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Model independent, m1, adiabatic, m−1, and high-energy, m3,
energy weighted sums (EWS) for the isoscalar and isovector
nuclear excitations are investigated within the framework
of the kinetic theory adapted to the description of a two-
component nuclear Fermi-liquid. For both the adiabatic and
scaling approximations, the connection of the EWS m−1 and
m3 to the nuclear stiffness coefficients and the first- and zero-
sound velocities is established. We study the enhancement factor
κI in the energy weighted sum m′

1 for the isovector excitations and
provide the reasonable explanation of the experimental exceeding
of the 100% exhaustion of sum m′

1 for the isovector giant dipole
resonances. We show the dependence of the enhancement factor
κI on the nuclear mass number A and analyze its dependence on
the Landau’s isovector amplitude F ′1.

1. Introduction

The strength function is the basic characteristic which
determines the behavior of a quantum system in an
external periodic field Uext = λ(t)q̂ (λ(t) = λ0e

−iωt +
c.c., here, q̂ is the transition operator)

S(E) =
∑

n6=0

|〈Ψn| q̂ |Ψ0〉|2δ(E − En), E = ~ω, (1)

where Ψn and En are the eigenfunctions and the
eigenenergies of the total Hamiltonian Ĥ, respectively.
Using the strength function S(E), one can calculate the
moments mk (EWS)

mk =
∫

dE S(E) Ek =
∑

n 6=0

|〈Ψn| q̂ |Ψ0〉|2(En − E0)k.

(2)

Here, for convenience, we have included the ground state
energy E0 = 0 into the energy factor. Special role of the
EWS mk is caused by its connection to the transport
characteristic of the system. For example, the sums m−1

and m−3 determine the stiffness and mass coefficients for
the collective excitations in the system [1]. Determined
via the properties of the ground state of the system,
the sum m1 plays a specific role. In many cases, it does
not depend on the model used for the description of the

collective motion. This allows one to test the results of
theoretical calculations as well as the correctness and the
completeness of the experimental data.

During a few years, the significant attention was paid
to the analysis of EWS for the giant multipole resonances
(GMR) [2–10]. Nuclear giant resonances exhaust a
significant part of EWS (sometimes near 100%) and
establish the relatively simple connection between the
values of mk and the basic characteristics of the GMR.
However, some problems occur while researching the
EWS for the isovector giant dipole resonances which
are best investigated experimentally. The connected
problem is that the sum m1 is not model independent
because of the dependence of the effective nuclear
forces on the nucleon velocity. Thus, for the theory to
agree with the experimental data, one has to include a
phenomenological enhancement factor to the sum m1 [6].
As a consequence, this leads to the modification of other
sums mk and can affect the definition of the nuclear
transport characteristics.

In this work, we study the EWS mk for the
isovector collective excitations in heavy nuclei and
nuclear matter. Our approach is based on the kinetic
Landau—Vlasov’s theory adapted to a two-component
nuclear Fermi-liquid. In Section 2, we consider the
connection between the EWS mk and the linear response
function. The connection of the Landau’s theory of the
Fermi-liquid to the hydrodynamical model and to the
scaling approximation is shown in Section 3 [11, 12]. In
Section 4, we apply our approach to finite nuclei. The
main conclusions of the work are formulated in Section 5.

2. Linear Response Function and EWS

Let us consider the response of a nucleus on an external
field Uext(t) periodic in time which is switched on
adiabatically at t = −∞:

Uext(t) = λ0e
−i(ω+i0)tq̂ + λ∗0e

i(ω−i0)tq̂∗, (3)
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where q̂ is the Hermitian operator,

q̂ =
A∑

i=1

q̂(~ri, τi), (4)

A is the mass number, and τi is the isotopic variable.
If λ0 ¿ 1, then quantum mechanical expectation of the
operator q̂ takes the following form (see [13])

〈q̂〉 = χ(ω)λ0e
−iωt + χ∗(ω)λ∗0e

iωt, (5)

where χ(ω) is the linear response function

χ(ω) =
∑

n

|〈Ψn| q̂ |Ψ0〉|2×

×
[

1
En − E0 − ~ω − i0

+
1

En − E0 + ~ω + i0

]
. (6)

Let us introduce the polarization response function

χ(π)(ω) = Reχ(ω) =

= −2
∑

n

|〈Ψn| q̂ |Ψ0〉|2 En − E0

(~ω)2 − (En − E0)2
. (7)

It is easy to establish the connection between the
EWS mk and the linear response function χ(ω). Let us
take the Taylor expansion of the function χ(π)(ω) in a
series in ~ω as ω → 0 (adiabatic expansion) and in a
series in (~ω)−1 as ω → ∞ (high-frequency expansion).
Using (2) and (7), we have

χ(π)(ω)
∣∣∣
ω→0

= 2
[
m−1 + (~ω)2m−3 + ...

]
, (8)

χ(π)(ω)
∣∣∣
ω→∞

= − 2
(~ω)2

[
m1 + (~ω)−2m3 + ...

