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Model independent, mi, adiabatic, m_1, and high-energy, ms,
energy weighted sums (EWS) for the isoscalar and isovector
nuclear excitations are investigated within the framework
of the kinetic theory adapted to the description of a two-
component nuclear Fermi-liquid. For both the adiabatic and
scaling approximations, the connection of the EWS m_; and
m3 to the nuclear stiffness coefficients and the first- and zero-
sound velocities is established. We study the enhancement factor
k7 in the energy weighted sum m/ for the isovector excitations and
provide the reasonable explanation of the experimental exceeding
of the 100% exhaustion of sum m] for the isovector giant dipole
resonances. We show the dependence of the enhancement factor
k1 on the nuclear mass number A and analyze its dependence on
the Landau’s isovector amplitude F;.

1. Introduction

The strength function is the basic characteristic which
determines the behavior of a quantum system in an
external periodic field Ugyy = A(8)§ (A(t) = Age™ ™t +
c.c., here, ¢ is the transition operator)

S(E) =D (Wal 4 [0o)*6(E ~ En), E=hw, (1)
n#0

where ¥, and FE, are the eigenfunctions and the
eigenenergies of the total Hamiltonian H, respectively.
Using the strength function S(E), one can calculate the
moments my (EWS)

my = /dES(E) ER =" [(Wal W) |*(En — Eo)*.
n#0
(2)

Here, for convenience, we have included the ground state
energy Ey = 0 into the energy factor. Special role of the
EWS my is caused by its connection to the transport
characteristic of the system. For example, the sums m_;
and m_3 determine the stiffness and mass coefficients for
the collective excitations in the system [1]. Determined
via the properties of the ground state of the system,
the sum m; plays a specific role. In many cases, it does
not depend on the model used for the description of the
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collective motion. This allows one to test the results of
theoretical calculations as well as the correctness and the
completeness of the experimental data.

During a few years, the significant attention was paid
to the analysis of EWS for the giant multipole resonances
(GMR) [2-10]. Nuclear giant resonances exhaust a
significant part of EWS (sometimes near 100%) and
establish the relatively simple connection between the
values of my, and the basic characteristics of the GMR.
However, some problems occur while researching the
EWS for the isovector giant dipole resonances which
are best investigated experimentally. The connected
problem is that the sum m; is not model independent
because of the dependence of the effective nuclear
forces on the nucleon velocity. Thus, for the theory to
agree with the experimental data, one has to include a
phenomenological enhancement factor to the sum m; [6].
As a consequence, this leads to the modification of other
sums my and can affect the definition of the nuclear
transport characteristics.

In this work, we study the EWS my for the
isovector collective excitations in heavy nuclei and
nuclear matter. Our approach is based on the kinetic
Landau—Vlasov’s theory adapted to a two-component
nuclear Fermi-liquid. In Section 2, we consider the
connection between the EWS my, and the linear response
function. The connection of the Landau’s theory of the
Fermi-liquid to the hydrodynamical model and to the
scaling approximation is shown in Section 3 [11,12]. In
Section 4, we apply our approach to finite nuclei. The
main conclusions of the work are formulated in Section 5.

2. Linear Response Function and EWS

Let us consider the response of a nucleus on an external
field Uext(t) periodic in time which is switched on
adiabatically at t = —oc:

Uext(t) — )\Oe—i(w+i0)th+ )\Sei(‘”_io)t(j*, (3)
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where ¢ is the Hermitian operator,
A

G="> (), (4)
i=1

A is the mass number, and 7; is the isotopic variable.
If Ag < 1, then quantum mechanical expectation of the
operator § takes the following form (see [13])

(@) = x(W)Aoe ™ + x* (W) Ase™t, (5)

where x(w) is the linear response function

X(@) =D (Wl ¢ |%0)[*x

1 1
X . 6
{En—Eo—ﬁw—i0+En—Eo+hw+iO (6)

Let us introduce the polarization response function

V() = Rex(w) =

= -2 Zn: (Wnl ¢ |‘I’0>|2 (M)QLE"(;fi Ep)* "

It is easy to establish the connection between the
EWS my, and the linear response function x(w). Let us
take the Taylor expansion of the function (™ (w) in a
series in fiw as w — 0 (adiabatic expansion) and in a
series in (Aw)~! as w — oo (high-frequency expansion).
Using (2) and (7), we have

X(”)(w)‘ =2 [m_1 + (hw)?m_z+..], (8)

) (w)‘ S my 4 (hw)2mg +..] . (9)

o |

Below, we will pay a special attention to the

investigation of the sums m_j, mq, and mgs. Using these

sums, one can define two averaged energies of collective
motion

ms

mq ~
and F3=
m_1 mq

E =

(10)

It is easy to see that the closeness of the energies E1 and
E5 to each other determines the exhaustion of the EWS
my by one state ¥, (see (2)). If the effective nuclear
forces do not depend on the nucleon velocity, then the
sum mj can be easily calculated and takes the form
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which does not depend on the model of collective motion.

Namely,
= o o) ) -

=S (Wl ¢ [%0)*(By — Eo) =
n#0

h2

dF peq (7)| V(7 (11)

where peq(7) is the nucleon density for the ground state
of the nucleus,

Peq(T) = <‘I’0

(Here, and in the following, the symbol “eq” means that
the proper value is related to the equilibrium (basic)
state of the nucleus.) Expression (11) is the so-called
model independent EWS rule. If only one (collective)
state U,,_ exhausts the sum rule (11), i.e.,
m1 ~ (Ve ¢ [Wo)|* (B — Eo), (12)
then we have E; ~ F3 from (2), (10).

