
V.Yu. LAZUR, O.K. REITY, V.V. BONDARCHUK, V.K. REITY

CRITICAL CHARGE IN MODIFIED
QUANTUM ELECTRODYNAMICS

V.YU. LAZUR, O.K. REITY, V.V. BONDARCHUK, V.K. REITY

UDC 537.8

c©2007

Uzhgorod National University
(54, Voloshin Str., Uzhgorod 88000, Ukraine; e-mail: lazur@univ.uzhgorod.ua; reiti@univ.uzhgorod.ua)

For a simple model of extended source (a nucleus), we have got the
exact normed solutions of the Dirac equation with a scalar-vector
potential of the Coulomb type and a transcendental equation
which determines the levels of the ground and excited electron
states in the subcritical region Z < Zcr. We have constructed the
equation for the critical charge of a nucleus, at which the level
descends into the lower energy continuum. A strong influence
of the Lorentz structure of interaction potentials on the critical
charge and the discrete spectrum of a fermion in scalar and vector
Coulomb-like fields is revealed.

In the recent years, a significant interest is attracted
to the study of the behavior of the quantum systems
of fermions in the joint presence of electromagnetic
(vector) and scalar external fields. Such systems possess
a number of unordinary features which significantly
differ from those inherent in fermions in the presence
of only the electromagnetic field. For example, a scalar
field acts identically on particles and antiparticles,
as distinct from the electromagnetic field. Therefore,
the pattern of the energy levels of fermions, which
interact with scalar and vector (for example, Coulomb)
fields simultaneously, can significantly differ from
the customary spectrum of the relativistic Coulomb
problem. This is manifested, in particular, in that
the discrete spectra of particles and antiparticles are
symmetric relative to the zero level (E = 0) in the case of
the interaction of massive fermions with a purely scalar
external field.

We note also that the spin-orbital interactions have
opposite signs for the scalar and vector fields. In the
vector field, spins are oriented in the direction [~F , ~p],
where ~F is the force acting on a particle, and ~p is its
momentum, whereas they are oriented in the direction
−[~F , ~p] in the scalar field. This reasoning gives a clear
explanation to the fact that the level j = 3/2, l = 1 lies
under the level j = 1/2, l = 1 in the scalar field. In the
vector field, the situation is opposite.

To get agreement with the physical situation, the
mathematical studies of phenomena which occur in
strong vector (for example, electric) and scalar fields

should be performed on the basis of the exact solutions of
relativistic wave equations under conditions of a nonzero
external field. Contrary to the case of the interaction
with the electric field which is introduced into the Dirac
free equation minimally as the time component of the
4-potential Aµ (vector coupling), the account of the
interaction of a massive fermion with a scalar external
field S is realized with the help of the change m0c

2 →
m0c

2 + S (scalar coupling). Then, in the presence of
static scalar S(~r) and electrostatic V (~r) external fields,
the Dirac equation takes the form
[
c~α~̂p + β

(
m0c

2 + S(~r)
)− (E − V (~r))

]
Ψ(~r) = 0, (1)

where ~α = (α1, α2, α3) and β – the standard Dirac
matrices, ~̂p – the operator of momentum, and E and m0 –
total energy and the rest mass of a particle, respectively.
We emphasize that S(~r) is a Lorentz-scalar, and V (~r) is
the zero component of a Lorentz-vector.

Within a simple model of the interaction of a fermion
with scalar and vector external fields of the Coulomb
type,

V (r) = −~cαV

r
, S(r) = −~cαS

r
, (2)

where αS and αV stand for, respectively, the scalar
and electrostatic coupling constants, the solutions and
the spectrum of the Dirac equation were determined
in [1, 2]. This model is frequently used as the initial
approximation on the relativistic description of the
spectra of such “exotic” hydrogen-like (HL) systems
as leptoatoms (see, e.g., [3, 4]), whose components
interact through the exchange of quanta of the fields of
two different types. Whereas the Coulomb interaction
is conditioned by the exchange of a virtual photon
(a quantum of the electromagnetic field), the lepton-
nucleus interaction which is responsible for the scalar
coupling can be realized by the exchange of a virtual
neutral particle with spin 0. The main candidate for
this role is a scalar σ-meson. We note that the theory
gives serious arguments in the favor of its existence
(see, e.g.„ [5] and references therein). In addition, two
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experimental groups [6,7] have recently reported on the
observation of an anomalously wide scalar resonance in
the cascades of nonleptonic decays of the heavy (D,
B, and J/Ψ) mesons. We pay attention also to the
fact that a scalar meson observed in the mentioned
experiments has a quite great mass (Mσ = 390 MeV
[6–8]) and, therefore, the scalar potential S(r) which
corresponds to the exchange by such a particle (named
below as the one-meson exchange potential) is, in fact,
a short-range one (of the Yukawa-type). Nevertheless,
many interesting peculiarities of the energy spectrum
of leptoatoms can be revealed already in the frame of
the comparatively simple model (2) with the scalar-
vector interaction (see [1–4]). These peculiarities are
conserved also on a more realistic consideration. One of
the important advantages of the given model consists in
that it admits the exact solution of the Dirac equation
(1) in terms of the known special functions (confluent
hypergeometric functions) [2–4]. These solutions can be
used as a basis for the construction of various corrections
which take the “realistic” (Yukawa) form of the one-
meson exchange potential S(r), the effects of the motion
and the structure of the nucleus, and the radiation-
related corrections into account. This explains, possibly,
the great attention (see, e.g., [9, 10]) given recently to
the relativistic problem of the motion of a fermion in an
external scalar field and an external electric one of the
Coulomb type (2).