]
. (9)

Below, we will pay a special attention to the
investigation of the sums m−1, m1, and m3. Using these
sums, one can define two averaged energies of collective
motion

Ẽ1 =
√

m1

m−1
and Ẽ3 =

√
m3

m1
. (10)

It is easy to see that the closeness of the energies Ẽ1 and
Ẽ3 to each other determines the exhaustion of the EWS
mk by one state Ψn (see (2)). If the effective nuclear
forces do not depend on the nucleon velocity, then the
sum m1 can be easily calculated and takes the form

which does not depend on the model of collective motion.
Namely,

m1 =
1
2

〈
Ψ0

∣∣∣
[
q̂,

[
q̂, Ĥ

]]∣∣∣ Ψ0

〉
=

=
∑

n 6=0

|〈Ψn| q̂ |Ψ0〉|2(En − E0) =

=
~2

2m

∫
d~r ρeq(~r)|~∇q̂(~r)|2, (11)

where ρeq(~r) is the nucleon density for the ground state
of the nucleus,

ρeq(~r) =

〈
Ψ0

∣∣∣∣∣
A∑

i=1

δ(~r − ~ri)

∣∣∣∣∣ Ψ0

〉
.

(Here, and in the following, the symbol “eq” means that
the proper value is related to the equilibrium (basic)
state of the nucleus.) Expression (11) is the so-called
model independent EWS rule. If only one (collective)
state Ψn=G exhausts the sum rule (11), i.e.,

m1 ≈ |〈ΨG| q̂ |Ψ0〉|2 (EG − E0), (12)

then we have Ẽ1 ≈ Ẽ3 from (2), (10).
The low-frequency (adiabatic) sum m−1 is connected

to the nuclear stiffness under the adiabatic slow
deformation of the nucleus, in another words under
the deformation that does not lead to the quantum
transitions between nuclear levels. To reveal this
connection, we will evaluate the energy variation ∆E
of the nuclear ground state in an external static field
Uext = λ0q̂ for λ0 → 0. Using the quantum perturbation
theory for the calculation of the wave function Ψ of
Hamiltonian Ĥ ′ = Ĥ + λ0q̂ in the second order in the
small parameter λ0, we obtain

∆Ead = 〈Ψ| Ĥ |Ψ〉 − 〈Ψ0| Ĥ |Ψ0〉 = λ2
0 m−1. (13)

Let us calculate the variation of the nuclear form
parameter Q = 〈Ψ|q̂|Ψ〉 in the external field λ0q̂,

∆Q = Q = 〈Ψ| q̂ |Ψ〉 − 〈Ψ0| q̂ |Ψ0〉 = 2 λ0m−1, (14)

where we have assumed 〈Ψ0| q̂ |Ψ0〉 = 0. From (13) and
(14), we find the nuclear stiffness parameter CQ,ad with
respect to the adiabatic change of the nuclear form as

CQ,ad =
∂2∆Ead

∂Q2
=

1
2 m−1

. (15)
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Let us now consider the high-frequency sum m3.
We introduce the wave function Ψsc which is obtained
from the wave function of the nuclear ground state
Ψ0 by means of the scale transformation (scaling-
approximation),

Ψsc = eν[Ĥ,q̂]Ψ0, (16)

where ν is the small parameter of the scale
transformation.

In the case of a many-particle wave function Ψ0

given by the determinant built on the one-particle
wave functions φα(~r), the exponential operator of the
scale transformation in (16) acts on each function
φα(~r) independently. For example, at the quadrupole
deformation

q̂ =
A∑

i=1

(r2
i − 3z2

i ),

one can see from (16) that Ψsc is also a determinant
which is built on the one-particle functions φα,sc(~r)
obtained by the scale transformation of coordinates.
Namely,

φα,sc(~r) ≡ φα,sc(x, y, z) = φα(eν̃x, eν̃y, e−2ν̃z), (17)

where ν̃ = −2~2ν/m. As can be seen from (17), the scale
transformation does not violate the orthonormalization
of the wave functions. By means of (16), the
energy change ∆E can be found within the scaling
approximation as

∆E = 〈Ψsc| Ĥ |Ψsc〉 − 〈Ψ0| Ĥ |Ψ0〉 = ν2 m3. (18)

Using (16), we obtain the connection between the
parameter of scale transformation ν and the deformation
parameter Q:

Q = 〈Ψsc| q̂ |Ψsc〉 − 〈Ψ0| q̂ |Ψ0〉 = 2 ν m1. (19)

Finally, using (18) and (19), we obtain the nuclear
stiffness coefficient CQ,sc in the scaling approximation
as

CQ,sc =
∂2∆E

∂q2
=

m3

2 m2
1

, (20)

which differs significantly from the adiabatic one CQ,ad

(15). The reasons of such a difference will be made clear
in the next section.

3. Response Function and EWS for Nuclear
Fermi-liquid

It is necessary to make some additional assumptions
for the practical calculation of the linear response
function χ(ω) and the corresponding EWS mk. We will
restrict ourselves to the Landau’s approximation for a
nuclear Fermi-liquid and use the linearized Landau—
Vlasov equation [14]. In the two-component nuclear
Fermi-liquid, it is necessary to consider two possibilities:
isoscalar excitations (when protons and neutrons move
in phase) and isovector excitations (when protons and
neutrons move in antiphase).

