
for states with a more complicated spin structure
or with a larger number of elementary particles, the
asymmetries in the distributions of kinematic variables

can also be used to study the effects of CP violation.
Although, while discussing the CP violation effects, the
main attention is traditionally paid to studying the
asymmetry between the partial probabilities of decay
processes, there also exists a signal of another type,
which will evidence for CP violation and can potentially
enable one to find a physics beyond the SM. For
example, using the processes of B-meson decay into a
pair of vector mesons B → V1 V2, it is possible to
study triple-product correlations ~q · (~ε ∗1 × ~ε ∗2 ), where ~q
is the momentum of one of the vector mesons in the
rest frame of the B meson, and ~ε1,2 are the polarization
vectors of V1 and V2. Such correlations are odd with
respect to the time inversion operation (T ); therefore,
according to the CPT theorem, a nonzero magnitude of
those correlations will also be a signal that CP symmetry
is violated. An important feature of T -odd correlations
is a possibility for the interaction to generate nonzero
values for those quantities in the final state, even if CP
symmetry is not violated. Hence, in order to observe a
signal of direct T violation, it is necessary to measure
the asymmetry between T -odd correlations of a pair of
CP -conjugate decay processes. Experimental studies of
such correlations in the decay processes B → V1 V2 have
already been started at B -factories [3].

In the framework of the SM, some of the triple-
product correlations in the processes of B-meson (neutral
and charged) decay into a pair of vector mesons, B →
V1 V2, were considered in work [4–7]. The effect of
direct T -violation in the processes of decay B → V1 V2

into the ground states of vector mesons was found in
those works to be small almost without exception. The
triple-product correlations for radially excited vector
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mesons were analyzed in detail in work [8]; the analysis
was made in the framework of the approach which is
based on the hypothesis of generalized factorization.
Moreover, the authors of works [4, 8, 9] assert that T -
violating triple-product correlations are maximal, if the
differences between the interaction phases from different
mechanisms of decay processes are zero in the final state.
However, this statement is not always correct, as will be
shown in this article.

In this paper, we consider the T -violation effects in
the decay processes of B− meson into a pair of vector
D̃∗0 and K∗− mesons, namely,

B− → D̃∗0(→ D̃0(→ f)π0)K∗−(→ Kπ), (1)

B− → D̃∗0(→ D̃0(→ f) γ)K∗−(→ K π), (2)

B− → D̃∗0(→ D̃0(→ f̄)π0)K∗−(→ Kπ), (3)

and

B− → D̃∗0(→ D̃0(→ f̄) γ)K∗−(→ K π). (4)

Hereafter, the notation D̃0(D̃∗0) designates a
superposition of D0 and D̄0 mesons (D∗0 and D̄∗0 ones).
The Cabibbo-allowed modes of the D̄0-meson decay will
play the role of final states f . Accordingly, they will
be doubly Cabibbo-suppressed modes of the D̄0-meson
decay; e.g., f = K+π−, K∗+π−, K+π−π0, K+π−π+π−,
and so on. It should be noted that a neutral vector D∗0

meson has two basic decay modes, namely, into the D0π0

(with a relative width of 62%) and D0γ (38%) pairs [10].
Therefore, as will be shown below, the combined analysis
of those two modes of the D∗-meson decay increases
the number of useful events and, owing to the phase
difference between those two modes which was pointed
at in work [11], opens new opportunities in studying the
T -violation effects in the decay B± → D∗K∗±.

2. Asymmetries of Triple-Product Correlations

The decay of a B meson into a pair of vector mesons,
B → V1 V2, is characterized by three amplitudes. In the
transverse basis [6], these decay amplitudes correspond
to linearly polarized states of vector mesons, which are
polarized either longitudinally (0) or transversely to the
direction of their motion, being polarized in parallel (‖)
or normally (⊥) to each another. The states 0 and ‖ are
P -even, while the state ⊥ is P -odd.