The additional stimuli to study similar problems
appear recently in the theory of strong interactions
– quantum chromodynamics (QCD) and QED of
superstrong Coulomb fields. In the first case, we will
consider the models of the structure of mixed mesons
(QCD-analogs of HL-atoms) which are composed, for
example, of one light antiquark q̄ and one heavy quark
Q (Qq̄-mesons (see, e.g., [11–13]). Let us consider the
Dirac equation in the approximation of an infinitely
heavy quark Q as the equation of motion for one
light antiquark q̄. We can study (like the case of
HL-atoms) a number of important aspects of the
theory of (heavy quark)-(light antiquark) systems: the
relativistic dynamics of a light antiquark q̄ in the
external field formed by a heavy quark Q, the Lorentz-
structure of the long-range (confining) part of the Qq̄-
interaction, the fine structure of the spectrum of mixed
mesons, the influence of a spontaneous breaking of
the chiral symmetry on the spectrum, etc. As known
from QCD [11–13], the ordinary Coulomb potential of
the one-gluon exchange V (r) = −4αs~c/(3r), where
αs is the strong interaction constant, gives the main
contribution at small distances to the Qq̄-interaction

due to the phenomenon of asymptotic freedom. With
increase in the distance, the scalar confining interaction
becomes the basic one (confinement). But its “exact”
form has not been else established. The first-principles
QCD-calculations on lattices [14] separate the linear
(scalar) confinement S(r) = ~cσr at great distances,
where σ is the tension of a string. It is clear
that all other interactions are important on a more
comprehensive description of the properties of mesons,
but they are low-intensity interactions as compared
with the scalar potential which binds quarks into
mesons. We will not consider these questions further,
because they are sufficiently completely clarified in
review [14].

The particular interest in the above-considered circle
of problems arises recently in QED. As well known
(see [3, 15]), the essential theoretical parameters in the
electrodynamics of superstrong Coulomb fields are the
critical charge of a nucleus Zcr and the critical distance
Rcr in the system of two colliding heavy nuclei. If
these parameters are attained, the ground level of the
electron spectrum descends to the boundary of the lower
continuum. Then (i.e., at Z = Z1 + Z2 > Zcr or
R < Rcr) the spontaneous generation of positrons from
vacuum becomes possible. The experimental observation
of this effect would mean the verification of the status
of QED and the Dirac equation in the new region
of superstrong fields, rather than in the traditional
direction of superhigh energies and small distances.
However, the experiments started almost a quarter
of the century at GSI (Darmstadt, Germany) on the
accelerator of heavy ions UNILAC gave no positive
result in the search for this fundamental process. In
view of such a situation, a number of theorists (e.g.,
[2, 16]) has considered different modifications of QED
and their influence on the spontaneous generation of
positrons. In particular, let us accept the viewpoint of
the authors of the well-known book [3] (see also [2])
who believe that, under conditions of the experiments at
GSI (i.e., in superstrong Coulomb fields), an additional
Yukawa scalar one-meson exchange potential S(r)
appears in the interaction of an electron with the
nucleus (together with the Coulomb potential). If so,
of primary importance becomes the question about
the influence of this scalar potential on the critical
charge Zcr and the critical distance Rcr. In this
case, the qualitative aspect of the question can be
elucidated within a model with Coulomb-like scalar
interaction (2).

Finally, we note that the spinor equation (1) with
mixed scalar-vector coupling is of interest from the
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viewpoint of its possible application in the theory
of hadronic atoms [17]. In principle, it cannot be
excluded that the same equation can be also useful
for the description of some effects in solid-state
physics (for example, in two-band semiconductors [18]).
Because the interest in the above-mentioned physical
applications of model (2) will increase undoubtedly in
the future, the statement of a relativistic Coulomb
problem for the Dirac equation with scalar and
vector potentials of the Coulomb type seems to be
expedient.

The structure of the present work is as follows.
The second section has auxiliary character. It contains
the statement of the problem and the brief analysis
of peculiarities of the motion of a relativistic electron
in the external scalar-vector field (2) of a point-
like source (a nucleus). In the third section, we
consider the solution and the spectrum of the Dirac
equation with the mixed Lorentz-structure of the
interaction potential for an electron in the field of
the nucleus with charge Z > 137, when the “drop
to the center” occurs in the approximation of of
a point charge. The account for the finite size of
the nucleus, which leads to the regularization of the
scalar and vector Coulomb-like potentials (2) as r →
0, allows us to pass through the point Z = 137
up to the critical value Zcr, at which the energy
level reaches the boundary of the lower continuum
E = −m0c

2. In particular, within a simple model
of extended source, we will obtain a transcendental
equation which determines implicitly the energy levels
of the ground and excited electron states in the region
Z < Zcr. In detail, we will consider the case of
the limitedly small cut-off radius if the Coulomb-like
vector and scalar fields, where the parameter Λ =
ln(λc/rN ) À 1, where λc = ~/m0c is the Compton
wavelength. In this case, the small parameter Λ−1

appears in the problem. This allows us to determine
the asymptotic formulas for the critical charge of a
nucleus and the ground-state energy in the region rN ¿
λc. In the fourth section, we will get the equation
for the determination of the critical charge Zcr, at
which the ground-state level of the electron spectrum
descends to the boundary of the lower continuum, and
the spontaneous generation of positrons from vacuum
becomes possible. We study the dependence of Zcr

on the scalar coupling constant αS and reveal the
strong influence of the Lorentz structure of interaction
potentials on the critical charge of a nucleus and the
energy spectrum of a spinor particle in the external
scalar-vector field.