3.1. Isoscalar excitations

For the nuclear matter in a volume V in the case
of isoscalar excitations, the linearized kinetic Landau—
Vlasov equation has the same form as that for a one-
component Fermi-liquid [12]

∂

∂t
δf + ~v · ~∇rδf − ~∇pfeq · ~∇r(δUself + Uext) = 0, (21)

where δf = δfn + δfp ≡ δf(~r, ~p; t) is the variation of
the nucleon distribution (δfn for neutrons and δfp for
protons) in a phase space, ~v is the nucleon velocity, feq =
feq,n + feq,p ≡ feq(~r, ~p) is the equilibrium distribution
function, δUself ≡ δUself(~r, ~p; t) is a variation of the
self-consistent mean field. The subscripts at ~∇ in (21)
indicate the variables of differentiation. The variation of
the self-consistent field δUself depends on the effective
nucleon-nucleon interaction vint. In the case of the
homogeneous nuclear matter, it is given by

δUself =
∫

2V d~p ′

(2π~)3
vint(~p, ~p ′) δf(~r, ~p ′; t), (22)

where the additional factor 2 at the numerator is due to
the spin degeneration.

The effective interaction vint(~p, ~p ′) is connected to
the Landau’s interaction amplitudes Fl [12]

vint(~p, ~p ′) =
1

NF

∞∑

l=0

FlPl(cos θpp′). (23)

Here, Pl(x) are the Legendre polynomials, θpp′ is the
angle between the vectors ~p and ~p ′ and NF is the density
of states near the Fermi surface,

NF = −4π

∫
2V p2

(2π~)3
∂feq

∂εp
dp =

V m∗pF

π2~3
, (24)
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where εp = p2/2m∗, m∗ is the effective mass of a nucleon
(the definition of m∗ is given below), and pF is the Fermi
momentum. In (24), we have used the equilibrium Fermi
distribution function feq = θ(εF− εp), where θ(x) is the
Heaviside step function and εF = p2

F/2m∗ is the Fermi
energy. The presence of components with ` 6= 0 in sum
(23) is caused by the dependence of the nuclear forces on
the nucleon velocities. Below, we will restrict ourselves
to the most important case where

F0 6= 0, F1 6= 0, Fl≥2 = 0. (25)

Note, that the interaction amplitude F1 determines the
effective mass of a nucleon [14]

m∗ = (1 + F1/3)m. (26)

We will introduce a variation of the nucleon density
δρ ≡ δρ(~r, t) and the isoscalar velocity field ~u = ~u(~r, t),
which are connected to a variation of the distribution
function δf = f − feq ≡ δf(~r, ~p; t) by the relations

δρ =
∫

2 d~p

(2π~)3
δf,

~u =
1
ρ

∫
2 d~p

(2π~)3
~p

m
δf ≈ 1

ρeq

∫
2 d~p

(2π~)3
~p

m
δf, (27)

where

ρ ≡ ρ(~r, t) =
∫

2 d~p

(2π~)3
f(~r, ~p; t),

ρeq ≡ ρeq(~r) =
∫

2 d~p

(2π~)3
feq(~r, ~p) (28)

is the nucleon density. The velocity field ~u and the
variation of the nucleon density δρ satisfy the continuity
relation

∂

∂t
δρ + ~∇ρ ~u = 0. (29)

To check this relation, we calculate the zero-moment
of the kinetic equation (21). Multiplying Eq. (21) by
2d~p/(2π~)3 and integrating over ~p, we obtain

∂

∂t
δρ + ~∇r

m

m∗ ρ ~u +
∫

2d~p

(2π~)3
feq

~∇r · ~∇pδUself = 0.

(30)

Using Eqs. (23)–(25) and (28), we have

δUself =
V

NF

(
F0 δρ +

F1

p2
F

mρ ~p · ~u
)

. (31)

Substituting Eq. (31) into Eq. (30) and taking the
definition of m∗ (26) into account, we derive the
continuity equation (29).

To solve the kinetic equation (21), we assume that
the external field is given by a plane wave λ0e

i(~q·~r−ωt).
Then the solution of Eq. (21) can be presented as [14]

δf ≡ δf~q(~r, ~p; t) = −∂feq

∂εp
ν~q(~p) ei(~q·~r−ωt), (32)

where ν~q(~p) is the unknown function. Substituting Eq.
(32) into Eq. (21), we obtain the following equation for
ν~q(~p):

(ω − ~q · ~v) ν~q(~p) + ~q · ~v
∫

2V d~p′

(2π~)3
vint(~p, ~p′)

∂feq

∂ε′p
×

×ν~q(~p) + λ0 ~q · ~v = 0. (33)

Let us expand the function ν~q(~p, t) in a power series in
the multipolarity l of a Fermi surface distortion:

ν~q(~p) =
∞∑

l=0

Pl(cos θpq) νl, (34)

where θpq is the angle between the vectors ~p and ~q. Using
Eqs. (23), (24), (34), and (33), we obtain the infinite set
of equations for the amplitudes νl [15]:

νl + (2l + 1)
∑

l′

Qll′(s)
2l′ + 1

Fl′νl′ − λ0(2l + 1)Ql0(s) = 0.