A B− meson can decay into the final state D∗0K∗−

owing to the transition b → cūs, or into the state

D̄∗0K∗− owing to the transition b → uc̄s. In the SM,
the decay amplitudes for each of three possible helicity
states are

Aλ(B− → D∗0 K∗−) ≡ Acλ = |VcbV
∗
us| acλ eiδcλ ,

Aλ(B− → D ∗0 K∗−) ≡ Auλ = |VubV
∗
cs| auλ ei(δuλ−γ),

where the helicity index λ takes the values {0, ‖,⊥},
acλ and auλ are positive parameters, δcλ and δuλ are
strong-interaction phases, Vij are the elements of the
CKM matrix, and γ = arg(V ∗

ub) [12]. Provided that D∗0

and D̄∗0 decay into a common final state, the amplitudes
of the B− → D∗0 K∗− and B− → D̄∗0 K∗− transitions
would interfere with each other, owing to which the T -
odd CP violation can appear in these decay processes.
Note that this type of interference has been proposed to
separate the weak phase γ [13, 14].

Let us designate the helicity amplitudes of the
cascade decay processes (1)–(4) as Afπ

λ , Afγ
λ , Af̄π

λ , and
Af̄γ

λ , respectively, and the helicity amplitudes of the
corresponding CP -conjugate decay processes as Āf̄π

λ ,
Āf̄γ

λ , Āfπ
λ , and Āfγ

λ , respectively. Then, neglecting small
mixing effects in the system D0− D̄0 [15] and taking the
effective phase difference of π between two modes of D∗0

decay into D0π0 and D0γ [11] into account, the helicity
amplitudes of those processes can be written down as

A
fπ(γ)
λ = (rDf ± z−λ )Acλ, (5)

A
f̄π(γ)
λ = (1± rDf z−λ e−2iδDf ) Acλ, (6)

A
f̄π(γ)

λ = ±σλ(rDf ± z+
λ )Acλ, (7)

and

A
fπ(γ)

λ = ±σλ(1± rDf z+
λ e−2iδDf )Acλ, (8)

where σ0 = σ‖ = 1, σ⊥ = −1,

δDf ≡ arg(
A(D

0 → f)
A(D0 → f)

), : rDf ≡
√

Br(D0 → f)

Br(D
0 → f)

,

z±λ ≡ rBλ ei(δλ±γ), δλ ≡ δBλ + δDf , δBλ ≡ δuλ− δcλ, and
rBλ ≡ |Auλ/Acλ|. The upper signs in expressions (5)–
(8) correspond to processes (1), (3), and relevant CP -
conjugate ones; the lower signs correspond to processes
(2), (4), and relevant CP -conjugate ones.
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The differential probabilities for the cascade
processes of B -meson decay into a pair of vector mesons
with the following transition of either the both into
two pseudoscalar mesons or one vector meson into two
pseudoscalar mesons and the other vector meson into a
pseudoscalar meson and a photon were obtained in works
[5,6,16]. But we are more interested in the consideration
of the ratio between the differential probability of decay
(1) and the probability of decay (3) (between the
differential probability of decay (2) and the probability
of decay (4)), as well as of the corresponding ratios for
CP -conjugate decay processes, namely,

d3Rf, Dπ(γ)

d cos θ1d cos θ2dΦ
≡ 1

Γf̄ , Dπ(γ)

d3Γf, Dπ(γ)

d cos θ1d cos θ2dΦ
, (9)

and

d3Rf̄ , Dπ(γ)

d cos θ1d cos θ2dΦ
≡ 1

Γf, Dπ(γ)

d3Γf̄ , Dπ(γ)

d cos θ1d cos θ2dΦ
, (10)

because they are free of many theoretical and
experimental uncertainties. In Eqs. (9) and (10), we
suppose that there is no CP violation in modes (3)
and (4). Really, it follows from Eqs. (6) and (8) that
the expectable CP violation in those modes is very
insignificant, because rDfrBλ ≈ 0.01. The probability
of the decay processes (1) and (2), as well as the
effects of direct CP violation in decay processes (1)–(4),
essentially depends on the magnitudes of the parameters
rDf and rBλ. A detailed discussion concerning the values
of those parameters is given in work [17]. Now, we only
emphasize that, in this paper, the numerical calculations
will be carried out for the final state f = K+π−, for
which rD(K+π−) = 0.060± 0.002 [18]; at the same time,
for rBλ, along with the expected value rBλ = 0.2 for each
polarization state of vector mesons [19], other values
are also examined. In the framework of the following
consideration of processes (1)–(4), the small effects of
CP violation in decay processes (3) and (4) will also be
neglected.

