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Formulae for the spectral and spectral-angular densities of radi-
ation by relativistic electrons in an external nonuniform field
are explored in the quasiclassical approach by taking the recoil
and nondipole radiation factors into account. To compute with
the formulae, a numerical method is set out. The extreme cases
relevant to the radiation from an angle-type trajectory and to the
constant-field approximation are considered. The results of exact
and approximate calculations are presented for the radiation by
high-energy electrons in the field of a single atomic string into the
crystal.

1. Introduction

The description of the radiation by a high-energy
electron moving in a matter and an external field in
a large spatial region along the direction of a particle
motion was given in [1, 2]. If the particle collides wi-
thin this region with many atoms of the medium, the
interaction will happen with them differently than that
with the isolated centers carried far apart. In this case,
both an increase and a decrease of the efficiency under
the particle-medium interaction are possible.

The essential feature of the electron radiation in
a matter at high energies is that, with growth of
the electron energy and with decrease of the radiated
photon frequency, the effective coupling constant of the
interaction between a particle and medium atoms, which
are in the range of the coherent length for the radiation
process, is quickly increased [2]. The validity of the Born
approximation, which is widely used for the description
of the electron radiation in the field of atoms, is fast
broken in this case, and it is necessary to go beyond the
scope of the Born perturbation theory.

There is a number of methods to describe the
electromagnetic processes in a matter at high energies in
external fields beyond the scope of the Born perturbati-
on theory. This can be made, in particular, on the
basis of the eikonal and quasiclassical approximations

in quantum electrodynamics and methods based on the
classical theory of radiation [2]. The adaptation of these
methods to fields of a complicated configuration such
as the field of a crystal lattice is the intricate problem.
Therefore, the construction of simplified models and the
development of numerical methods are substantial to
account the particle interaction with such fields and a
matter. The problem is considerably simplified in the
case where the radiation by relativistic electrons in a
matter is dipole or the constant field approximation is
used, which gives a possibility to apply formulae of the
synchrotron radiation theory, and also when the particle
trajectory is approximated by the angle-type trajectory.
The adaptability of these approximations for the descri-
ption of the radiation by particles in a matter is essential.
The paper is devoted to the examination of this problem.

The present investigation is based on a variant of
the quasiclassical representation for a spectral-angular
distribution of the radiation intensity of a high-energy
electron in a nonuniform external field, for which this
distribution with regard for the recoil effect at radiation
is determined by a set of electron classical trajectories in
this field [2,3]. Such quantum-electrodynamics expressi-
on for the radiation density through classical trajectori-
es is rather convenient in some cases, because it allows
reducing the quantum-electrodynamics problem on radi-
ation to the problem of solving the classical equations of
motion of an electron in an external field, by executi-
ng the calculations of some integrals along these classi-
cal trajectories. In this case, the possibility to solve
this problem with simple numerical methods applied
to the equations of motion is appeared. This is rather
important at studying the radiation in a field with
complicated configuration.

The problem becomes especially acute for studyi-
ng the radiation by high-energy electrons in aligned
crystals, when the character of particle motion is rather
complicated and the effects of recoil and a nondipole
behavior at radiation are of importance. Therefore, we
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pay the considerable attention to the adaptability of
the offered numerical method and calculations with si-
mplified equations for the electron radiation in aligned
crystals.

2. Radiation Cross-Section in External Field

Within the quasiclassical approximation of quantum
electrodynamics, the differential cross-section of radiati-
on by a relativistic electron in the nonuniform external
field can be written down as [2, 3]

dσ

dωdo
=

∫
d2ρ

1
ω

dE

dωdo
, (1)

where ω is the photon energy, do is the element of a
solid angle in the direction of radiation, dE/dωdo is the
spectral-angular radiation density by the electron that
moves along the trajectory r(t, ρ) in an external field,
and ρ is the impact parameter, at which the electron
incomes into the field. (We use the system of units, for
which the Planck constant and the light velocity are
accepted equal to unity.) The quantity dE/dωdo is defi-
ned by the relation

dE

dωdo
=

e2

8π2

ε2 + ε′2

ε′2
ω2

[
|n× I|2 +

m2

ε2

ω2 |I0|2
ε2 + ε′2

]
, (2)

where e is the electron charge, ε′ = ε − ω is the final
electron energy, n is the unit vector in the direction of
radiation,

I =

∞∫

−∞
dtv(t)eiω′[t−nr(t)] , I0 =

∞∫

−∞
dteiω′[t−nr(t)] , (3)

ω′ = εω/ε′, and v(t) = dr/dt is the velocity vector of
the electron.