1. Exact Solution of the Dirac Equation with
Scalar and Vector Potentials of the
Coulomb Type

In this section, we consider the given problem in the
approximation, in which the size and the structure of
a nucleus can be neglected. We assume that the scalar-
vector interaction potential is determined by formula (2)
for all values 0 6 r < ∞. Taking the central symmetry
of the potential energy of a fermion in such a field
into account, it is convenient to pass into the spherical
coordinate system with the origin located at the nucleus.
Respectively, we will seek the wave function Ψ(~r) of the
stationary state (in the standard representation) in the
form

Ψ(~r) =
1
r

(
F (r)Ωjlm(~n)

(−1)l−l′+1G(r)Ωjl′m(~n)

)
, ~n = ~r/r, (3)

where Ωjlm(~n) – spherical spinor [19], j = 1/2, 3/2, ... –
total angular momentum, l = j ± 1/2 – orbital angular
momentum, l′ = 2j−l, m = −j,−j+1, ..., j – projections
of the total angular momentum onto the quantization
axis.

Substituting (3) in Eq. (1), we get the system of
equations for radial functions

dF

dr
+

k

r
F − 1

~c
[
E − V (r) + m0c

2 + S(r)
]
G = 0,

dG

dr
− k

r
G +

1
~c

[
E − V (r)−m0c

2 − S(r)
]
F = 0,




(4)

where k = ±(j + 1/2).
According to the character of the behavior of the

radial functions F (r) and G(r) in the asymptotic regions
of large and small r, we seek the solutions of the system
of equations (4) with the scalar-vector interaction (2) in
the form [3,4]

F =
√

m0c2 + E e−ρ/2ργ(Q1 + Q2),

G = −
√

m0c2 − E e−ρ/2ργ(Q1 −Q2), (5)

where we introduce the notation

ρ = 2λr, λ =
√

m2
0c

4 − E2/(~c), γ =
√

k2 − α2
V + α2

S .

The solution, which is finite as ρ → 0, of the
system of equations (4) can be represented in terms of
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a confluent hypergeometric function F (a, b; z) by using
relation (5) and the equalities

Q1 = AF (γ − χ, 2γ + 1; ρ) ,

Q2 = −BF (γ + 1− χ, 2γ + 1; ρ), (6)

where χ = (αV E +αSm0c
2)/(~cλ). Setting ρ = 0 in one

of the equations for the functions Q1 and Q2, we find
the connection between the constants A and B:

B =
~cγλ− αV E − αSm0c

2

~ckλ− αV m0c2 − αSE
A. (7)

The condition of finiteness of the radial wave functions
F (r) and G(r) as r → ∞ yields the equation for the
possible values of energy in the form

αV E + αSm0c
2

~cλ
= nr + γ, (8)

where nr – nonnegative integer, and

nr =
{

0, 1, 2, ..., k < 0;
1, 2, 3, ..., k > 0.

For bound states (E < m0c
2), the wave function

(3) must be normed by the condition
∫ |Ψ|2d~r = 1; this

yields the condition for the intermediate normalization
for radial functions:
∞∫

0

(
F 2 + G2

)
dr = 1. (9)

By integrating, we get the formula for the common
normalizing constant

A =
1

Γ(2γ + 1)

√
λΓ(2γ + nr + 1)(N − k)

2m0c2N nr!
, (10)

where N = (αV m0c
2 + αSE)/(~cλ).

Collecting the obtained formulas, we can write the
final expressions for the normed radial wave functions:

F
G

}
= ±A

√
m0c2 ± E ργe−ρ/2 [F (−nr, 2γ + 1; ρ) ∓

∓ nr(N − k)−1F (−nr + 1, 2γ + 1; ρ)
]

(11)

(the upper and lower signs are referred, respectively, to
F and G).

Solving Eq. (8) for E, we obtain the formula for the
discrete energy levels [3, 4]:

E = m0c
2±(nr + γ)

√
nr(nr + 2γ) + k2 − αV αS

α2
V + (nr + γ)2

. (12)

Formula (12) determines the so-called fine structure
of the energy levels of a relativistic HL-atom and is
a generalization of the well-known formula of Dirac–
Sommerfeld [19] to the case of a scalar-vector interaction
of the Coulomb type. In what follows, we will take
the positive sign of the root in (12) and consider only
electron levels; for αS = 0, the second branch of the
energy spectrum leads to a side solution of Eq. (8).

Setting nr = 0 and k = −1 in (12), we get the energy
of the electron on the lowest level:

E0 = m0c
2

√
1− α2

V + α2
S − αV αS

1 + α2
S

. (13)

Let us discuss the content of formula (13). As seen,
with increase in the vector coupling constant αV = Zα
(where Z – charge of the nucleus of an atom, and
α ≈ 1/137 – fine structure constant of a relativistic
HL-atom), the ground-state energy E0 decreases, passes
through zero at αV = 1, and terminates at αV =√

1 + α2
S (for the excited states, this occurs at αV =√

k2 + α2
S). The continuation of formula (13) into the

region αV >
√

1 + α2
S leads to complex values of the

energy and to the oscillation of wave functions as r → 0,
which corresponds to the situation of the “drop to the
center”, which is inadmissible in relativistic theory. The
appearance of this difficulty is related to the idealization
of the problem, namely to the neglect of a finite size of
the nucleus. At small values of the charge Z, the nucleus
can be considered as point-like. That is, the account for
its radius rN gives very small corrections to the energies
of levels. However, when αV approaches

√
1 + α2

S , the
situation changes basically.