The ratio between the differential probability of
decay (1) and the probability of decay (3), expressed
in a helicity coordinate system, looks like

d3Rf, Dπ

d cos θ1d cos θ2dΦ
=

9
16π

(
2Rπ

0 cos2 θ1 cos2 θ2+

+
(
Rπ
‖ cos2 Φ + Rπ

⊥ sin2 Φ− ξπ
‖ sin 2Φ

)
sin2 θ1 sin2 θ2+

+(ζπ cos Φ− ξπ
0 sinΦ) sin 2θ1 sin 2θ2/

√
2
)

, (11)

and the ratio between the differential probability of
decay (2) and the probability of decay (4) takes the form

d3Rf, Dγ

d cos θ1d cos θ2dΦ
=

9
32π

(
2Rγ

0 sin2 θ1 cos2 θ2 −
(
Rγ
‖×

× cos2 Φ + Rγ
⊥ sin2 Φ− ξγ

‖ sin 2Φ
)

sin2 θ1 sin2 θ2 +
(
Rγ
‖+

+Rγ
⊥

)
sin2 θ2 − ζγ cosΦ− ξγ

0 sinΦ√
2

sin 2θ1 sin 2θ2

)
,

(12)

where θ1 is an angle between the direction of motion of
the D meson after the decay D∗ → Dπ or D∗ → Dγ
and the direction, which is opposite to the direction of
motion of the B meson in the rest system of the D∗
meson; θ2 is an angle between the direction of motion of
the K meson after the decay K∗ → Kπ and the direction,
which is opposite to the direction of motion of the B
meson in the rest system of the K∗ meson; and Φ is
an angle between the planes of decays D∗ → Dπ (or
D∗ → Dγ) and K∗ → Kπ in the rest system of the B
meson. The quantities R

π(γ)
λ , ξ

π(γ)
0,‖ , and ζπ(γ) look like

R
π(γ)
λ = Rcλ

((
rDf ± x−λ

)2
+

(
y−λ

)2
)

, (13)

ξ
π(γ)
i ≡

=
(
A

fπ(γ)
⊥

(
A

fπ(γ)
i

)∗)

∑
λ=0,‖,⊥

∣∣∣Af̄π(γ)
λ

∣∣∣
2 ,

and

ζπ(γ) ≡
<

(
A

fπ(γ)
‖

(
A

fπ(γ)
0

)∗)

∑
λ=0,‖,⊥

∣∣∣Af̄π(γ)
λ

∣∣∣
2 , (14)

where i = {0, ‖}; x±λ and y±λ are, respectively, the
real and imaginary parts of the complex quantities z±λ ;
and Rc 0, Rc ‖, and Rc⊥ (Rcλ ≡ a2

cλ/
∑

λ=0,‖,⊥ a2
cλ)

are the polarization fractions (longitudinal, parallel,
and perpendicular to the transverse one) of the vector
meson in decays (3) and (4). Note that the longitudinal
polarization fraction of vector mesons has already been
measured and amounts to Rc0 = 0.86± 0.06± 0.03 [20].
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Ratio (10) looks like expressions (11) or (12), where
the substitutions Φ → −Φ, R

π(γ)
λ → R̄

π(γ)
λ , ξ

π(γ)
i →

ξ̄
π(γ)
i , and ζπ(γ) → ζ̄π(γ) are made. The quantity R̄

π(γ)
λ

is equal to

R
π(γ)

λ = Rcλ

((
rDf ± x+

λ

)2
+

(
y+

λ

)2
)

, (15)

and the expressions for ξ̄
π(γ)
i and ζ̄π(γ) are identical to

expression (14) with the substitutions A
fπ(γ)
λ → Ā

f̄π(γ)
λ

and A
f̄π(γ)
λ → Ā

fπ(γ)
λ , respectively.

The analysis of the total angular distributions of
decays (1) and (2) and the corresponding CP -conjugate
decays makes it possible to determine the values for the
quantities R

π(γ)
λ , R̄

π(γ)
λ , ξ

π(γ)
i , ξ̄

π(γ)
i , ζπ(γ), and ζ̄π(γ);

the same procedure for decays (3) and (4) allows one to
find the values of the parameters Rcλ and δcλ. In such
a way, we can study the observables R

π(γ)
λ − R̄

π(γ)
λ and

ζπ(γ)−ζ̄π(γ), the nonzero values of which would evidence
for CP violation, as well as the observable ξ

π(γ)
i + ξ̄

π(γ)
i ,

the nonzero values of which would evidence for both
CP and T violation. A capability to observe the CP
violation effects in the course of studying the quantities
R

π(γ)
λ − R̄

π(γ)
λ was examined in work [17].