Equation (2) takes into account the effects due to
the recoil at radiation. The effects due to the quantum
character of electron motion in an external field are
neglected in Eq. (2). Its essential feature is the fact that,
in the quasiclassical approximation, the spectral-angular
radiation density is defined by classical trajectories of
an electron in the external field. Particles with different
starting conditions have different trajectories in the
nonuniform external field, so formula (1) includes the
integration over these starting conditions.

At high electron energies, the typical values of
scattering and radiating angles in the external field are
small in comparison with unity. Then the expansion can
be carried out in Eq. (2) in these angles in the general

form without using any specific law of a particle motion.
For this purpose, we take advantage of the relation

v(t) ≈ v0

[
1− v2

⊥(t)
2v2

0

]
+ v⊥(t), (4)

which defines the deflection of a particle trajectory in
the external field relative to the initial direction of the
motion v0. The value v⊥(t) in Eq. (4) is a small deflecti-
on of a particle trajectory orthogonal to v0 (v⊥ ¿ v0,
v⊥ · v0 = 0). Thus, it is assumed that v⊥ = 0 at
t → −∞. Equation (4) considers the modification of
both transverse and longitudinal velocities. Terms of the
order v4

⊥/v4
0 are neglected here.

Below we consider that the vector v⊥(t), as well θ
which defines the radiation angle, is referred to the initi-
al direction of electron motion v0. In other words, we
will carry out all further evaluations in the frame of
reference, in which the z-axis is directed along v0. Then
the spectral-angular radiation density in Eq. (2) will be
described as

dE

dωdo
≈ e2

8π2

ε2 + ε′2

ε′2
ω2K , (5)

where

K = |J|2 + γ−2 ω2

ε2 + ε′2
|J |2 . (6)

The quantities J and J from the above equation for K
to within the terms of the order of γ−2, v2

⊥, and θ2 can
be expressed in the following form:

J =

∞∫

−∞
dt [v⊥ − θ] exp





iω′

2


 t

γ2
+

t∫

−∞
dt̃

(
v⊥(t̃)− θ

)2






 ,

J =

∞∫

−∞
dt exp





iω′

2


 t

γ2
+

t∫

−∞
dt̃

(
v⊥(t̃)− θ

)2






 . (7)

Note that the representation of formula (5) for the
spectral-angular radiation density has the advantage in
comparison with formula (2) due to the explicit aspect
for the smallness order of included terms.

3. Algorithm of Numerical Simulation

On the basis of the general formula (5), one can also
develop the numerical methods for the calculation of
the spectral-angular radiation density. This is especially
important for the interaction of a particle with fields
of complicated configurations, like with the field of a
crystal lattice. For this purpose, one needs to develop the
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numerical methods to solve the equations which determi-
ne both the trajectory and the velocity time dependences
for a particle in an external field, and to calculate the
time integrals J and J in Eq. (6).

As usual, in the numerical calculations of the
integrals JT and JT on the time interval, during whi-
ch a particle interacts with the external field, one can
utilize the procedure of their transformation into the
corresponding sums through the relation (see, e.g., [4–6])

JT =

T∫

0

dtf(t) = ∆
N∑

n=1

f(tn) , (8)

where T = N∆, and f(tn) is the value of the integrand
on the trajectory interval n. (The partition of a time
interval T into N small fragments can be nonuniform in
general.) The complexity of this method for the consi-
dered problem lies in the numerical integration of fast
oscillating functions. The calculation accuracy can be
increased by adding the number of partition intervals
N . At the same time, however, the database needed for
integrand functions extends sharply, which makes the
fulfillment of accurate evaluations problematic even wi-
th modern computers.