The low-frequency (adiabatic) sum m_; is connected
to the nuclear stiffness under the adiabatic slow
deformation of the nucleus, in another words under
the deformation that does not lead to the quantum
transitions between nuclear levels. To reveal this
connection, we will evaluate the energy variation AFE
of the nuclear ground state in an external static field
Uext = Aoq for Ay — 0. Using the quantum perturbation
theory for the calculation of the wave function ¥ of
Hamiltonian H' = H + Ao¢ in the second order in the
small parameter \y, we obtain

ABu = (U] H W) — (W] H W) = Nm_y.  (13)

Let us calculate the wvariation of the nuclear form
parameter @@ = (¥|¢|¥) in the external field Aog,

AQ=Q = (¥ q|¥)— (Yo| ¢ [Po) =2\m_1, (14)

where we have assumed (¥g| ¢ |¥o) = 0. From (13) and
(14), we find the nuclear stiffness parameter Cg ,q with
respect to the adiabatic change of the nuclear form as

PAE,q 1
0Q?

Cgad = (15)

o 2m,1'
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Let us now consider the high-frequency sum msg.
We introduce the wave function Wy, which is obtained
from the wave function of the nuclear ground state
Uy by means of the scale transformation (scaling-
approximation),

\Ilsc = ey[I:I,(j]\IJm (16>

where v is the small of the scale

transformation.

parameter

In the case of a many-particle wave function Wq
given by the determinant built on the one-particle
wave functions ¢, (7), the exponential operator of the
scale transformation in (16) acts on each function
¢a(7) independently. For example, at the quadrupole
deformation

A
G="> (r} —32}),
=1

one can see from (16) that Wy is also a determinant
which is built on the one-particle functions ¢q sc(7)
obtained by the scale transformation of coordinates.
Namely,

¢a7sc<F) = (ba,sc(xayvz) = ¢a(eﬁxa eﬁy7 6_292)7 (17>
where 7 = —2h%v/m. As can be seen from (17), the scale
transformation does not violate the orthonormalization
of the wave functions. By means of (16), the
energy change AFE can be found within the scaling
approximation as

AE = (Uyo| H |Uy) — (To| H |o) = > ms. (18)
Using (16), we obtain the connection between the
parameter of scale transformation v and the deformation
parameter Q:

Q= (Yse| ¢ [Vsc) — (Vo ¢ [Vo) =2vmy. (19)
Finally, using (18) and (19), we obtain the nuclear

stiffness coefficient Cg s in the scaling approximation
as

’AE  my

i 20
0q? 2m3?’ (20)

CQise =

which differs significantly from the adiabatic one Cg aq
(15). The reasons of such a difference will be made clear
in the next section.
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3. Response Function and EWS for Nuclear
Fermi-liquid

It is necessary to make some additional assumptions
for the practical calculation of the linear response
function x(w) and the corresponding EWS my,. We will
restrict ourselves to the Landau’s approximation for a
nuclear Fermi-liquid and use the linearized Landau—
Vlasov equation [14]. In the two-component nuclear
Fermi-liquid, it is necessary to consider two possibilities:
isoscalar excitations (when protons and neutrons move
in phase) and isovector excitations (when protons and
neutrons move in antiphase).

3.1. Isoscalar excitations

For the nuclear matter in a volume V in the case
of isoscalar excitations, the linearized kinetic Landau—
Vlasov equation has the same form as that for a one-
component Fermi-liquid [12]

B - - -~
500 + 0 Vedf =Vpfoq: Vi(0Userr + Uext) =0, (21)

where 6f = 0f, +df, = §f(F,p;t) is the variation of
the nucleon distribution (¢f, for neutrons and 4 f, for
protons) in a phase space, ¥ is the nucleon velocity, foq =
fean + feqp = feq(7,D) is the equilibrium distribution
function, 0Useit = O0Uses(7,P;t) is a variation of the
self-consistent mean field. The subscripts at V in (21)
indicate the variables of differentiation. The variation of
the self-consistent field dUseir depends on the effective
nucleon-nucleon interaction viyi. In the case of the
homogeneous nuclear matter, it is given by

2Vdp’ oo .
5Uself = /717 Uint(pup/) (Sf(’l‘,pl;t), (22)

(2wh)3
where the additional factor 2 at the numerator is due to
the spin degeneration.

The effective interaction vy (p,p’) is connected to
the Landau’s interaction amplitudes F} [12]

L 1 &
v (P.7) = 3 > FiP(cos byy). (23)
=0

Here, Pi(z) are the Legendre polynomials, 6,, is the
angle between the vectors p'and p’ and Ny is the density
of states near the Fermi surface,

- Vm*pp

2Vp?  Ofeq
Np =—4 dp =
i 7T/(Qﬂ'h)?’ de, P w2hs

(24)
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where £, = p?/2m*, m* is the effective mass of a nucleon
(the definition of m* is given below), and p is the Fermi
momentum. In (24), we have used the equilibrium Fermi
distribution function feq = 6(er —€p), where 6(x) is the
Heaviside step function and ep = p2/2m* is the Fermi
energy. The presence of components with ¢ # 0 in sum
(23) is caused by the dependence of the nuclear forces on
the nucleon velocities. Below, we will restrict ourselves
to the most important case where

Fo#0, FI#0, Fsy=0. (25)