The account for the finite size of a nucleus removes
the mentioned anomaly in the behavior of levels.
Pomeranchuk and Smorodinsky were the first who
noticed this fact [20] in 1945. Introducing the finite
radius of a nucleus rN , they showed that the solution
of the ordinary Dirac equation (with the vector type
of interaction) with the Coulomb potential cut-off at
small distances exists in the whole region from Z = 0
(E = m0c

2) to Z = Zcr(rN ) (E = −m0c
2) and estimated

the critical charge Zcr(rN ), at which the energy of the
level 1s1/2 reaches E = −m0c

2. Moreover, it turned out
that, with increase in Z in the region Z > 137, the energy
levels become negative and continue to descend down to
the boundary of the lower continuum E = −m0c

2. The
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analogous behavior of the energy levels of an electron is
also observed in the case considered here of the scalar-
vector interaction at αV >

√
1 + α2

S . However, the
intersection of the boundary of the lower continuum
E = −m0c

2 occurs at significantly greater values of the
critical charge Zcr, than those in the purely vector case.
The further discussion of the questions related to the
movement of levels near E = −m0c

2 and the analysis of
methods of the determination of the critical charge will
be performed in the next sections.

2. Discrete Spectrum at αV >
√

k2 + α2
S

In order to find the energy spectrum of an electron in
the Coulomb field of the nucleus with αV >

√
k2 + α2

S ,
it is necessary to set some boundary condition at zero
(which is equivalent to the determination of a self-
adjoint extension of the energy operator [21]). Only
after that the problem becomes mathematically correct
[22,23]. Physically, the setting of the boundary condition
at zero means the cut-off of potentials (2) at small
distances, i.e., the account for the finite size of the
nucleus.

We assume that V (r) and S(r) are Coulomb-like
down to the surface of the nucleus. Inside the nucleus,
let they look as

V (r) =

{ −~cαV

r , r > rN ,

−~cαV

rN
f

(
r

rN

)
, 0 6 r 6 rN ,

(14)

S(r) =

{ −~cαS

r , r > rN ,

−~cαS

rN
f

(
r

rN

)
, 0 6 r 6 rN .

(15)

Here, f(x) – cut-off function which takes the finite size
of the nucleus into account, and 0 6 x = r/rN 6 1.
Most frequently are used two simple models of cut-off
[20,24–26]:

Model I. f(x) = 1, i.e., the rectangular cut-off. For
a vector potential, this corresponds to the concentration
of the whole electric charge on the surface of the nucleus.

Model II. f(x) = (3− x2)/2, which corresponds to
a uniform distribution of the charge over the bulk of the
nucleus in the vector case.

In order to obtain the spectrum of the Dirac equation
with potentials (14) and (15) and to determine the
critical charge Zcr, it is necessary to solve this equation
inside (0 < r < rN ) and outside (r > rN ) of the nucleus,
which requires to carry out the numerical calculations
for model II at 0 < r < rN . We restrict ourselves by
the model of rectangular cut-off of both potentials, for

which the Dirac equation can be solved in analytic form.
The more realistic choice of the potential form inside
of the nucleus is mainly reduced to the increase of the
maximum values of V (0) and S(0) by a factor of 1.5,
which affects slightly the final results (see, e.g., [26] in
the purely vector case). We now pass to the description
of the procedure of solution of the system of Dirac
equations (4) at 0 6 r 6 rN .

Excluding the function G(r) from system (4), we get
the equation for F (r) in the form

d2F (r)
dr2

+
[
K2 − k(k + 1)

r2

]
F (r) = 0. (16)

Here, we took into account that V, S = const in the
entire interior region 0 6 r 6 rN , and the constant

K =

√
(E − V )2 − (m0c2 + S)2

~c
.

The general solution of Eq. (16) looks as

F (r) =
√

r
[
ÃJ|k+1/2|(Kr) + B̃N|k+1/2|(Kr)

]
, (17)

where Jn(x) and Nn(x) are, respectively, the Bessel and
Neumann functions of the integer order n [27]. Writing
G(r) in terms of F (r) with the help of (4) and using
the recurrence relations for the functions Jn(x) and
Nn(x), we get the corresponding formula for the lower
component:

G(r) = sgnk
~cK

√
r

E − V + m0c2 + S

[
ÃJ|k−1/2|(Kr) +

+B̃N|k−1/2|(Kr)
]
. (18)

The condition of the finiteness of F (r) at r = 0 implies
that B̃ = 0. Then the final formulas for the radial
functions in the interior region 0 6 r 6 rN take a simpler
form

F (r) = Ã
√

rJ|k+1/2|(Kr), (19)

G(r) = Ã sgnk
~cK

√
r

E − V + m0c2 + S
J|k−1/2|(Kr). (20)

In the exterior region r > rN , the potentials V (r)
and S(r) are Coulomb-like, and the solution of the Dirac
system (4), which exponentially decreases at infinity,
is determined by formulas of the type (5), and the
functions Q1 and Q2 are expressed through confluent
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hypergeometric functions analogously to (6). However,
it is necessary now to take both signs of the quantity
γ =