The numerical method of evaluation of the integrals
J and J described below shortens this procedure by
means of utilizing the analytical technique at some
stages. The method consists in the following. In J and
J , we replace the integration variable t by ξ which is
defined by the relation

ξ = tγ−2 +

t∫

−∞
dt̃

(
v⊥(t̃)− θ

)2
. (9)

Such a replacement in the integrand functions of J and
J allows us to transform the nonlinear function of time
to a linear function of the integration variable ξ in the
exponent phase. Substituting relation (9) into expressi-
on (7), we can rewrite the integrals J and J as

J =
∫

d [r⊥(t)− θt] e
i
2 ω′ξ, J =

∫
dte

i
2 ω′ξ, (10)

where r⊥ =
∫ t

−∞ dt̃v⊥(t̃), and the function t = t(ξ) is
determined by Eq. (9). After the integration by parts,
we find that

J = − iω′

2

∞∫

−∞
dξ [r⊥(t)− θt] e

i
2 ω′ξ ,

J = − iω′

2

∞∫

−∞
dξt(ξ)e

i
2 ω′ξ. (11)

Further, we will describe the calculation procedure
for J only, as it is the same for J . Let us divide the
integration region over ξ into the three ones: ξ < 0,
0 < ξ < ξT , and ξ > ξT , where ξT is the value of ξ
related to the time T . The t-dependence of ξ is linear
at ξ < 0 and at ξ > ξT . So the integration of J over ξ
can be carried out analytically upon these intervals (it is
supposed that a particle interacts with the external field
at the time interval 0 ≤ t ≤ T only). Thus, J looks like

J = J0 + JT + J′, (12)

where

J0 =
i

ω′
θ

γ−2 + θ2
, J′ =

i

ω′
v′⊥ − θ

γ−2 + (v′⊥ − θ)2
e

iω′
2 ξT ,

JT =

ξT∫

0

dξ [r⊥(t)− θt] e
iω′
2 ξ. (13)

The subsequent computation is reduced to the esti-
mation of the integral JT . For this purpose, we divide
the time interval T into N segments 0 < t1 < t2 < . . . <
ti < . . . < tN = T . According to (9), these subintervals
correspond to ones of ξ: 0 < ξ1 < ξ2 < . . . < ξi < . . . <
ξT (note that we need to solve the equations of motion
to find the values ξi, while the set of values of ξi will
be different at each θi). Then the integral JT can be
written as

JT =
N−1∑
n=0

ξn+1∫

ξn

dξ [r⊥ (t(ξ))− θt(ξ)] e
iω′
2 ξ . (14)

The electron trajectory in the external field is a
smoothly varying function of time (assuming that the
external field has a similar behavior with respect to the
coordinates). So, for small intervals of ξ corresponding
to ones of time ti, the trajectory can be approximated
by a polynomial in powers of (ξ − ξi). If we use the
third-power polynomial in such an approximation in the
interval n of ξ

r⊥(ξ) = r(0)
n +r(1)

n (ξ−ξn)+r(2)
n (ξ−ξn)2+r(3)

n (ξ−ξn)3,(15)

then the expansion coefficients r(m)
n can be defined by

the particle’s coordinates and velocities at the beginni-
ng r⊥(ξn), v⊥(ξn) and at the end r⊥(ξn+1), v⊥(ξn+1)
of the interval ξn ≤ ξ ≤ ξn+1 (values of r⊥(ξn) and
v⊥(ξn) are determined by the solution of the equati-
ons of motion). Using a polynomial of this kind for the
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trajectory approximation has the following advantages.
First, the trajectory r⊥(ξn) and velocity v⊥(ξn) are
smoothly varying functions of ξ, in this case, throughout
the interval 0 ≤ ξ ≤ ξT . In other words, the transition
from one interval of ξ to another one has no disconti-
nuities of the trajectory and the velocity. Second, the
integration of each term in Eq. (14) can be performed
analytically. A similar approximation is also fulfilled for
the quantity t(ξ) in Eq. (14). As a result, the calculation
of JT is reduced to the solution of algebraic equations
to find the constants r(m)

n in Eq. (15) and to calculate
the sum in Eq. (14). All these techniques allow a consi-
derable speeding up of the computation procedure due
to a decrease in the number of trajectory dissections N
without losing the accuracy.