(35)

Here, s = ω/qvF and

Qll′(s) =
1
2

1∫

−1

dx Pl(x)
x

x− s
Pl′(x). (36)

With regard for condition (25), (35) yields

ν0(s) =
Q00(s)(1 + F1/3)

1 + F1/3 + Q00(s)(F0 + F0F1/3 + F1s2)
λ0,

(37)

where we have used the relations [15]

Q10(s) = sQ00(s), Q11(s) = sQ10(s) +
1
3
. (38)
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Fig. 1. Dependences of the strength function Imχ(s) on the
dimensionless parameter s for isoscalar excitations: the upper
panel is for the Landau damping regime, −1 < F0 ≤ 0; the lower
panel is for the zero-sound regime, F0 > 0

The Legendre function of the second kind Q00(s) can be
calculated by the use of Eq. (36). Taking the additional
condition of the analytical extension of Q00(s) into the
complex plane s into account, we can represent the
function Q00(s) as

Q00(s) = 1 +
s

2
ln

∣∣∣∣
s− 1
s + 1

∣∣∣∣ + i
π

2
s θ(1− |s|). (39)

Let us evaluate the density-density response function
assuming q̂ = e−i~q·~r in Eqs. (3)–(5). Using the definition
of the linear response function χ(ω) from (5) and
relations (27), (32), and (34), we obtain

χ(ω) =

〈
e−i~q·~r〉

λ0e−iωt
=

=
1

λ0e−iωt

∫
d~r

∫
2d~p

(2π~)3
e−i~q·~rδf(~r, ~p; t) =

=
1
λ0

NFν0(s). (40)

Finally, taking (37) into account, we obtain the
density-density response function as

χ(ω) =
Q00(s)

1− κ(s)Q00(s)
, (41)

where

κ(s) = − 1
NF

(
F0 +

F1

1 + F1/3
s2

)
, Q00(s) = NFQ00(s).

Function (41) has the same form as the collective linear
response function in the general theory of collective
motion (see, e.g., [18]). The quantity Q00(s) is the
intrinsic response function, and κ(s) plays the role of
the effective interaction parameter.

In Fig. 1, we present the dissipative response function

χ(d)(ω) = Imχ(ω) (42)

which is obtained from Eq. (41) for two regimes: the
Landau damping regime −1 < F0 < 0, the upper
panel, and the zero-sound regime F0 > 0, the lower
panel. Note that the zero-sound mode is damped at
s < 1 (the Landau damping [16]). Here, the zero-sound
wave propagates in phase with some particles, and the
energy transfer averaged over time from the wave to
particles can be positive. The non-damped sound wave
exists in a Fermi liquid under the assumption s > 1
only. The dimensionless velocity of a sound wave s is
determined by the Landau’s dispersion equation [14]

1− κ(s)Q00(s) = 0. (43)

If the dispersion equation (43) is satisfied, both the
response function (41) and the sound wave amplitude
grow to infinity, and the sound wave propagation cannot
be described within the framework of a linear response
theory. The analysis showed [14,16] that the solution to
Eq. (43) exists (for real values of s) at F0 > 0 only. This
is illustrated in Fig. 1. As can be seen from the lower
panel of Fig. 1, the isolated root of Eq. (43) exists at
s > 1 (zero-sound) for F0 > 0 only.

It is easy to see from the dispersion equation (43) that
the velocity of the zero-sound increases monotonically
with the interaction parameter F0.

It is useful to consider the solution of the dispersion
equation (43) at the asymptotic regime s → ∞ (or
F0 → ∞). Let us use the asymptotic expansion of the
Legendre function of the second kind

Q00(s)|s→∞ = − 1
3s2

− 1
5s4

− 1
7s6

− .... (44)
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From relations (43) and (44), we find the velocity of the
zero-sound wave u0 = s vF at F0 →∞:

u0|F0→∞ = s|F0→∞ vF =

√
F0

3mm∗ p2
F. (45)

Formula (45) can be compared with that for the velocity
u1 of the normal sound (first-sound) in a classical liquid

u1 =

√
K

9m
,

where K is the incompressibility coefficient. For the
Fermi-liquid, the incompressibility coefficient is given
by [12]

K = 6
p2
F

2m∗ (1 + F0) ≈ 220MeV, (46)

and we obtain

u1 =

√
K

9m
=

√
1 + F0

3mm∗ p2
F. (47)

Taking Eqs. (45)–(47) into account, we derive

u0|F0→∞ = u1|F0→∞ . (48)

This result means that the velocities of the zero- and first
sounds in Fermi-liquid coincide at a significant, F0 À 1,
repulsion between the particles.

Using the expansions of the polarization response
function χ(π)(ω) = Reχ(ω) (8) and (9) and expression
(41), one can find the EWS m−1, m1 and m3 for the
Fermi-liquid (see also [7]) as

m−1 =
A

2
9
K

, m1 = ~2 A

2m
q2, m3 = ~4 A

2
K ′

9m2
q4. (49)

Here, we have introduced the renormalized (due to
the Fermi surface distortion effect) incompressibility
coefficient K ′ = K + 24εF/5, see [11]. Using
relations (10) and (49), we can derive the average
excitation energy (the energy centroids of giant isoscalar
resonances) in the adiabatic, Ẽ1, and scaling Ẽ3,
approximations:

Ẽ1 = ~
√

K

9m
q, Ẽ3 = ~

√
K ′

9m
q. (50)

Using the dispersion relation Ẽ = ~ũ q between the
excitation energy of a sound wave, Ẽ, and the sound
velocity, ũ, and applying Eqs. (50) and (26), we obtain

the sound velocity in the adiabatic, ũ1, and scaling, ũ3,
approximations:

ũ1 =

√
(1 + F0)p2

F

3mm∗ , ũ3 =

√
(9/5 + F0)p2

F

3mm∗ . (51)

By comparing Eq. (47) and Eq. (51), it can be seen
that the sound velocity in the adiabatic approximation,
ũ1, coincides with the first sound one, u1, and that the
sound velocity in the scaling approximation, ũ3, exceeds
u1 significantly. The origin of this effect is the same as
in the case of the nuclear stiffness coefficients CQ,ad and
CQ,sc, see Eqs. (15) and (20).