The observable ξ
π(γ)
i is a coefficient of the T -odd

triple-product correlation ~q ·(~ε ∗1 ×~ε ∗2 ) of the decay B− →
D∗K∗−, where ~q is the momentum of one of the vector
mesons in the rest frame of the B− meson, and ~ε1,2 are
the polarization vectors of D∗ and K∗ mesons. However,
since we consider the ratio of the differential probability
of decay (1) to the probability of decay (3) and the
ratio of the differential probability of decay (2) to the
probability of decay (4), it is the quantities A

π(γ)
i T and

Ā
π(γ)
i T , connected with ξ

π(γ)
i and ξ̄

π(γ)
i by the relations

ξ
π(γ)
i ≡ A

π(γ)
i T Rf, Dπ(γ) and ξ̄

π(γ)
i ≡ Ā

π(γ)
i T

¹Rf̄ , Dπ(γ), that
virtually characterize the effect of T violation. From
Eqs. (5), (6), and (14), it follows that the observable
ξ

π(γ)
i looks like

ξ
π(γ)
i = −

√
Rc⊥Rc i

(
r2
Df sin(δc i − δc⊥)±

±rDf rB⊥ sin(χi + γ)± rDf rB i sin(ϕi − γ) +

+rB⊥ rB i sin(δu i − δu⊥)
)

, (16)

where ϕi ≡ δui − δc⊥ + δDf , χi ≡ δci − δu⊥ − δDf , the
upper signs correspond to decay (1), and the lower to

decay (2). In order to obtain ξ̄
π(γ)
i , we must multiply

Eq. (16) by (−1) and substitute γ by −γ. It is important
to emphasize that if the parameters rBλ have identical
values for all polarization states of vector mesons, i.e.
if rB0 = rB‖ = rB⊥, the observable ξ

π(γ)
i equals zero

at the zero difference between the strong final-state-
interaction phases. Therefore, the statement that the
effects of direct T violation are maximal in the absence
of final-state interaction (see, e.g., work [8]) is not true
for this case.

Let us designate the observables that characterize
the value of T -odd effects in processes (1) and (2),
which arise owing to the final-state interaction of these
processes, as Rπ

iT and Rγ
iT , respectively. Then

Rπ(γ)
i T ≡ ∓(ξπ(γ)

i − ξ
π(γ)

i ) =

= ± 2
√

Rc⊥Rc i

(
r2
Df sin(δc i − δc⊥) + rB⊥ rB i ×

× sin(δu i − δu⊥)± rDf (rB i sin ϕi + rB⊥ sin χi) cos γ

)
.

(17)

Really, it follows from Eq. (17) that Rπ
iT and Rγ

iT can
differ from zero even if the weak phase γ disappears.
Additionally, let us use the notations Aπ

iT and Aγ
iT

for the observables that characterize the magnitudes of
direct T -violation effects in those decay processes (1)
and (2) which originate from the availability of the phase
in the CKM quark-mixing matrix, i.e. from CP violation.
So, then

Aπ(γ)
i T ≡ ∓(ξπ(γ)

i + ξ
π(γ)

i ) =

= 2 rDf

√
Rc⊥Rc i(rB⊥ cosχi − rB i cosϕi) sin γ. (18)

It follows from Eq. (18) that the signal of direct T
violation would differ from zero only if γ 6= 0, i.e. owing
to CP violation. The upper signs in formulas (17)–(18)
corresponds to decay (1), and the lower ones to decay
(2). It is remarkable that, as follows from Eq. (18),
two asymmetries Aπ

i T and Aγ
i T are identical by value.

Therefore, studying decays (1) and (2) simultaneously
provides an opportunity to observe the combined
asymmetry Aπ

iT + Aγ
iT = 4rDf

√
Rc⊥Rci(rB⊥ cosχi −

rBi cosϕi) sin γ.
Note that the potential dependence of the parameters

rBλ on the polarization state of vector mesons

626 ISSN 0503-1265. Ukr. J. Phys. 2007. V. 52, N 7
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substantially affects the amplitude of direct T violation
effects (it can be seen from Eq. (18)). If the parameters
rBλ are identical for all polarization states of vector
mesons, i.e. if rB0 = rB‖ = rB⊥, the quantities Aπ(γ)