4. Results and Discussion

Based on the method stated above, it is possible to
develop a procedure for numerical calculations of the
spectral and spectral-angular radiation densities by
relativistic electrons and positrons in fields of complex
configurations such as a crystal lattice. We will exhi-
bit the main computing stages and the obtained results
by a simple example that is relevant to the evaluati-
on of the spectral radiation distributions for an electron
impact with a separate atomic string in the crystal under
a small angle ψ to its z-axis. Such a problem arises in
the case of the penetration of a particle through a crystal
near to one of the crystalline axes [2]. In this case, the
electron sequentially collides with various atomic stri-
ngs in the crystal that are oriented in parallel with the
crystalline axis. If we can neglect the interference effect
of waves which are radiated at the electron collisions
with different atomic strings, then the radiation can be
assumed to be independent on different strings, and the
problem is transformed to that of the radiation in the
field only of a single string. It is essential that, for the
analysis of the electron radiation in a crystal, one needs
to take into account the recoil and nondipole effects for
many of typical experimental situations (see, e.g., [7]).
Both these effects are accounted by formula (5). This
is the case, for example, when an electron beam with
an energy of 100 GeV enters into the crystal at the
angle ψ with respect to one of the crystalline axes whi-
ch is about several times more than the critical axial-
channeling angle ψc.

The high-energy electron motion in the field of a
crystal atomic string near to its axis is mainly determi-
ned by the continuous potential which is the potenti-
al of a string averaged along this axis. The particle’s

momentum component that is in parallel to the string
axes is conserved in such a field. Thus, the motion in
a cross plane is defined by the two-dimensional equati-
on [2, 8]

ρ̈ = −e

ε

∂

∂ρ
U(ρ) , (16)

where ρ = (x, y) are the coordinates in the plane that
is orthogonal to the string axis, ε is the electron energy,
and U(ρ) is the continuous potential of a string. In the
calculations, we used the approximation for the conti-
nuous potential of an atomic string by the function

U(ρ) =





U0
1− ρ2/a2

1 + cρ2/R2
e

, ρ < a,

0, ρ > a,
(17)

where a is a half of the average distance between atomic
strings in the crystal, and Re is the screening radius
for the potential of a separate atom in the crystal. The
function of such a kind allows one to achieve a good
approximation of real the continuous potential for the
atomic string by fitting the coefficients U0 and c in
Eq. (17) (see, e.g., [2]). In particular, at values of the
parameters U0 = 935 eV and c = 0.805, function (17)
gives a good (∼ 10%) approximation for the continuous
potential of atomic string 〈111〉 in tungsten crystals at
the temperature T = 300 K. Far from a string axis
(ρ > a), we have supposed its potential equals zero in
view of that 2a represents the average distance between
atomic strings in a crystal.

Equation (16) specifies the time dependence for
transverse components of the particle velocity and a
trajectory in the atomic string field. In the problem
considered by us, the parallel beam of particles falls on
the atomic string at a small angle ψ to its axis. Thus, the
particle trajectories will be determined only by the stri-
ng impact parameter b [2]. In view of that and according
to Eq. (1), the spectral distribution of photons radiated
by a unit electron flow in an atomic string field can be
written as

dσ

dω
= Lψ

∞∫

−∞
db

1
ω

∫
do

dE

dωdo
, (18)

where L is the string length, and dE/dωdo is the
spectral-angular energy distribution (5) of photons radi-
ated by an electron relevant to the trajectory r(t, b). In
the numerical calculations, the time dependence of the
transverse electron velocity in the field of an atomic stri-
ng is determined by a numerical solution of the motion
equations (16). To compute the values JT and
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Fig. 1. Spectral densities of the radiation by electrons with energies of 50 GeV and 1000 Gev incident on an atomic string at the
angles ψ = 15ψc and ψ = 2ψc to axis 〈111〉 of a tungsten crystal. Solid lines are the results of numerical calculations using Eq. (18),
dashed lines are the results of calculations in the constant field approximation, and dotted lines correspond to the angle-form trajectory
approximation