Note, that the interaction amplitude F; determines the
effective mass of a nucleon [14]

=(14F/3)m (26)

We will introduce a variation of the nucleon density
dp = dp(7,t) and the isoscalar velocity field @ = @(7,t),
which are connected to a variation of the distribution
function 0 f = f — feq = 6 f(7,D;t) by the relations

oo~ | ot

L1 2dp p 1 2dp p
= - -—0f ~ —4f, 27
" p/(27rh)3m ! peq/(27rh)3m f (27)
where
. 2dp .
= t) = ;T
p=olit) = [ G ),
. 2dp

eq = Pe = e 2
pra = peal7) = [ iz a7 (28)
is the nucleon density. The velocity field 4 and the

variation of the nucleon density dp satisfy the continuity
relation

at5p+Vpu—O (29)

0
To check this relation, we calculate the zero-moment
of the kinetic equation (21). Multiplying Eq. (21) by
2dp/(2mh)? and integrating over p, we obtain

0 2dp’
—6
5 p+V p —I—/(

) feqv v 5Ubelf =0.

(30)
Using Egs. (23)—(25) and (28), we have
14 F
5Uself = Ni (-FO 5p + p% mpp U) (31)
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Substituting Eq. (31) into Eq. (30) and taking the
definition of m* (26) into account, we derive the
continuity equation (29).

To solve the kinetic equation (21), we assume that
the external field is given by a plane wave \ge (77—,
Then the solution of Eq. (21) can be presented as [14]

9 feq

3% V(T(m ei(@rﬂ—wt) ’

of =0fq(F,pit) = —

(32)

where vz(p) is the unknown function. Substituting Eq.
(32) into Eq. (21), we obtain the following equation for

vg(p):

Oeq,
86;

int (ﬁ ﬁ)

w7 D)+ 73 [ H

XVq'(ﬁ) + X g - U=0. (33)

Let us expand the function vz(p,t) in a power series in
the multipolarity ! of a Fermi surface distortion:

vg(p) = Z P(cos Opq) v,

=0

(34)

where 6, is the angle between the vectors p'and ¢. Using
Egs. (23), (24), (34), and (33), we obtain the infinite set
of equations for the amplitudes v; [15]:

v+ (2041 Z Zi@ < Firve = Xo(20+1)Quo(s) = 0.
(35)

Here, s = w/qur and

Qur (s /dez SPl' (@). (36)

With regard for condition (25), (35) yields
vol(s) = Qoo(s)(1+ F1/3) o
1+ F1/3+ Qoo(s)(Fo + FoF1/3 + Fis%)

(37)

where we have used the relations [15]

Q10(s) = s Qoo(s), Qu1(s) = sQuo(s) + 3 (38)
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Fig. 1. Dependences of the strength function Imyx(s) on the
dimensionless parameter s for isoscalar excitations: the upper
panel is for the Landau damping regime, —1 < Fp < 0; the lower

panel is for the zero-sound regime, Fy > 0

The Legendre function of the second kind Qo(s) can be
calculated by the use of Eq. (36). Taking the additional
condition of the analytical extension of Qgo(s) into the
complex plane s into account, we can represent the
function Qoo(s) as

s s—1
=1+-1
Qoo(s) =143 Inj =y

(39)

’H'gseu — ).

Let us evaluate the density-density response function
assuming § = e ‘7" in Egs. (3)—(5). Using the definition
of the linear response function x(w) from (5) and
relations (27), (32), and (34), we obtain

(e

x(w) = W—

1 2dp
= — d_’ —_— qué r _"t frng
)\Oe,m/ r/(%h)ge f(7, 73 t)

= )\LONFI/()(S)
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Finally, taking (37) into account, we obtain the
density-density response function as

@00(5)

x(w) = mv (41)
where
o) =5 (Fot e )» Qonle) = e Qun(s)

Function (41) has the same form as the collective linear
response function in the general theory of collective
motion (see, e.g., [18]). The quantity Quy(s) is the
intrinsic response function, and x(s) plays the role of
the effective interaction parameter.

In Fig. 1, we present the dissipative response function
X (w) = Imx(w) (42)
which is obtained from Eq. (41) for two regimes: the
Landau damping regime —1 < Fy < 0, the upper
panel, and the zero-sound regime Fy > 0, the lower
panel. Note that the zero-sound mode is damped at
s < 1 (the Landau damping [16]). Here, the zero-sound
wave propagates in phase with some particles, and the
energy transfer averaged over time from the wave to
particles can be positive. The non-damped sound wave
exists in a Fermi liquid under the assumption s > 1
only. The dimensionless velocity of a sound wave s is
determined by the Landau’s dispersion equation [14]

1 — 5(s)Qo(s) = 0.

If the dispersion equation (43) is satisfied, both the
response function (41) and the sound wave amplitude
grow to infinity, and the sound wave propagation cannot
be described within the framework of a linear response
theory. The analysis showed [14,16] that the solution to
Eq. (43) exists (for real values of s) at Fy > 0 only. This
is illustrated in Fig. 1. As can be seen from the lower
panel of Fig. 1, the isolated root of Eq. (43) exists at
s > 1 (zero-sound) for F > 0 only.

It is easy to see from the dispersion equation (43) that
the velocity of the zero-sound increases monotonically
with the interaction parameter Fj.