√
k2 − α2

V + α2
S into account. Therefore, instead of

(6), we have the representation

Qj = CjΨ(χj , 2γ + 1; ρ), j = 1, 2, (21)

where χ1 = γ − χ, χ2 = χ1 + 1, C1 and C2 –
some constants, and Ψ(a, b; z) – irregular solution of the
confluent hypergeometric equation. The regular solution
F (a, b; z) of this equation is not suitable because of
its growth at infinity. Substituting (21) and (5) in (4)
and using the recurrence relations between confluent
hypergeometric functions [27], we get the connection
between the constants C1 and C2:

C2

C1
= k +

αV m0c
2 + αSE

~cλ
= k + N. (22)

The relation between the constants Ã and C1 will be
established by sewing the formulas for F (r) obtained for
the interior (see (19)) and exterior (formulas (5) and
(21)) regions at the point r = rN :

Ã

C1
=

√
m0c2 + E

rN

ργ
Ne−ρN /2

J|k+1/2|(KrN )
[Ψ(χ1, 2γ + 1; ρN )+

+(k + N)Ψ(χ2, 2γ + 1; ρN )] (ρN = 2λrN ). (23)

We will determine the constant C1 (to within the phase
factor) from the condition of intermediate normalization
(9):

|C1| =
[
2m0c

2νΓ(2γ + 1)Γ(−2γ)
λΓ(χ2)Γ(χ2 − 2γ)

]−1/2

, (24)

where ν = ξC(C−k)−γ(2εC+1), ξ = ψ(χ2−2γ)−ψ(χ2),
ε = E/m0c

2, and C = k + N (the mathematical details
of the calculation of this integral are given in Appendix).

The sewing of the ratio G/F for the inner and outer
solutions at the edge of the nucleus (at r = rN ) gives
the equation

−
√

m0c2 − E√
m0c2 + E

Q1 −Q2

Q1 + Q2

∣∣∣∣
r=rN

= Ak (25)

which determines the spectrum of the Dirac equation in
the region −m0c

2 ≤ E ≤ m0c
2. Here, Ak is the ratio of

functions (19), (20) at r = rN :

Ak = sgnk
~cK

E − V + m0c2 + S

J|k−1/2|(KrN )
J|k+1/2|(KrN )

. (26)

Using the recurrence relation [27]

dΨ(a, b; z)
dz

=
a

z
[(a− b + 1)Ψ(a + 1, b; z)−Ψ(a, b; z)] ,

we write Eq. (25) in a more compact form

ρN
Ψ′(χ1, 2γ + 1; ρN )
Ψ(χ1, 2γ + 1; ρN )

=
Ak(k + tα−)− kt− α+

Ak + t
− γ,

(27)

where t = −
√

(m0c2 − E)/(m0c2 + E), α± = αV ± αS ,
the prime means the derivative with respect to ρN ,
and the parameters λ and χ1 are the same as those in
(21). The obtained exact equation (27) for the energy
levels has a quite nontrivial analytic structure and
would be not suitable for direct calculations. Therefore,
it is expedient to make attempt to simplify relation
(27), at least in some limit cases. It follows from
the consideration of the significantly more completely
studied relativistic Coulomb problem in the purely
vector case [26], the simplifications are possible in the
approximation of a small cut-off radius of the Coulomb
field. Let us see as this approximation works in the case
of Eq. (27).

Let us extrapolate the relation rN = R0A
1/3 onto the

region Z > 137, by taking (like for heavy nuclei) A =
2.5Z and R0 = 1.1 fm. Then the nucleus radius rN turns
out small as compared with the Compton wavelength of
an electron (for example, we have rN ≈ 0.02 in units of
~/m0c at Z = 170), and we can use the approximation
K ≈ √

α+α−/rN . In this case, relation (26) losses the
dependence on the energy E and takes a simpler form

Ak = sgnk

√
α+

α−

J|k−1/2|(
√

α+α−)
J|k+1/2|(

√
α+α−)

. (28)

The further simplifications of Eq. (27) are possible on
the use of the expansion of the function Ψ(a, b; z) near
zero:

Ψ(a, b; z) =
Γ(1− b)

Γ(a− b + 1)
+

Γ(b− 1)
Γ(a)

z1−b + ... . (29)

Calculating the logarithmic derivative of function (29),
using the properties of Γ-functions, and substituting the
result in (27), we arrive at the equation

(2λrN )2γ =
2γ sin(2πγ)Γ2(2γ)Γ(1 + χ− γ)

πΓ(1 + χ + γ)
×

× sin[π(χ− γ)]
sin[π(χ + γ)]

(Akα− − k + γ)(tα− + k + γ)
(Akα− − k − γ)(tα− + k − γ)

(30)

ISSN 0503-1265. Ukr. J. Phys. 2007. V. 52, N 6 601



V.Yu. LAZUR, O.K. REITY, V.V. BONDARCHUK, V.K. REITY

Fig. 1. Ground-state energy (ε = E/mc2) versus the charge
Z of the nucleus of an atom for the scalar coupling constant
αS = 0, 1, 2: solid lines – numerical solutions of Eqs. (30) and
(31); dash and dash-dotted lines are the results of calculations by
formulas (13) and (40), respectively

which is convenient for the analysis of states of the
discrete spectrum at αV <

√
k2 + α2

S , when the quantity
γ is real. It is easy to see that formula (30) is transformed
into (8) as rN → 0, γ 6= 0, and the energy spectrum is
described by equality (12).