To clarify the nature of this effect, we will return
to the kinetic equation (33) and consider the recurrence
method of its solution. For a simplification, we neglect
the external field in (33) assuming λ0 = 0 and use,
instead of (34), the following expansion of the amplitude
ν~q(~p, t) into a series in the multipolarity l of a dynamic
Fermi surface distortion:

ν~q(~p) =
∞∑

l=0

l∑

m=−l

νlm(q)Ylm(p̂). (52)

Substituting amplitude (52) into Eq. (33), using
expressions (23) and (24), multiplying then Eq. (33) by
the spherical function Y ∗

lm(~̂p), and integrating over the
angles of the unit vector ~̂p = ~p/p, we obtain the following
equation for amplitudes νlm:

ωνlm − vFq
∑

l′m′
G′l

〈
lm

∣∣∣~̂q · ~̂p
∣∣∣ l′m′

〉
νl′m′ = 0. (53)

Here, ~̂q = ~q/q, Gl = 1 + Fl/(2l + 1),
〈
lm

∣∣∣~̂q · ~̂p
∣∣∣ l′m′

〉
≡

≡ C(lm, l′m′) =
∫

dΩ~pY
∗
lm(~̂p) cos θqpYl′m′(~̂p) =

= (−1)m

√
(2l + 1)(2l′ + 1)

3
〈ll′00|10〉×

× 〈ll′m,−m′|1, m−m′〉 , (54)

where 〈l1l2m1m2|lm〉 are the Clebsch—Gordan
coefficients. We will restrict ourselves to the longitudinal
sound waves with νl,m 6=0 = 0 [16]. Taking condition (25)
for νl0 into account, we obtain the following chain of
recurrence equations from (53):

sν00 − 1√
3
G1ν10 = 0,
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sν10 − 1√
3
G0ν00 − 2√

15
G2ν20 = 0, (55)

sν20 − 2
15

G1ν10 − 3√
35

G3ν30 = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sνl0 − 1
3

√
4l2 − 1 |〈ll − 100|10〉|2 νl−1,0−

−1
3

√
(2l + 1)(2l + 3) |〈ll + 100|10〉|2 νl+1,0 = 0.

Under some additional assumptions, the infinite chain of
Eqs. (55) can be cut-off to obtain the analytical solution.
We consider two important cases. (i) Neglecting the
Fermi surface distortions with multipolarity l ≥ 2 in
Eqs. (55), we obtain the solution

ω =
1√
3
vFq

√
G0G1. (56)

Consequently, the sound speed is given by

u = ω/q =
1√
3
vF

√
G0G1 =

√
(1 + F0)p2

F

3mm∗ . (57)

This result coincides with that for the first sound
velocity u1 of Eq. (47). Thus, the first sound regime
corresponds to the excitations which preserve the
spherical symmetry of the Fermi surface and leads to
a displacement of the Fermi sphere as a whole. (ii) If
we consider three first equations in (55) and neglect
the Fermi surface distortions with multipolarity l ≥ 3,
then the solution to Eqs. (55) (now closed) gives the
eigenfrequency

ω =
1√
3
vFq

√
(G0 + 4/5)G1 (58)

and the sound velocity

u = ω/q =
vF√

3

√
(G0 + 4/5)G1 =

√
(9/5 + F0)p2

F

3mm∗ . (59)

The sound velocity given by Eq. (59) coincides with ũ3

obtained in the scaling approximation (51). Thus, the
scaling approximation for a Fermi-liquid means that all
lower multipolarities of a Fermi surface distortion up to
l = 2 are taken into account. As can be seen from (49),
the model independent sum m1, as it should be, does not
depend on the nuclear interaction (Landau’s amplitudes
Fl). However, the last statement is not correct in the
case of specific nuclear excitations, where the sound wave
occurs due to the antiphase motion of the neutrons and
the protons (isovector vibrations).

3.2. Isovector excitations

Below, we consider the isovector excitations when
protons and neutrons move in antiphase. In this case,
we rewrite the kinetic equation (21) for the protons and
the neutrons separately:

∂

∂t
δfp + ~v · ~∇rδfp − ~∇pfp,eq · ~∇r(δUp,self + Up,ext) = 0,

(60)

∂

∂t
δfn + ~v · ~∇rδfn − ~∇pfn,eq · ~∇r(δUn,self + Un,ext) = 0.

(61)

We neglect the Coulomb interaction and assume N = Z.
The corresponding corrections are not important on the
description of the main characteristics of isovector giant
resonances. Subtracting Eq. (60) from Eq. (61) and
introducing an isovector variation of the distribution
function

δf ′ = δfn − δfp, (62)

we obtain the kinetic equation for the isovector
excitations

∂

∂t
δf ′ + ~v · ~∇rδf

′ − ~∇pf̄eq · ~∇r(δU ′
self + U ′

ext) = 0. (63)

Here, f̄eq is the equilibrium distribution function which
is the same for both protons and neutrons according to
the above-made assumptions,

∫
2d~p

(2π ~)3
f̄eq(~r, ~p) = ρn,eq = ρp,eq =

p3
F

3π2~3

~∇pf̄eq(~r, ~p) = −~v
m∗

pF
δ(p− pF). (64)

The variation of the self-consistent field δU ′
self in Eq.