It is useful to consider the solution of the dispersion
equation (43) at the asymptotic regime s — oo (or
Fy — 00). Let us use the asymptotic expansion of the
Legendre function of the second kind

(43)

Qoo(8)smoe =53~ 7~ 75 (44)

ISSN 0503-1265. Ukr. J. Phys. 2007. V. 52, N 6



ENERGY WEIGHTED SUMS

From relations (43) and (44), we find the velocity of the
zero-sound wave ug = svg at Fy — oo:

Fy
PE-

UO‘FO—M)C = S|F0—»()o U = (45)

3mm*
Formula (45) can be compared with that for the velocity
uy of the normal sound (first-sound) in a classical liquid

K

Uy =
9Im

where K is the incompressibility coefficient. For the
Fermi-liquid, the incompressibility coefficient is given
by [12]

2

K =62 (14 F)~220MeV, (46)
2m*

and we obtain

K  [1+F

=4/ — = . 4

“ 9m 3mm>* 'F (47)
Taking Eqgs. (45)—(47) into account, we derive
U’O‘Fo—mx) = u1|F0—>oo : (48)

This result means that the velocities of the zero- and first
sounds in Fermi-liquid coincide at a significant, Fy > 1,
repulsion between the particles.

Using the expansions of the polarization response
function x(™(w) = Rex(w) (8) and (9) and expression
(41), one can find the EWS m_q, m; and ms for the
Fermi-liquid (see also [7]) as

A9 A
= —_—— :h272 :h
2K amd T3

A K’
4§9m2 ¢ (49)

m_y

Here, we have introduced the renormalized (due to
the Fermi surface distortion effect) incompressibility
coefficient K’ = K + 24ep/5, see [11]. Using
relations (10) and (49), we can derive the average
excitation energy (the energy centroids of giant isoscalar
resonances) in the adiabatic, El, and scaling E3,
approximations:

. | K . K’
FEy = hy/— Es =h/—q.
! om © 8 om ¢
htiq between the

Using the dispersion relation E = h
excitation energy of a sound wave, E, and the sound
velocity, @, and applying Eqgs. (50) and (26), we obtain

(50)
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the sound velocity in the adiabatic, w1, and scaling, s,
approximations:

1 2
iy = ( + F())pp 7 g =
3mm*

(9/5 + Fo)pg

. 1
3mm* (51)

By comparing Eq. (47) and Eq. (51), it can be seen
that the sound velocity in the adiabatic approximation,
U1, coincides with the first sound one, uy, and that the
sound velocity in the scaling approximation, ug, exceeds
uy significantly. The origin of this effect is the same as
in the case of the nuclear stiffness coefficients Cg .4 and
Cg sc, see Egs. (15) and (20).

To clarify the nature of this effect, we will return
to the kinetic equation (33) and consider the recurrence
method of its solution. For a simplification, we neglect
the external field in (33) assuming Ao = 0 and use,
instead of (34), the following expansion of the amplitude
vg(p,t) into a series in the multipolarity [ of a dynamic
Fermi surface distortion:

00 l
v®) = > Vim(q) Yim(p). (52)

=0 m=—1
Substituting amplitude (52) into Eq. (33), using
expressions (23) and (24), multiplying then Eq. (33) by
the spherical function Y;¥, (p), and integrating over the

angles of the unit vector ]3’ = p/p, we obtain the following
equation for amplitudes v,:

WVim — Urq Z G; <lm ’(AT]A) l/m/> Vi = 0.

U'm/

(53)
Here, §= q/q, G =1+ F /(21 + 1),
<lm ’&"5‘ l’m’> =

=C(lm,I'm') = /dQﬁY}fn(ﬁ) €08 g Yirm: (§) =

QI+ 1) + 1)
3

(—1)™ (1'00[10) x

(54)

where  (l1lomims|lm) are the Clebsch—Gordan
coefficients. We will restrict ourselves to the longitudinal
sound waves with v} o = 0 [16]. Taking condition (25)
for vy into account, we obtain the following chain of
recurrence equations from (53):

x (U'm,—m'|1,m —m’),

1
svgo — —=Ghvig = 0,

V3
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1 2
sv10 — —=Govgg — —=Gavop = 0,

V3 V15

1
s — ngu —100[10)|* vy-1,0—

1

(20 + 1)(21 + 3) |{ll + 100|10)|* v141,0 = 0.

Under some additional assumptions, the infinite chain of
Egs. (55) can be cut-off to obtain the analytical solution.
We consider two important cases. (i) Neglecting the
Fermi surface distortions with multipolarity [ > 2 in
Egs. (55), we obtain the solution

1
w=—v GoG1. 56
7 FqV GoGi (56)
Consequently, the sound speed is given by
1 (14 Fo)pg
= = GoGq = ————F. 57
u=uw/q \/gUF VGoG 3 (57)

This result coincides with that for the first sound
velocity u; of Eq. (47). Thus, the first sound regime
corresponds to the excitations which preserve the
spherical symmetry of the Fermi surface and leads to
a displacement of the Fermi sphere as a whole. (ii) If
we consider three first equations in (55) and neglect
the Fermi surface distortions with multipolarity { > 3,
then the solution to Egs. (55) (now closed) gives the
eigenfrequency

(Go+4/5)Gy (58)

1
w=—=0
\/qu

and the sound velocity

w=w/q= %\/(Go T 4/5)G, = \/W. (59)