iT

are

Aπ(γ)
i T = 4 rDf rB⊥

√
Rc⊥Rc i sin((ϕi + χi)/2)×

× sin((δi + δ⊥)/2) sin γ, (19)

and, due to this circumstance, they can disappear both
in the approximation of zero strong-interaction phases
and at some relations between the latter, e.g., δci +δui =
δc⊥ + δu⊥. This feature is of importance, because there
exists a widespread statement in the literature that the
effects of direct T violation become maximal, provided
that there is no difference between strong final-state-
interaction phases [4, 8, 9], in contrast to direct CP
violation effects. The given example illustrates that this
statement is not always correct. On the other hand, if the
rBλ values differ substantially for different polarization
states of vector mesons, then the quantities Aπ(γ)

iT look
like

Aπ(γ)
i T = 2 rDf (rB⊥ − rB i)

√
Rc⊥Rc i sin γ (20)

in the zero strong-interaction phase approximation.
Thus, the magnitude of the direct T violation effect

in decays (1) and (2) substantially depends on the weak
phase γ and the strong final-state-interaction phases of
those processes, as well as on whether the quantities
rBλ become identical for all polarization states of vector
mesons or their values differ considerably for different
polarizations.

The expected amplitude of the asymmetries of triple-
product correlations in decays (1) and (2) depends,
in general, on the values of rBλ and γ, the final-
state-interaction phases in the B- and D-meson decay
processes, and the polarization fraction of vector mesons
in decays (3) and (4). The phases δcλ, δuλ, and δDf ,
which arise owing to the hadron final-state interaction,
cannot be calculated reliably with the help of the
known methods, so that they should be determined
experimentally. Therefore, carrying out our simplified
calculations, we shall proceed from an arbitrary choice of
those phases. From Eq. (19) and experimental data [20],
it follows that

|Aπ(γ)
0 T | ≤ 1.39 rD f rB⊥ | sin γ|.

This means that
∣∣∣Aπ(γ)

0T

∣∣∣ ≤ 0.013 for the mode f = K+π−

and if rB⊥ = 0.18 and γ = 62◦ [21]. However, this small

value does not indicate that the effects of T violation
in decays (1) and (2) are also small, because, as was
mentioned above, the parameters, e.g., κ

π(γ)
iT and κiT

which are connected with the parameters Aπ(γ)
iT by the

relations

Aπ(γ)
i T ≡ κ

π(γ)
i T Rπ(γ)

and

Aπ(γ)
i T ≡ κi T (Rπ +Rγ)/2 ,

where

Rπ(γ) ≡ Rf, Dπ(γ) +Rf̄ , Dπ(γ)

2
=

= r2
Df +

∑

λ=0,‖,⊥
RcλrBλ(rBλ ± 2 rD f cos δλ cos γ),

would better testify to the amplitude of T -violation
effects. Then, from Eq. (19) and experimental data [20],
it follows that

|κ0 T | ≤ 1.39 rD f rB⊥ | sin γ|/(r2
D f + r2

B⊥).

In its turn, for the mode f = K+π− and provided that
rB⊥ = 0.18 and γ = 62◦ [21], this inequality means that
|κ0T | ≤ 0.37 for each channel of the D∗0-meson decay.
Thus, while considering two channels of the D∗0-meson
decay into the D0π0 and D0γ pairs, we may expect for a
considerable effect of T violation in the decay processes
B± → D∗K∗±.

The problem of extracting T -violation effects in the
processes of B -meson decay into the pair of vector
mesons is known to be difficult [8], because, along with
the effects of direct T violation which arise owing to the
presence of the weak phase γ, there also exist T -odd
effects which are caused by the final-state interaction in
these processes. We emphasize that the combined study
of the decay modes D∗0 → D0π0 and D∗0 → D0γ allows
those T -odd effects to be extracted from decays (1) and
(2). Really, it follows from Eq. (17) that

∆Ri T ≡ Rπ
i T −Rγ

i T = 4
√

Rc⊥Rc i

(
r2
Df ×

× sin(δc i − δc⊥) + rB⊥rB i sin(δu i − δu⊥)
)

(21)

ISSN 0503-1265. Ukr. J. Phys. 2007. V. 52, N 7 627
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and

Rπ
i T +Rγ

i T = 4 rDf

√
Rc⊥Rc i

(
rB i sin ϕi +

+rB⊥ sinχi

)
cos γ. (22)