JT , an electron trajectory in the field of an atomic
string (i.e., within ρ ≤ a) was divided into N ∼ 20
segments. The beginning in each segment matched to
the time tn. For each tn, ξn was calculated to build
up the base of data on r⊥(tn) and v⊥(tn). The coeffi-
cients r(m)

n included in (15) and the value of sum (14)
were calculated by using this database. These calculati-
ons were carried out for various impact parameters b
and angles of radiation θx and θy. Then, the numerical
integration of (18) was fulfilled.

In Fig. 1, the solid lines are the results of computing
the spectra of the radiation by electrons with the energi-
es ε = 50 GeV and ε = 1 TeV when the initial beam
falls on an atomic string into a tungsten crystal at the
angles ψ = 15ψc and ψ = 2ψc to axis 〈111〉. Along the
ordinate and abscissa axes, we show ωdσ/dωdl in cm−1

and ω in GeV, respectively.

The description of the electron radiation in the fi-
eld of an atomic string can be carried out in some cases
by using simplified models based on such approximati-
ons as the angle-form trajectory and the constant-field
approximation. Utilizing these approximations allows
one to essentially simplify the radiation definition at the
interaction of particles with an atomic string. This is
of importance for studying the particle radiation under
actual particle dynamics in a crystal. The analysis of
the possibilities to use these simplified formulae for the
description of the fast particle radiation in crystals is
very important. To this end, we compare the results
computed within a numerical method by formula (5) wi-
th those obtained in the approximations of an angle-form
trajectory and a constant field.

The angle-form trajectory approximation corres-
ponds to the case where the electron radiation in the
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field of an atomic string has the formation length lc =
2εε′
m2ω (1 + γ2θ2

e + γ2θ2)−1 that is large in comparison wi-
th the length of the order a/ψ, on which the electron
interacts with an atomic string, where θe is the scatteri-
ng angle of the electron. In this case, as shown in [2],
the spectral density of the radiation is defined by the
formula

dE

dω
=

2e2

π

ε′

ε
×

×
[

2ξ2(1 + ω2/2εε′) + 1

ξ
√

ξ2 + 1
ln

(
ξ +

√
ξ2 + 1

)
− 1

]
, (19)

where ξ = γθe/2 and θe = θe(b). Note that, for
high-energy electrons and the small energies of radiated
photons, the condition of applicability of this formula,
lc À a/ψ, holds always. The radiation spectrum (19)
does not depend, in this case, on the trajectory details
in the atomic string field and is determined only by the
particle scattering angle θe(b).

The constant field approximation corresponds to the
case where the conditions lc ¿ a/ψ and γθe À 1 are sati-
sfied. In this case, the radiation cross-section according
to the relation

dσ

dω
=

2πL

ω

∞∫

0

ρdρ
dE(u)
dtdω

(20)

can be interlinked with the spectral density of
synchrotron radiation normalized to a unit path of a
particle moving in a constant field

dE

dtdω
= − e2

2
√

π

ε2 + ε′2

εε′
ω

γ2
×

×



(
1− ω2

ε2 + ε′2

) ∞∫

u

du′Φ(u′) +
2
u

∂

∂u
Φ(u)


 , (21)

where u = γ−2(ω′/|v̇|)2/3, |v̇| =
∣∣∣ e
ε

∂
∂ρU(ρ)

∣∣∣, and Φ(u) is
Airy function.