The sound velocity given by Eq. (59) coincides with 3
obtained in the scaling approximation (51). Thus, the
scaling approximation for a Fermi-liquid means that all
lower multipolarities of a Fermi surface distortion up to
I = 2 are taken into account. As can be seen from (49),
the model independent sum my, as it should be, does not
depend on the nuclear interaction (Landau’s amplitudes
F}). However, the last statement is not correct in the
case of specific nuclear excitations, where the sound wave
occurs due to the antiphase motion of the neutrons and
the protons (isovector vibrations).
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3.2. Isovector excitations

Below, we consider the isovector excitations when
protons and neutrons move in antiphase. In this case,
we rewrite the kinetic equation (21) for the protons and
the neutrons separately:

0 - - .
a(sfp +v- Vr(sfp - fop,eq : VT(éUp,Self +7, ,ext) = 07
(60)

B . . .
a(sfn + v- Vr(sfn - vp,fn,eq : v7"(5Un,se1f + Un,ext) =0.
(61)

We neglect the Coulomb interaction and assume N = Z.
The corresponding corrections are not important on the
description of the main characteristics of isovector giant
resonances. Subtracting Eq. (60) from Eq. (61) and
introducing an isovector variation of the distribution
function

5f/:5fn_5fpa (62)

we obtain the kinetic equation for the isovector
excitations

B - -
afﬁ' + T Vibf = Vipfeq Vi(0Uss + Usy) = 0. (63)

Here, feq is the equilibrium distribution function which
is the same for both protons and neutrons according to
the above-made assumptions,

25 . . P
| o < = s = e = 57

*

= 5 o _m
vpfeq('raﬁ) =
br

5(p — pr). (64)

The variation of the self-consistent field dU/,; in Eq.
(63) has the form which is similar to Eq. (22):

2 =

(@rh)? Vi (B, 0) 0 (7, 0’5 1), (65)
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where the effective interaction v/, (7, p’) for the isovector
channel in the Landau approximation is given by [17]
(see also (23))

- 1
Vi (D, D) = Ne Z F/P(cos ). (66)
=0

The interaction amplitudes F] for the isovector channel
differ from the analogous ones F; for the isoscalar
channel in Eq. (23). Thus, in contrast to the amplitude
Fy which determines the nuclear compressibility
modulus (see (46)), the similar isovector amplitude Fj
determines the coefficient of isotopic symmetry Cgyp in
the Weizsicker mass formula [17, 18]

2
Coym = 3EF (1+ Fj) ~ 60MeV.

Below, as it was earlier done for the isoscalar channel in
Eq. (25), we assume that

(67)

F‘(; # 0, Fl/ 7é O, FZIZQ == 0. (68)

Solving the kinetic equation (63) in the same manner
as Eq. (21), we find the isovector response function x’(w)
like x(w) from (41) as

X/(w) _ QOO(S)

T 1w (5)Qn(s)’ (%)

where
1 Fy
/ - F/ 712 .
w(s) ( T
The frequencies of isovector eigenvibrations (the

poles of the response function (69)) can be obtained from
the dispersion equation

1—#'(5)Qgo(s) = 0.

The EWS m_;, my, and mg (49) for the isovector
excitations take the form

(70)

A1 A
/ /! h2 2
M1 2 C’Sym7 i Qm’q ’
A Cl
h4 sym 4
3= 2 my'2 (71)

Here, we have introduced the renormalized isotopic
symmetry energy Céym Csym + 8¢r/15 and the
effective mass m/ for the isovector channel,
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where k7 is the enhancement factor of the sum rule which
is defined by the relation

1+ F(/3

14wy = .
TRETR

(72)

Note that, in contrast to the isoscalar sum m; (see
(49)), the sum m} in (71) is not model independent
in sense that it depends on the effective mass m’ and
thereby on the interaction amplitudes F; and Fy. It
is worth noting that the continuity equation (29) for
the isovector excitations should be modified as well.
Evaluating the zero moment from the kinetic equation
(63), we obtain (see also (27)—(29))

%5;7’ + V(1 + kr)pi’ = 0. (73)
Here,

_ 1 _P ;) . _ 2dp /
p=5(pntpp) =5, 0p'=0dpn—0dpy —/(2ﬁh)35f,

S oo .1 2dp p 1 / 2dp p
"=, — iy, = — 25 ~ 257,
W=t /3/ (2wh)3 m / Peq J (27h)3m /

Finally, EWS (71) allow one to calculate the energy
centroids of isovector giant resonances for the adiabatic,
E}, and scaling, EY, approximations as

- m} [ Coym
Ei:\/m/_lzh rri’ e
~ [mf | Cym

It is useful to compare relations (74) with the
corresponding expressions (50) obtained for the isoscalar
excitations.

(74)

4. Finite Nuclei. Boundary Conditions

The above-developed approach can be directly applied
to the study of the dynamic properties of the
infinite nuclear matter, where the distribution function
distortion d f has the form of a plane wave in the r-space.
Below, we also apply this approach to the description
of the collective excitations in finite nuclei. For heavy
nuclei, one can assume a sharp nuclear surface [18].
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Then the variation § f of the distribution function in the
nuclear interior has the form of the plane wave (32) or
its projections on the states with a fixed multipolarity.
Moreover, the equation of motion must be supplemented
by the boundary conditions at the moving nuclear
surface.

To establish the boundary conditions, we introduce
the force F which is caused by a sound wave and applied
to a unit of the nuclear surface S, as well as the surface
force Fg which is caused by a deformation of the nuclear
surface. The general condition of the equilibrium for all
forces applied to the free nuclear surface reads
i-Flg+ @-Fs=0, (75)
where 77 is a unit vector in the normal direction to the
nuclear surface. Equation (75) represents the boundary
condition for the dispersion equations (43) and (70).