The quantity ∆RiT describes the contribution made by
the mechanisms of transitions b → c and b → u into
T -odd effects, while sum (22) describes the contribution
from the interference of those mechanisms to the same
effects. According to Eq. (21), the measurement of the
quantity ∆RiT enables one to determine the phase
difference δui − δu⊥; therefore, by measuring the value
of R

π(γ)
λ − R̄

π(γ)
λ [17], we can also obtain the values for

the phases ϕi and χi. Moreover, the measurement of the
quantity Rπ

iT +Rγ
iT allows one to determine the phase

γ (with the help of Eq. (22)).
To study the effects of direct T violation in decays

(1) and (2), we may also use – along with the quantities
Aπ

iT and Aγ
iT – other parameters, e.g., Q

π(γ)
iT which is

a ratio between the quantity describing the effects of
direct T violation and the quantity describing T -odd
effects caused by the strong final-state interaction in
those processes:

Q
π(γ)
i T ≡

W
π(γ)
i (−)

W
π(γ)
i (+)

, (23)

W
π(γ)
0 (±) ≡ (

π∫

0

dΦ−
2π∫

π

dΦ)
∫

D

d cos θ1 ×

×
∫

D

d cos θ2Wπ(γ)
± (θ1, θ2, Φ),

W
π(γ)
‖ (±) ≡ (

π
2∫

0

−
π∫

π/2

+

3π/2∫

π

−
2π∫

3π/2

)dΦ
∫

S

d cos θ1 ×

×
∫

S

d cos θ2Wπ(γ)
± (θ1, θ2, Φ),

∫

D(S)

f(θ) d cos θ ≡
0∫

−1

f(θ) d cos θ ∓
1∫

0

f(θ) d cos θ,

Wπ(γ)
± (θ1, θ2, Φ) ≡ d3Rf, Dπ(γ)

d cos θ1d cos θ2dΦ
±

± d3Rf̄ , Dπ(γ)

d cos θ1d cos θ2dΦ
.

Integrating over the angular variables and applying
Eq. (16), we obtain an equivalent expression for the
quantity Q

π(γ)
iT , namely,

Q
π(γ)
i T =

Aπ(γ)
i T

Rπ(γ)
i T

= ±(rf⊥ cos χi − rf i cos ϕi) sin γ ×

×
(
sin(δc i − δc⊥) + rf⊥rf i sin(δu i − δu⊥)±

±(rf i sinϕi + rf⊥ sin χi) cos γ
)−1

, (24)

where rfλ ≡ rBλ/rD f , the upper signs correspond to
decay (1), and the lower one to decay (2).

It is clear that the exact values for expression
(24), as well as for (17) and (18), can be obtained
only after the strong-interaction phases δcλ, δuλ, and
δDf , the weak phase γ, and the parameters rfλ have
been determined. We estimate the quantities Q

π(γ)
i T for

two possible relations between the strong-interaction
phases and the parameters rfλ. They can be fulfilled
for both the longitudinal and parallel polarizations of
vector mesons. For example, if δ‖ ' δ⊥ and rf‖ '
rf⊥, then the quantities Q

π(γ)
i T are determined by the

formula

Q
π(γ)
‖T =

±ρf‖ sin δ‖ sin γ

1± ρf‖ cos δ‖ cos γ
, (25)

where ρfλ ≡ 2rfλ/(1 + r2
fλ). The estimations of the

quantity ∆Q‖T ≡ Qπ
‖T −Qγ

‖T , which were obtained from
Eq. (25) for f = K+π−, γ = 62◦, and various values of
the parameters δ‖ and rB‖, are quoted in Table 1. The
results presented in this table testify that the difference
Qπ
‖T − Qγ

‖T is large in the whole ranges of variation
that were considered for the parameters δ‖ and rB‖;
hence, it can be observed experimentally. Note that if
the parameter rB‖ grows, the value of ∆Q‖T falls down
for every fixed value of the strong-interaction phase
δ‖.