In the case αV >
√

k2 + α2
S where γ = iθ becomes a

purely imaginary quantity, we obtain the transcendental
equation

ctg{θ ln(2λrN )− arg[Γ(1 + 2iθ)/Γ(−χ + iθ)]} =

=
(Akα− − k)(tα− + k)− θ2

θα−(Ak + t)
(31)

which together with (30) determine implicitly the energy
levels of an electron for the ground and excited states
with regard for the finiteness of the size of the nucleus
according to model I.

Equations (30), (31) are more simple than Eq. (26).
However, their solution requires numerical calculations.
In Fig. 1, we show the numerical solutions of Eqs. (30)
and (31) for the ground state 1s1/2 for various values
of the scalar coupling constant αS . Let us analyze the
movement of energy levels as functions of the charge
Z = 137αV . First, we consider the purely vector case
(αS = 0). Starting from Z = 0, the energy level descends
to the Z axis and crosses it at Z = 137. Then the
solutions of the Dirac equation for a point-like nucleus

loss sense (dash line). The energy level of an electron
in a HL-atom with the finite-size nucleus crosses the
threshold E = 0 at Z ≈ 147 (solid line) and descends
into the lower continuum at Zcr ≈ 172, where it becomes
quasistationary. For αS = 1 and αS = 2, the level
reaches zero at Z ≈ 137 and descends to the boundary
of the lower continuum at Zcr ≈ 214 and Zcr ≈ 318,
respectively.

3. Logarithmic Approximation

Though we have already used the approximation rN ¿
λc (λc = ~/m0c = 3.86 · 10−11 cm is the Compton
wavelength) in the derivation of Eqs. (30) and (31), we
can get some analytic estimates for the energy levels and
the critical charge Zcr. To this end, following works [25],
we impose an additional condition | ln(rN/λc)| À 1,
which leads to the appearance of a large parameter Λ =
− ln(rN/λc) À 1. For the size of nuclei rN ∼ 10−12 cm,
this parameter is not very large (Λ ≈ 3.5), but such
an approximation will give, as we will see below, a
proper general pattern of the movement of the levels
with change in Z.

Thus, we now pass to the practical use of the
approximation Λ À 1. As rN → 0, the value of αV

is close to
√

k2 + α2
S , and θ → 0. Therefore, we can set

αV =
√

k2 + α2
S on the right-hand side of Eq. (31), and,

according to (28),

Ak =
k

α̃

J|k−1/2|(|k|)
J|k+1/2|(|k|)

, α̃ =
√

k2 + α2
S − αS . (32)

Since, as θ → 0,

ϕ = 2θψ(1)− arg Γ(−χ + iθ) + O(θ2),

where ψ(z) is the logarithmic derivative of the Γ-
function, Eq. (31) is reduced to

πn′

θ
=

1
Akα̃− k

+
1

tα̃ + k
− 1

θ
arg Γ(−χ + iθ)+

+2ψ(1)− ln(2λrN ), (33)

where n′ = nr + (1 − sgnk)/2 is an integer which
enumerates the energy levels. As θ → +0, the function
ω(x, θ) = arg Γ(x + iθ) has discontinuities near the
points x = −n, in which the poles of the Γ-function
are positioned. Indeed, if |x + n| À θ, then, to within
terms of the order of θ2,

ω(x, θ) =
{

θψ(x), x > 0,
−(n + 1)π + θψ(x), −(n + 1) < x < −n,

(34)
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where ψ(x) is the logarithmic derivative of the Γ-
function. In the immediate neighborhood of the pole
x = −n,

ω(x, θ) = −
(

nπ + arcctg
x + n

θ

)
. (35)

In the region θ ¿ |x + n| ¿ 1, formulas (34) and (35)
sew with each other, and both give

ω(x, θ) = − [(n + ν)π + θ/(x + n) + ...] , (36)

where ν = 0 for x > −n and ν = 1 for x < −n.
First, we set E = −m0c

2. Then χ → −∞. In view
of relations (33) and (34) and the asymptotics of the
digamma-function ψ(z) [27]

ψ(z) = ln z − 1
2z

+ ... (z →∞, | arg z| < π), (37)

we get the relation

πn′

θcr
= Λ +

1
Akα̃− k

+ 2ψ(1)− ln(2α̃) (38)

for the determination of θcr =
√

α2
V cr − α2

S − k2 (αV cr =
Zcrα). This yields

αV cr =
√

k2 + α2
S +

π2n′2

2
√

k2 + α2
S Λ2

+ O(Λ−3). (39)

It follows from (39) that, as Λ À 1, the principal term of
the asymptotics depends only on the cut-off radius rN ,
and the dependence on the specific form of the cut-off
function f(x) arises only in the terms of the expansion
(39) higher by order.

From formulas (33) and (35), we can get the explicit
formula

E = m0c
2 (nr + g)

√
α2

V − α2
S + (nr + g)2 − αV αS

α2
V + (nr + g)2

,

(40)

where g = θ ctg(θΛ).
Possessing the analytic formula for the energy level

(40), we will trace how the account for the finite size
of the nucleus removes the singularity of formula (13)
for αV =

√
k2 + α2

S . After the change θ → −iγ,
g → γ cth(γΛ), formula (40) remains true also for
αV <

√
k2 + α2

S . In the region αV <
√

k2 + α2
S (under

the condition Λγ À 1), cth(γΛ) tends rapidly to 1, and
formula (40) is transformed into (13). On the other hand,
the point αV =

√
k2 + α2

S , γ = 0, is not already singular
for the function E(Z). The less the nucleus radius, the
steeper the level curve enters into the lower continuum.