To evaluate the force F , we calculate the first
moment for the kinetic equation (21). Multiplying Eq.
(21) by 2dp' p, /(27h)? and integrating over j, we obtain
the Euler equation in the following form [11,12,21]:

~V 010, (76)

0
Peq &Uu =

where 011,,, is the pressure tensor. For the isovector
excitations, we obtain [12]

5]._.[1/;1, = 50’,’le + 6P/ 6,/“7 (77)
where
P = 6P (Ft) =
1 2dp o 1 ) )
" 3m / (Qﬂh)3p25f/ (7, 1) + FFFépeq5P, (7, t) =
2 4 /(7 =
=3 (L+ Fy)erdp (7,8) = Coymdp’ (1) (78)

Let us introduce the isovector displacement field '
which is connected to the corresponding velocity field
4’ through the relation

a% /0t = —(1 + w1)i.

Taking the continuity equation (73) into account, we
find

Finally, Eq. (78) yields

6P = CoympeqV - X'- (79)
The pressure tensor do,,, in Eq. (77) is given by
2 dp
do,,, = ——— (3pup, — P2)of =
Tun = B / (27rh)3( PP = P7)0f
I ! / 2 = o
= N’F(VVXN + Vqu - § 5Vuv - X )7 (80)
where
3 s2 (1+ F)(1+ F}/3)
/ —~ 0 1
= 5 Pe - 1
HEr 9 12 ngl +F1//3 |: 332 (8 )

Taking (77), (79), and (80) into account, we obtain

6lap = pp (VaXs + Vaxa) +

2

+ (Csyrnpeq Y

- (52

'F) V- X'bas
The pressure tensor 611, determines the force F which
acts from the side of the sound wave on a unit of the
nuclear surface

Fy = 1,610, (83)

Using Eqgs. (82) and (83), we evaluate the normal
component of the force F' applied to the nuclear surface:

1
= — 11,0l

ﬁ~ﬁ‘
s r2

r=Ryo

_ 2 SO
= [r2 (Csympeq(l + I{[) - 3 u%) V- X,+

+ ZM'FTVTMXVXM} ‘ =
’I’:Ro

2
= |:(Csympeq(1 + K1) — 3 ui:) divy'+

0
+2pp— (7 - ;z’)] . (84)
For — Ry

Let us calculate the normal component 77 - Fg of the
isovector surface force Fg which occurs in Eq. (75). To
find the force Fg, we notice that a shift of protons
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against neutrons creates the additional surface energy in
the case of isotopic symmetry given by [22]

1
0ES sym = *peqroasym/TQdS. (85)

3
Here, r( is the mean distance between nucleons (Ry =
roAY/3), Osym 1s the isovector surface energy which is a
parameter of theory, and 7 is a shift of the proton sphere
against the neutron one. In units of rq,

T (R (1)~ B (0) =
= %0 ((Ro+ 0R.(t)) — (Ro — 6 Ry (1)) = %531(15),
(86)
where
SR1(t) = Roas () Yio (7). (87)

The amplitude «g(t) of isovector vibrations of the
nuclear surface in Eq. (87) is connected to the
corresponding amplitude Y’ of the displacement field in a
sound wave. To establish this connection, we note that,
for a nucleus with sharp edge, the displacement field in
the nuclear interior has the form (see Section 6 in [18])
1>

) Vr (jl (qT) }/10 (f)) ’

=/
X =t
()q

(88)
where j;(z) is the spherical Bessel function.

Evaluating the normal component of the velocity
field @' by the use of Eq. (88) and equating it to the
surface velocity 0dR;(t)/0t, we obtain
(89)

as (t) = —aq (1) - 71 () x = qRy.

(1 + H[) ’
According to the definition of the pressure d Ps caused
by a shift of the nuclear surface (see, for example, the

appendix to Section 6 in [18] ), we obtain the following
relation from Eqs. (85) and (86):

0 5ES _ §p0q

= Aarp o o — smé .
B0R, 05 31, Covmoft

S (90)
Taking into account Egs. (89) and (90), we can evaluate

the normal component (7 - F's) of the surface force Fi in
Eq. (75). The result reads

./
(’FiFS) _ —(SPS _ § pe(q]l(x)

= 3 q’ro(l n I{]) Usymal (t) YIO (T) .

(91)
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Fig. 2. Dependence of the energy of the isovector giant dipole
resonances on the mass number obtained from the dispersion
equation (70) (solid curve 2) and from EWS (74) (dashed lines).
Solid curve 1 is obtained from the explicit solution of the
dispersion equation (70) subsidized by the boundary condition of
the Steinwedel—Jensen’s model, j{(z) = 0. For all calculations
presented in Fig. 2, we have taken the following parameters:
ro = 1.2 fm, Fy = —0.64, F}, = 0.96, F] = 1, osym = 17 MeV. The

experimental data were taken from [25]

Finally, from Eqgs. (75), (84), (88), and (91), we derive
the following secular equation for the wave number ¢:

1 _ 2 2 .
[_203ympeq - gﬂ% + xg#%} g1 (x) +

Rt i o (52)

2 F 3 qro(l + kg
We point out that, in the classical limit of the
Steinwedel—Jensen’s model at oeym — 00, the boundary
condition (92) coincides with the similar one, j;(x) = 0,
in the traditional liquid drop model [18§].