(63) has the form which is similar to Eq. (22):

δU ′
self =

∫
2V d~p′

(2π~)3
v′int(~p, ~p′) δf(~r, ~p′; t), (65)
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where the effective interaction v′int(~p, ~p′) for the isovector
channel in the Landau approximation is given by [17]
(see also (23))

v′int(~p, ~p′) =
1

NF

∞∑

l=0

F ′l Pl(cos θpp′). (66)

The interaction amplitudes F ′l for the isovector channel
differ from the analogous ones Fl for the isoscalar
channel in Eq. (23). Thus, in contrast to the amplitude
F0 which determines the nuclear compressibility
modulus (see (46)), the similar isovector amplitude F ′0
determines the coefficient of isotopic symmetry Csym in
the Weizsäcker mass formula [17,18]

Csym =
2
3
εF (1 + F ′0) ≈ 60MeV. (67)

Below, as it was earlier done for the isoscalar channel in
Eq. (25), we assume that

F ′0 6= 0, F ′1 6= 0, F ′l≥2 = 0. (68)

Solving the kinetic equation (63) in the same manner
as Eq. (21), we find the isovector response function χ′(ω)
like χ(ω) from (41) as

χ′(ω) =
Q00(s)

1− κ′(s)Q00(s)
, (69)

where

κ′(s) = − 1
NF

(
F ′0 +

F ′1
1 + F ′1/3

s2

)
.

The frequencies of isovector eigenvibrations (the
poles of the response function (69)) can be obtained from
the dispersion equation

1− κ′(s)Q00(s) = 0. (70)

The EWS m−1, m1, and m3 (49) for the isovector
excitations take the form

m′
−1 =

A

2
1

Csym
, m′

1 = ~2 A

2m′ q
2,

m′
3 = ~4 A

2
C ′sym

m′2 q4. (71)

Here, we have introduced the renormalized isotopic
symmetry energy C ′sym = Csym + 8εF/15 and the
effective mass m′

1 for the isovector channel,

m′ =
m

1 + κI
,

where κI is the enhancement factor of the sum rule which
is defined by the relation

1 + κI =
1 + F ′1/3
1 + F1/3

. (72)

Note that, in contrast to the isoscalar sum m1 (see
(49)), the sum m′

1 in (71) is not model independent
in sense that it depends on the effective mass m′ and
thereby on the interaction amplitudes F1 and F ′1. It
is worth noting that the continuity equation (29) for
the isovector excitations should be modified as well.
Evaluating the zero moment from the kinetic equation
(63), we obtain (see also (27)–(29))

∂

∂t
δρ′ + ~∇(1 + κI)ρ̄~u′ = 0. (73)

Here,

ρ̄ =
1
2
(ρn + ρp) =

ρ

2
, δρ′ = δρn − δρp =

∫
2d~p

(2π~)3
δf ′,

~u′ = ~un − ~up =
1
ρ̄

∫
2d~p

(2π~)3
~p

m
δf ′ ≈ 1

ρ̄eq

∫
2d~p

(2π~)3
~p

m
δf ′.

Finally, EWS (71) allow one to calculate the energy
centroids of isovector giant resonances for the adiabatic,
Ẽ′

1, and scaling, Ẽ′
3, approximations as

Ẽ′
1 =

√
m′

1

m′
−1

= ~
√

Csym

m′ q,

Ẽ′
3 =

√
m′

3

m′
1

= ~
√

C ′sym

m′ q. (74)

It is useful to compare relations (74) with the
corresponding expressions (50) obtained for the isoscalar
excitations.

4. Finite Nuclei. Boundary Conditions

The above-developed approach can be directly applied
to the study of the dynamic properties of the
infinite nuclear matter, where the distribution function
distortion δf has the form of a plane wave in the ~r-space.
Below, we also apply this approach to the description
of the collective excitations in finite nuclei. For heavy
nuclei, one can assume a sharp nuclear surface [18].
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Then the variation δf of the distribution function in the
nuclear interior has the form of the plane wave (32) or
its projections on the states with a fixed multipolarity.
Moreover, the equation of motion must be supplemented
by the boundary conditions at the moving nuclear
surface.

To establish the boundary conditions, we introduce
the force ~F which is caused by a sound wave and applied
to a unit of the nuclear surface S, as well as the surface
force ~FS which is caused by a deformation of the nuclear
surface. The general condition of the equilibrium for all
forces applied to the free nuclear surface reads

~n · ~F |S + ~n · ~FS = 0, (75)

where ~n is a unit vector in the normal direction to the
nuclear surface. Equation (75) represents the boundary
condition for the dispersion equations (43) and (70).

To evaluate the force ~F , we calculate the first
moment for the kinetic equation (21). Multiplying Eq.
(21) by 2d~p pν/(2π~)3 and integrating over ~p, we obtain
the Euler equation in the following form [11,12,21]:

ρeq
∂

∂t
uν = −∇µδΠνµ, (76)

where δΠνµ is the pressure tensor. For the isovector
excitations, we obtain [12]

δΠνµ = δσ′νµ + δP ′ δνµ, (77)

where

δP ′ ≡ δP ′ (~r, t) =

=
1

3m

∫
2d~p

(2π~)3
p2δf ′ (~r, ~p, t) +

1
NF

F ′0ρ̄eqδρ
′ (~r, t) =

=
2
3

(1 + F ′0) εFδρ′ (~r, t) = Csymδρ′ (~r, t) . (78)

Let us introduce the isovector displacement field ~χ′

which is connected to the corresponding velocity field
~u′ through the relation

∂~χ′/∂t = −(1 + κI)~u′.