T a b l e 1. Values of the quantity ∆Q‖T at γ = 62◦

δ‖, degree rB ‖ = 0.06 rB ‖ = 0.12 rB ‖ = 0.18 rB ‖ = 0.24

10 0.39 0.28 0.20 0.15
30 1.06 0.79 0.56 0.43
60 1.62 1.27 0.94 0.73
90 1.77 1.41 1.06 0.83
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For the other variant of the relation between the
strong-interaction phases, namely, δc0 = δu0 = δDf = 0
and δc⊥ ' δu⊥, the quantities Q

π(γ)
0T are determined by

the formula

Q
π(γ)
0 T =

±(rf0 − rf⊥) cot δc⊥ sin γ

1 + rf0rf⊥ ± (rf0 + rf⊥) cos γ
. (26)

In this case, the values of Q
π(γ)
0T depend critically on the

strong-interaction phase δc⊥ and the difference between
the parameters rB0 and rB⊥. The estimations of the
difference ∆Q0T ≡ Qπ

0T − Qγ
0T , which were obtained

from Eq. (26) for f = K+π−, γ = 62◦, various values
of the parameters δc⊥ and rB0, and rB⊥ = 0.09 or 0.21,
are quoted in Table 2. The results presented in this table
testify that the difference Qπ

0T−Qγ
0T can be both positive

(if rB0 > rB⊥) and negative (if rB0 < rB⊥); its values lie
within a wide range (from−7.14 to 4.14 in the considered
ranges of variation of the parameters δc⊥, rB0, and rB⊥).
Moreover, since T -odd effects are proportional to sin δc⊥
and the effects of direct T violation to cos δc⊥, the
absolute value of the quantity ∆Q0T becomes smaller
when δc⊥ changes from 10◦ to 80◦.

Thus, in the case of the latter relation between the
strong-interaction phases, the possibility of experimental
observation of the quantities Qπ

0T and Qγ
0T will be

determined, first of all, by the amplitudes of the
parameters rB0 and rB⊥, as well as by the value of the
strong-interaction phase δc⊥.

3. Conclusions

The effects of T violation in the processes of B±-
meson decay into the pair of linearly polarized vector
mesons D∗ and K∗± have been considered. For studying
the triple-product correlations in those processes, we
propose to use two modes of the vector D∗0-meson decay,
namely, D∗0 → D0π0 and D∗0 → D0γ, followed by
the transition of the D0 meson into doubly Cabibbo-
suppressed states. The combined analysis of those two
modes of the D∗0-meson decay increases the number
of useful events and, owing to a tiny phase difference
between those two modes, allows the contribution of the
transition b → c to T-odd triple-product correlations to

T a b l e 2. The values of the quantity ∆Q0T at γ = 62◦
and rB⊥ = 0.09(0.21)

δc⊥, deg. rB 0 = 0, 06 rB 0 = 0.12 rB 0 = 0.18 rB 0 = 0.24

10 −2.57 (−7.14) 1.51 (−2.10) 3.20 (−0.47) 4.14 (0.35)
30 −0.78 (−2.18) 0.46 (−0.64) 0.98 (−0.14) 1.26 (0.11)
60 −0.26 (−0.73) 0.15 (−0.21) 0.33 (−0.05) 0.42 (0.04)
80 −0.08 (−0, 22) 0.05 (−0.07) 0.10 (−0.01) 0.13 (0.01)

be separated from that of the transition b → u. We
found that the amplitude of the direct T violation
effects depends substantially not only on the weak
phase γ and the strong final-state-interaction phases
of these processes, but also on whether the ratios
between the decay amplitudes of B−→D̄∗0K∗− and
B−→D∗0K∗− are identical for all polarization states of
the vector mesons or their values differ substantially for
different polarizations. We have demonstrated that, in
the framework of the standard model, a large effect of
T -violation (of about 30% at γ = 62◦) is possible.

The author is grateful to O.P. Rekalo for the
discussion of the results of this work.
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ПОТРIЙНI КОРЕЛЯЦIЇ У ПРОЦЕСАХ РОЗПАДУ
B±-МЕЗОНIВ НА ПАРУ ВЕКТОРНИХ
D∗- ТА K∗±-МЕЗОНIВ

В.А. Ковальчук

Р е з ю м е

Ми дослiдили потрiйнi кореляцiї, якi порушують T -симетрiю,
у процесах B± →D∗K∗±, D∗ →Dπ0, D γ, D→ f , де нейтраль-
ний D(D∗)-мезон є суперпозицiєю D0(D∗0) та D 0(D ∗0). Показа-
но, що у рамках стандартної моделi можливi великi асиметрiї,
що порушують T -симетрiю (∼30% для слабкої фази γ = 62◦)
для кiнцевих адронних станiв f , таких, що D0 → f є подвiйно
пригнiченою модою Кабiббо, тодi як D 0 → f дозволена мода
Кабiббо.
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