The boundary condition (92) allows us to find the
dependence of the wave number ¢ on the mass number
A and to evaluate the corresponding excitation energy
in finite nuclei. In Fig. 2, we show the dependence of the
energy of isovector giant dipole resonances (IGDR) on
the mass number A obtained by the use of the explicit
solution of the dispersion equation (70) and EWS (74).
For both of them, the boundary condition (92) was used.
As can be seen from Fig. 2, the lowest energy of IGDR
/m/m’_ | is obtained with m’; and corresponds to
the first sound regime without distortions of the Fermi
surface. The account of a quadrupole Fermi surface
deformation in the sum mj shifts upward the curve
/m4/mf. This is due to the additional contribution to
the nuclear stiffness coefficient caused by Fermi-surface
distortions. Involving the higher multipolarities of the
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Fig. 3. Dependences of the ratio of the first sound velocity to the
zero-sound one on the interaction amplitude Fy for the isoscalar

excitations for two values of the interaction constant F}

Fermi surface distortions which are present in the
dispersion equation (70) leads to the additional increase
of the nuclear stiffness and the excitation energy hw;-
in Fig. 2.

As was noted above, the dependence of the nuclear
forces on the nucleon velocities (components with Fj
and F] in (23) and (66), respectively) leads to the
significant difference between the EWS for the isoscalar
and isovector excitations. In particular, the consequence
of this difference is the asymptotic behavior of the
nuclear stiffness coefficient and the zero-sound velocity
at an increase of the internucleon interactions Fj; and
FJ. In Figs. 3 and 4, we show the dependence of
the ratio of the zero-sound velocity to the first sound
one on the interaction amplitudes Fy and Fj for the
isoscalar and isovector excitations. The feature of the
isoscalar excitations is the fact that the increase of
the nucleon-nucleon interaction leads to a shift of
the zero-sound velocity towards the first sound one
(see Fig. 3). This means that the influence of Fermi
surface distortions on the collective motion in the
nuclear Fermi-liquid becomes negligible on the increase
of the nucleon-nucleon interaction. The behavior of the
isovector zero-sound velocity uj is qualitatively different
(see Fig. 4). With increase in the nucleon-nucleon
interaction, the velocity wf tends to the asymptotic
limit which significantly exceeds the corresponding first
sound velocity. This is a consequence of the general
enhancement effect of collectivity of the isoscalar zero-
sound caused by the dependence of the nuclear forces on
the nucleon velocity (see also (72)).

The enhancement factor k; for the isovector
excitations defined in Eq. (72) depends on the
interaction constants F; and F{. Whereas the isoscalar
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Fig. 4. The same as in Fig. 3, but for isovector excitations

constant Fj related to the effective nucleon mass m*
is well studied, the isovector constant F] is not much
studied, and the experimental investigation of the
enhancement factor xk; (72) can help for its derivation.

The experimental derivation of the enhancement
factor in the isovector EWS m/ is connected to the
investigation of the nuclear absorption cross-section
Oabs(w) of y-quanta with energy fiw. Let us introduce
the strength function S(w,q) for the density-density
response per unit volume V. According to Egs. (1), (40),

and (42), we have
S(wr0) = XD (w). (93)

In the case of the velocity independent forces, in
accordance with Egs. (2), (49), and (71), the strength
function S(w, ¢) is normalized by the condition

oo
/ d(h
0
In contrast to this, in the case of isovector excitations

with the velocity dependent forces, the normalization
condition reads

) iwS(w, q) = hQ— 4" Peq- (94)

/ () hoS(0,4) = W 5o (L4 FL3) Ppee. (95)

The photoabsorption cross-section o,ps(w) is connected
to the strength function by the relation
Gabs(w) = const - wS(w, q). (96)

Here, ¢ plays the role of the momentum which is
transferred to the nucleus at the absorption of a -y-
quantum. The constant in Eq. (96) can be
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found from the normalization condition for the
photoabsorption cross-section oaps(w). For the isovector
dipole excitations and for the velocity independent
forces, this condition reads (Reiche—Thomas—Kuhn
rule) [23]

7 2n2he? NZ
my = /d(hW) O'abs(CU) = me T (97)
0
From Egs. (96), (94), and (97), one obtains [24]
4r%e? NZ
Tabs(W) = MTW‘S(%Q)- (98)

Since the photoabsorption occurs mainly through the
giant dipole resonance, the transferred momentum g
in (98) can be taken as ¢ = ¢ = 2.08/Ry [24],
that corresponds to the classical boundary condition
Ji(z) = 0 of the Steinwedel—Jensen’s model.

In the case of the velocity dependent forces, the
normalization condition S(w,q) (94) has to be replaced
by condition (95), and the transferred momentum ¢ = ¢
has to be calculated by using the boundary condition
(92). As a result, the sum rule for o,,s(w) takes the form
(instead of (97))

i wm2he2 NZ [ ¢\
ity = [ do)oanw) = 22 (") (14 r1).
0

me A \q1

(99)

In Fig. 5, we demonstrate the dependence of the
enhancement factor mj/m; on the mass number for
a number of nuclei. We point out that the exceeding
of 100% of the sum rule m}, which is experimentally
observed for the isovector giant dipole resonances, is
caused by the dependence of the effective nucleon-
nucleon interaction on the nucleon velocity. For the
values of the isovector amplitude F| = 1, one can adjust
(on the average) the results of theoretical calculations of
m} (solid line in Fig. 5) with the experimental data. The
nonmonotonic dependence of the experimental value of
m) on the mass number A in Fig. 5 is due to the
shell effects which are not taken into account within the
semiclassical kinetic theory used in this work.