Taking the continuity equation (73) into account, we
find

δρ′ = ρ̄eq
~∇ · ~χ′.

Finally, Eq. (78) yields

δP ′ = Csymρ̄eq
~∇ · ~χ′. (79)

The pressure tensor δσ′νµ in Eq. (77) is given by

δσ′νµ =
2

3m∗

∫
d~p

(2π~)3
(3pνpµ − p2)δf ′ =

= µ′F(∇νχ′µ +∇µχ′ν −
2
3

δνµ
~∇ · ~χ′), (80)

where

µ′F =
3
2

ρ̄eqεF
s2

1 + F ′1/3

[
1− (1 + F ′0)(1 + F ′1/3)

3s2

]
. (81)

Taking (77), (79), and (80) into account, we obtain

δΠαβ = µ′F
(∇αχ′β +∇βχ′α

)
+

+
(

Csymρ̄eq − 2
3

µ′F

)
~∇ · ~χ′δαβ (82)

The pressure tensor δΠνµ determines the force ~F which
acts from the side of the sound wave on a unit of the
nuclear surface

Fν = nµδΠνµ. (83)

Using Eqs. (82) and (83), we evaluate the normal
component of the force ~F applied to the nuclear surface:

~n · ~F
∣∣∣
S

=
1
r2

rνrµδΠνµ

∣∣∣∣
r=R0

=

=
1
r2

[
r2

(
Csymρ̄eq(1 + κI)− 2

3
µ′F

)
~∇ · ~χ′+

+ 2µ′Frνrµχνχµ

]∣∣∣
r=R0

=

=
[(

Csymρ̄eq(1 + κI)− 2
3

µ′F

)
div~χ′+

+2µ′F
∂

∂r
(~n · ~χ′)

]

r=R0

. (84)

Let us calculate the normal component ~n · ~FS of the
isovector surface force ~FS which occurs in Eq. (75). To
find the force ~FS , we notice that a shift of protons
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against neutrons creates the additional surface energy in
the case of isotopic symmetry given by [22]

δES,sym =
1
3
ρeqr0σsym

∫
τ2dS. (85)

Here, r0 is the mean distance between nucleons (R0 =
r0A

1/3), σsym is the isovector surface energy which is a
parameter of theory, and τ is a shift of the proton sphere
against the neutron one. In units of r0,

τ =
1
r0

(Rp (t)−Rn (t)) =

=
1
r0

((R0 + δR1(t))− (R0 − δR1(t))) =
2
r0

δR1(t),

(86)

where

δR1(t) = R0αS (t) Y10 (r̂) . (87)

The amplitude αS(t) of isovector vibrations of the
nuclear surface in Eq. (87) is connected to the
corresponding amplitude ~χ′ of the displacement field in a
sound wave. To establish this connection, we note that,
for a nucleus with sharp edge, the displacement field in
the nuclear interior has the form (see Section 6 in [18])

~χ′ = α1 (t)
1
q2

~∇r (j1 (qr)Y10 (r̂)) , (88)

where j1(x) is the spherical Bessel function.
Evaluating the normal component of the velocity

field ~u′ by the use of Eq. (88) and equating it to the
surface velocity ∂δR1(t)/∂t, we obtain

αS (t) = −α1 (t)
j′1 (x)

x(1 + κI)
, x = qR0. (89)

According to the definition of the pressure δPS caused
by a shift of the nuclear surface (see, for example, the
appendix to Section 6 in [18] ), we obtain the following
relation from Eqs. (85) and (86):

δPS =
∂

∂δR1

δES

δS
=

8
3

ρeq

r0
σsymδR1. (90)

Taking into account Eqs. (89) and (90), we can evaluate
the normal component (~n · ~FS) of the surface force ~FS in
Eq. (75). The result reads

(~n · ~FS) = −δPS =
8
3

ρeqj
′
1(x)

qr0(1 + κI)
σsymα1 (t)Y10 (r̂) .

(91)

Fig. 2. Dependence of the energy of the isovector giant dipole
resonances on the mass number obtained from the dispersion
equation (70) (solid curve 2) and from EWS (74) (dashed lines).
Solid curve 1 is obtained from the explicit solution of the
dispersion equation (70) subsidized by the boundary condition of
the Steinwedel—Jensen’s model, j′1(x) = 0. For all calculations
presented in Fig. 2, we have taken the following parameters:
r0 = 1.2 fm, F1 = −0.64, F ′0 = 0.96, F ′1 = 1, σsym = 17 MeV. The
experimental data were taken from [25]

Finally, from Eqs. (75), (84), (88), and (91), we derive
the following secular equation for the wave number q:
[
−1

2
Csymρ̄eq − 2

3
µ′F +

2
x2

µ′F

]
j1 (x)+

+
[
− 2

x
µ′F +

4
3

ρeq

qr0(1 + κI)
σsym

]
j′1 (x) = 0. (92)

We point out that, in the classical limit of the
Steinwedel—Jensen’s model at σsym →∞, the boundary
condition (92) coincides with the similar one, j′1(x) = 0,
in the traditional liquid drop model [18].