4. Critical Charge of a Nucleus. Efficient Size
of the System for Z > 137

We now consider the solutions of the system of Dirac
equations (4) for E = −m0c

2 and will determine
the corresponding critical values of the charge, Zcr.
Excluding the function G(r) from system (4), we get
the equation

F ′′ − V ′ − S′

V − S
F ′ −

[
k(k + 1)

r2
+

k

r

V ′ − S′

V − S
−

−V − S

~2c2
(2m0c

2 + V + S)
]

F = 0. (41)

In the region r > rN , the solution convergent at
infinity is expressed (to within a constant) through the
McDonald function of imaginary index [27]:

F (r) = K2iθ(
√

8α−r/λc), G(r) = (rF ′ + kF )/α−. (42)

In the interior region 0 6 r 6 rN (for model I of the
cut-off function of the vector and scalar potentials (14)
and (15)), the solution of system (4) is given by formulas
(19) and (20), where we should change E → −m0c

2.
Sewing the obtained solutions at the point r = rN ,

(
G(r)
F (r)

)

r=rN−0

=
(

G(r)
F (r)

)

r=rN+0

, (43)

we get the transcendental equation for the critical charge
(at a fixed rN )

sgnk KrN

J|k−1/2|(KrN )
J|k+1/2|(KrN )

=
x

2
K ′

2iθ(x)
K2iθ(x)

+ k, (44)

where x =
√

8α−rN/λc. Since the parameter rN is
small as compared with the Compton wavelength of an
electron λc, we use the asymptotic representation for the
McDonald function at small values of the argument:

K2iθ(x) =
√

π

2θ sh(2πθ)
sin P + ... ,

P = arg Γ(1 + 2iθ)− θ ln(2α−rN/λc).

Considering only the main terms in the expansions of the
McDonald function and its derivative and taking the
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Fig. 2. Critical charge Zcr versus the scalar coupling constant αS

for several low levels: solid lines – numerical solutions of Eqs. (45);
dotted lines – the results of calculations by formula (38)

approximation K ≈ √
α+α−/rN , we get Eq. (44) in the

form

θ ctg P = k − sgnk
√

α2
V − α2

S

J|k−1/2|(
√

α2
V − α2

S)

J|k+1/2|(
√

α2
V − α2

S)
.

(45)

Equation (45) is transcendental relative to the
critical value of the vector coupling constant αV =
αV cr = Zcrα, where Zcr – critical charge of the nucleus of
an atom. The numerical solutions of Eq. (45) for several
low states are shown in Fig. 2. It is seen that, for each of
the levels, the function Zcr(αS) has minimum at αS ∼
0.1÷0.2 and then grows sharply with increase in αS . This
means that the vacuum of quantum electrodynamics in
a strong scalar-vector field of the Coulomb type should
reveal the instability relative to the creation of electron-
positron pairs at essentially higher values of the critical
charge, than that in the purely vector case. For example,
let αS = 1.1. In order that the process of spontaneous
generation of positrons be started, it is necessary to
bring nuclei with the total charge Z1 + Z2 > Zcr =
222 together. Thus, if the scalar interaction will turn
out to be rather significant, this will make experiments
aimed at the detection of this process to be practically
impossible.

The dotted line in Fig. 2 shows the values of the
critical charge for the ground state by formula (38)
(the nucleus radius rN was taken 0.02 ~/m0c) which
gives the more exact results than (39). As seen, the
logarithmic approximation reproduces the results of
numerical calculations for the lowest energy level quite
well.

Of interest is the question on the localization of
an electron, whose energy lies on the boundary of the
band of the continuous spectrum E → −m0c

2. In the
frame of the standard (purely vector) model, it was
firstly assumed [24] that, as Z → Zcr, there occurs
the delocalization of the polarization of vacuum, i.e.,
the polarization charge goes away from the nucleus
at arbitrary large distances. In this case, the main
argument consisted in that the wave function of the
bound state F (r) ∼ e−λr as r → ∞, and the electron
cloud will be seemingly delocalized as E → −m0c

2.
However, the subsequent analysis showed that it is not
the case (see, e.g., [25]). The analogous situation is
observed also in our case. In formula (42), we use the
asymptotics of the McDonald function at great values of
the argument [27]:

K2iθ(x) =
√

π

2x
e−x

(
1− 4θ2 + 1/4

2x
+ ...

)
. (46)

It seen that F (r) ∼ exp(−
√

8α−r/λc) as r → ∞ and
E = −m0c

2. The reason for the so sharp difference in
the behaviors of the wave function of an electron at
E = ±m0c

2 is the dependence of the effective potential
on the sign of E. In our problem, the effective potential
behaves itself as −~c(αV E/m0c

2 + αS)/r for r → ∞.
That is, it is the attractive potential for E = m0c

2 and
the repulsive one for E = −m0c

2 (at sufficiently large
distances from the nucleus) for αS = 0. For αS 6= 0,
none of the levels reaches the boundary of the upper
continuous spectrum, and the comparison of these two
limiting cases (E = +m0c

2 and E = −m0c
2) has no

sense.
Thus, since the state of an electron for E → −m0c

2

remains bound and is not “distended”, the arguments
advanced in [24] in favor of the vacuum polarization
delocalization are not valid. In view of the complexity
of the question about the size of the bound state in
the scalar-vector case, we consider it quantitatively. For
this purpose, we will determine the mean radius of the
system:

r̄ =

∞∫

0

(F 2 + G2)rdr. (47)