5. Conclusions

Using the Landau—Vlasov kinetic theory, we have
studied the linear response function and the EWS my
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Fig. 5. Dependence of the enhancement factor ) /m of the EWS
m/} for isovector giant dipole resonances on the mass number
A. The results of calculations were obtained by the use of Egs.
(97) and (99) for two values of the isovector amplitude F| = 1.2
(solid line) and F| = 0.58 (dashed line) at the constant value of
Fy; = —0.64; points are the experimental data from [20]

for the isoscalar and isovector excitations in heavy
nuclei and the nuclear matter. An advantage of our
approach is the possibility to derive the explicit analytic
expressions and to carry out a detailed analysis for
some important nuclear characteristics. One of them is
the nuclear stiffness coefficient. The dynamical Fermi-
surface distortion influences significantly the formation
of the nuclear stiffness. For a slow (adiabatic) nuclear
deformation, the nuclear stiffness coefficient is derived
by the low-energy sum m_; and coincides with the
stiffness coefficient of the classical (non-Fermi) liquid.
This stiffness coefficient (adiabatic incompressibility K)
causes the propagation of the first sound in a Fermi-
liquid which is not accompanied by the Fermi surface
distortions [see (10), (47), and (49)]. In the general case
of fast motion, the derivation of the nuclear stiffness
coefficient requires to solve the dispersion equation
(43). A specific role is played here by the scaling
approximation. In this last case, the quadrupole Fermi
surface distortion is only taken into consideration. We
have shown that the stiffness coefficient in the scaling
approximation is determined by the high-energy sum mg
and exceeds significantly the adiabatic incompressibility
K. At the same time, the sound velocity approaches that
of the Landau’s first sound [see (48), (51), and (59)].

In the presence of the velocity dependent nuclear
forces, the EWS for the isoscalar and isovector
excitations are significantly different [see (49) and
(71)]. First of all, the EWS m;, which is model
independent for the isoscalar excitations, becomes model
dependent in the case of the isovector excitations.

557



V.M. KOLOMIETZ, S.V. LUKYANOV, O.0. KHUDENKO

Another consequence of the mentioned difference of sums
(49) and (71) is the different asymptotic behavior of
the zero-sound velocity on an increase of the nucleon-
nucleon interaction (see Figs. 3 and 4).

A feature of the isoscalar excitations is that the
zero-sound velocity approaches the first-sound one with
increase in the internucleon interaction. This means that
the influence of the Fermi surface distortion on the
isoscalar collective motion in the nuclear Fermi-liquid
becomes negligible on the increase of the internucleon
interaction. In contrast to this, the increase of the
internucleon interaction for the isovector mode leads
to the asymptotic zero-sound velocity wuf, which exceeds
the relevant first-sound velocity. The above-mentioned
difference between isoscalar and isovector EWS allows
one to explain the fact that, in many cases, the
experimental measurement of the EWS m} for the
isovector giant dipole resonance gives the more than 100
% exhaustion of the corresponding sum rule. According
to Egs. (71) and (72), the dependence of the effective
nuclear forces on the nucleon velocities generates the
enhancement factor 1 + k7 > 1, which is absent for the
isoscalar excitations, in the sum mj for the isovector
excitations (see Fig. 5). Note that the enhancement
factor (72) depends on the isovector amplitude F7.
This gives, in principle, the possibility to determine the
interaction amplitude F] from the fit of the EWS ] to
the experimental data.
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EHEPTETUYHO 3BAYKEHI CYMU 711 KOJIEKTUBHUX
3BY/I2KEHD B SIJIEPHIN ®EPMI-PIJINHI

B.M. Koaomieun, C.B. Jlyx’anos, O.0. Xydenxo
PezwowMme

B pamkax kinernuHol Teopii, ajanToBaHOl JO OIHUCY JIBOKOMIIO-
HEHTHOI sifiepHOl bepmi-pinunam, mociaizkeHo 6e3MoIenbHy mi,
a/iiabaTHYHy ™M _1 Ta BUCOKOEHEPIeTUYHY M3 3BaKEHI CyMH JJIsi
I30CKaJIIPHUX Ta 130BEKTOPHUX 30ym2KeHb fapa. B aniabarutmonmy
i CKeJIIHr-HabJIMKEHHSX BCTAHOBJIEHO 3B’SI30K €HEPreTUYHO 3Ba-
xenux cyM (E3C) m_1 Ta m3 3 s71epHOIO >KOPCTKICTIO Ta, IIBUIKO-
CTSIMH IIEPIIIOrO 1 HyJIbOBOTO 3BYKiB. Jlocmimkeno koedirienT miz-
cuitenns B E3C njis isoBekTOpHUX 30y 2KEHD, KU JI03BOJISIE 10~
sicautu nepesuiienns 100%-soro suyepnysanns E3C m’1 B €KCIle-
puMeHTax 3i 30y/>KEeHHsI 130BEKTOPHOI'O TraHTCHhKOr'O JIHMIIOJIBHOIO
pe3oHaHcy. JlaHO TOsICHEHHSI 3aJ1e2KHOCTI KoedillieHTa, i ICUIeHHS
BiJl MacoBOoro umcia A Ta NMpOAHAJII30BAHO HWOro 3ajIe>KHICTb BiJ
BEJIMYMHYU 130BEKTOPHOI amIutiTyau B3aemoxnil Jlannay F 1’
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