For ω ¿ ε, this formula transforms into the classical
result referred to the radiation by relativistic electrons in
the field of an atomic string of the crystal [9]. Note that
the quantity dE(u)/dtdω in Eq. (20) depends only on the
integration variable ρ. The radiation cross-section (20)
does not depend on the angle of the particle incidence
on a string. The value of ψ defines, however, the appli-
cability requirement for formula (21).

Let’s note that formulae (19) and (21) are consi-
derably simpler than the exact formulae founded with
the use of relation (5). Therefore, the adaptation of the

former for the analysis of the electron radiation in the
atomic string field allows the essential speeding up of
calculations in comparison with formula (5).

The dashed and dotted lines in Fig. 1 correspond,
respectively, to the calculations by formulae (20) and
(19). The graphs demonstrate that, at large angles
of electron incidence on a string, the exact calculati-
on results for the radiation cross-sections are in a
good accordance with those obtained in the angle-
form trajectory approximation almost through the whole
frequency range of radiated photons. This is explained
by the fact that, at large angles of the particle inci-
dence on a string, the requirement of the applicabili-
ty of formula (19) is satisfied practically for the whole
frequency range of radiated photons.

The situation at small angles of the particle inci-
dence on a string is rather different from that of the
electron radiation in a string field at large values of
the angle ψ. Namely, in the range of low frequenci-
es, the exact calculations approach the results obtained
in the angle-form trajectory approximation and consi-
derably diverge with those obtained in the constant-field
approximation. The reason is that, the strong modificati-
on of an atom-string field along the electron trajectory
in the region of coherent length takes place in a low
frequency range. Hence, the requirements of applicabi-
lity for the formulas used by the synchrotron radiation
theory are not fulfilled. The other situation occurs for the
high-frequency range of radiated photons. In this case,
the atomic string field varies smoothly on the coherent
length of radiation. So, the results of exact calculations
approach those obtained in the constant-field approxi-
mation. Note that, under the constant-field approximati-
on, the electron radiation cross-section in the atomic stri-
ng field of a crystal does not depend on the angle ψ. The
results of exact calculations, as show the graphs in Fig.
1, have a weak dependence of the radiation cross-section
on ψ at ψ ∼ ψc. This is caused by that the value ψ defi-
nes the region of applicability for the formulae obtained
in the constant-field approximation.

The applicability region of the formulae describing
the radiation from an angle-form trajectory is extended
with increase in the particle energy. Note that, at the
same time, the coherent length of radiation is rapidly
increased as well. Thus, if the electron collides with
several atomic strings in the crystal in the scope of the
coherent length of radiation, it is necessary also to take
into account the influence of the multiple scattering of a
particle on atomic strings on the radiation alongside with
the above-considered effects (the recoil at radiation, the
nondipole behavior of radiation, etc.). Such an investi-
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gation, however, is beyond the frame of the present work.
We only remark that, in principle, it can be considered
on the basis of the above-considered numerical calculati-
ons by applying them to the case of the motion of a
particle in the periodic field of crystal atomic strings.
At this, however, the calculation volume will be consi-
derably increased.
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ПРО СПЕКТРАЛЬНI РОЗПОДIЛИ ВИПРОМIНЮВАННЯ
ЕЛЕКТРОНIВ ВЕЛИКОЇ ЕНЕРГIЇ В ПОЛI ЛАНЦЮЖКА
АТОМIВ КРИСТАЛА

В.П. Лапко, М.Ф. Шульга, О.С. Єсаулов

Р е з ю м е

Дослiджуються квазiкласичнi формули для спектрального i
спектрально-кутового розподiлiв випромiнювання релятивiст-
ських електронiв у зовнiшньому неоднорiдному полi з ураху-
ванням ефекту вiддачi при випромiнюваннi та недипольностi
випромiнювання. Викладено метод чисельних розрахункiв за
цими формулами. Розглянуто граничнi випадки цих формул,
що вiдповiдають випромiнюванню iз траєкторiї у виглядi кута
i наближенню постiйного поля. Проведено зiставлення резуль-
татiв точних i наближених розрахункiв за цими формулами
на прикладi випромiнювання електронiв великої енергiї в полi
окремого ланцюжка атомiв кристала.
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