Integral (47) is calculated in Appendix (see formulas
(D1), (D2), (D8), and (D9)) and has form (in units of
~/m0c)

r̄ = {2C(C − k)(χξ − 2γ)− γ(1 + εC)(2χ + 1)+
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+ξC[εC(C − 2k)− k]}/(2λ ν). (48)

The dependence of r̄ on the charge, according to (48),
for the ground state at αS = 0, 1, 2 is presented in Fig. 3.
It is seen that, with increase in the charge, the effective
size of the system decreases and remains finite on the
boundary of the lower energy continuum E = −m0c

2.
Indeed, formula (48) at E → −m0c

2 gives the mean
radius on the boundary of the lower continuum in the
form

r̄ =
4θ2 + 1

10(αV − αS)
3αV − 2αS + τ(3− 2k)

2(2αV − αS) + τ(1− 2k)
, (49)

where τ = (1 − k)/(αV − αS). For the ground state at
αS = 0, 1, 2, respectively, we have r̄ = 0.32, 0.67, 1.12.
That is, as was mentioned above, the bound state is not
delocalized.

APPENDIX

In order that to determine the normalization constant C1 for the
radial wave functions F and G (see Section 2) and the mean radius
of the system r̄ (see Section 4), it is necessary to calculate the
integral

Iµ =

∞Z

0

(F 2 + G2)rµdr, µ = 0, 1. (D1)

Since the nucleus radius rN ¿ λc, and the region 0 6 r 6 rN

gives a small contribution to integral (D1), we assume that the r
adial wave functions F and G have the form (5) and (21) in the
whole integration region 0 6 r < ∞. Then equality (D1) takes the
form

Iµ =
2m0c2

(2λ)µ+1
[Xµ(χ1, χ1) + C2Xµ(χ2, χ2) + 2εCXµ(χ1, χ2)],

(D2)

Xµ(a, b) =

∞Z

0

Ψ(a, 2γ + 1; ρ)Ψ(b, 2γ + 1; ρ)ρ2γ+µe−ρdρ. (D3)

where ε = E/(m0c2), C = k + N .
In order to calculate integral (D3), we replace each of the

hypergeometric functions by its integral representation [27]:

Ψ(a, c; ρ) =
1

Γ(a)

∞Z

0

e−ρtta−1(1 + t)c−a−1dt.

Then the integration with respect to ρ is reduced to the calculation
of the integral

∞Z

0

ρ2γ+µe−ρ(t+t′+1)dρ =
Γ(ζ)

(t + t′ + 1)ζ
, (D4)

where t and t′ are the integration variables, and ζ = 2γ + µ + 1.
In view of (D4), the integration with respect to t will lead to the

Fig. 3. Mean radius of the ground state as a function of the nucleus
charge Z at αS = 0, 1, 2

hypergeometric function 2F1(ζ, a; a+µ+1; t′/(t′+1)). Expanding
it in a series and integrating termwise, we get the relation

Xµ(a, b) =
(µ!)2Γ(ζ) 3F2(a, b, ζ; a + µ + 1, b + µ + 1; 1)

Γ(a + µ + 1)Γ(b + µ + 1)
. (D5)

In the partial cases where µ = 0, 1 and a, b = χ1,2, formula (D5)
takes a simpler form

X0(χ1, χ1) =
Γ(1 + 2γ)Γ(−2γ)

Γ(χ1)Γ(χ1 − 2γ)
[ψ(χ1 − 2γ)− ψ(χ1)], (D6)

X0(χ1, χ2) =
Γ(1 + 2γ)Γ(1− 2γ)

Γ(χ2)Γ(χ2 − 2γ)
, (D7)

X1(χ1, χ1) =
Γ(1 + 2γ)Γ(−2γ)

Γ(χ1)Γ(χ1 − 2γ)
{(2γ − 2χ1 + 1)×

×[ψ(χ1 − 2γ)− ψ(χ1)]− 4γ}, (D8)

X1(χ1, χ2) =
Γ(1 + 2γ)Γ(−2γ)

Γ(χ2)Γ(χ2 − 2γ)
{−γ(2γ − 2χ1 + 1)+

+χ1(χ1 − 2γ)[ψ(χ2 − 2γ)− ψ(χ2)]}, (D9)

where ψ(x) is the digamma-function. Xµ(χ2, χ2) follows from
Xµ(χ1, χ1) after the change χ1 → χ2.
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КРИТИЧНИЙ ЗАРЯД У МОДИФIКОВАНIЙ КВАНТОВIЙ
ЕЛЕКТРОДИНАМIЦI

В.Ю. Лазур, О.К. Рейтiй, В.В. Бондарчук, В.К. Рейтiй

Р е з ю м е

Для однiєї простої моделi протяжного джерела (ядра) отри-
мано точнi нормованi розв’язки рiвняння Дiрака зi скалярно-
векторним потенцiалом кулонiвського типу, а також трансцен-
дентне рiвняння, що визначає рiвнi основного та збуджених
електронних станiв у докритичнiй областi Z < Zcr. Знайде-
но рiвняння для величини критичного заряду ядра, за якого
рiвень опускається в нижнiй енергетичний континуум. Виявле-
но сильний вплив лоренцевої структури потенцiалiв взаємодiї
на критичний заряд та дискретний спектр фермiона в скаляр-
ному та векторному кулоноподiбних полях.
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