The boundary condition (92) allows us to find the
dependence of the wave number q on the mass number
A and to evaluate the corresponding excitation energy
in finite nuclei. In Fig. 2, we show the dependence of the
energy of isovector giant dipole resonances (IGDR) on
the mass number A obtained by the use of the explicit
solution of the dispersion equation (70) and EWS (74).
For both of them, the boundary condition (92) was used.
As can be seen from Fig. 2, the lowest energy of IGDR√

m′
1/m′

−1 is obtained with m′
−1 and corresponds to

the first sound regime without distortions of the Fermi
surface. The account of a quadrupole Fermi surface
deformation in the sum m′

3 shifts upward the curve√
m′

3/m′
1. This is due to the additional contribution to

the nuclear stiffness coefficient caused by Fermi-surface
distortions. Involving the higher multipolarities of the
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Fig. 3. Dependences of the ratio of the first sound velocity to the
zero-sound one on the interaction amplitude F0 for the isoscalar
excitations for two values of the interaction constant F1

Fermi surface distortions which are present in the
dispersion equation (70) leads to the additional increase
of the nuclear stiffness and the excitation energy ~ω1−

in Fig. 2.
As was noted above, the dependence of the nuclear

forces on the nucleon velocities (components with F1

and F ′1 in (23) and (66), respectively) leads to the
significant difference between the EWS for the isoscalar
and isovector excitations. In particular, the consequence
of this difference is the asymptotic behavior of the
nuclear stiffness coefficient and the zero-sound velocity
at an increase of the internucleon interactions F0 and
F ′0. In Figs. 3 and 4, we show the dependence of
the ratio of the zero-sound velocity to the first sound
one on the interaction amplitudes F0 and F ′0 for the
isoscalar and isovector excitations. The feature of the
isoscalar excitations is the fact that the increase of
the nucleon-nucleon interaction leads to a shift of
the zero-sound velocity towards the first sound one
(see Fig. 3). This means that the influence of Fermi
surface distortions on the collective motion in the
nuclear Fermi-liquid becomes negligible on the increase
of the nucleon-nucleon interaction. The behavior of the
isovector zero-sound velocity u′0 is qualitatively different
(see Fig. 4). With increase in the nucleon-nucleon
interaction, the velocity u′0 tends to the asymptotic
limit which significantly exceeds the corresponding first
sound velocity. This is a consequence of the general
enhancement effect of collectivity of the isoscalar zero-
sound caused by the dependence of the nuclear forces on
the nucleon velocity (see also (72)).

The enhancement factor κI for the isovector
excitations defined in Eq. (72) depends on the
interaction constants F1 and F ′1. Whereas the isoscalar

Fig. 4. The same as in Fig. 3, but for isovector excitations

constant F1 related to the effective nucleon mass m∗

is well studied, the isovector constant F ′1 is not much
studied, and the experimental investigation of the
enhancement factor κI (72) can help for its derivation.

The experimental derivation of the enhancement
factor in the isovector EWS m′

1 is connected to the
investigation of the nuclear absorption cross-section
σabs(ω) of γ-quanta with energy ~ω. Let us introduce
the strength function S(ω, q) for the density-density
response per unit volume V . According to Eqs. (1), (40),
and (42), we have

S(ω, q) =
1
V

χ(d)(ω). (93)

In the case of the velocity independent forces, in
accordance with Eqs. (2), (49), and (71), the strength
function S(ω, q) is normalized by the condition

∞∫

0

d(~ω) ~ωS(ω, q) = ~2 1
2m

q2ρeq. (94)

In contrast to this, in the case of isovector excitations
with the velocity dependent forces, the normalization
condition reads
∞∫

0

d(~ω) ~ωS(ω, q) = ~2 A

2m∗ (1 + F ′1/3) q2ρeq. (95)

The photoabsorption cross-section σabs(ω) is connected
to the strength function by the relation

σabs(ω) = const · ωS(ω, q). (96)

Here, ~q plays the role of the momentum which is
transferred to the nucleus at the absorption of a γ-
quantum. The constant in Eq. (96) can be
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found from the normalization condition for the
photoabsorption cross-section σabs(ω). For the isovector
dipole excitations and for the velocity independent
forces, this condition reads (Reiche—Thomas—Kuhn
rule) [23]

m̃1 =

∞∫

0

d(~ω) σabs(ω) =
2π2~e2

mc

NZ

A
. (97)

From Eqs. (96), (94), and (97), one obtains [24]

σabs(ω) =
4π2e2

cq2ρeq

NZ

A
ωS(ω, q). (98)

Since the photoabsorption occurs mainly through the
giant dipole resonance, the transferred momentum q
in (98) can be taken as q = q1 = 2.08/R0 [24],
that corresponds to the classical boundary condition
j′1(x) = 0 of the Steinwedel—Jensen’s model.

In the case of the velocity dependent forces, the
normalization condition S(ω, q) (94) has to be replaced
by condition (95), and the transferred momentum q = q′1
has to be calculated by using the boundary condition
(92). As a result, the sum rule for σabs(ω) takes the form
(instead of (97))

m̃′
1 =

∞∫

0

d(~ω)σabs(ω) =
2π2~e2

mc

NZ

A

(
q′1
q1

)2

(1 + κI).

(99)

In Fig. 5, we demonstrate the dependence of the
enhancement factor m̃′

1/m̃1 on the mass number for
a number of nuclei. We point out that the exceeding
of 100% of the sum rule m̃′

1, which is experimentally
observed for the isovector giant dipole resonances, is
caused by the dependence of the effective nucleon-
nucleon interaction on the nucleon velocity. For the
values of the isovector amplitude F ′1 ≈ 1, one can adjust
(on the average) the results of theoretical calculations of
m̃′

1 (solid line in Fig. 5) with the experimental data. The
nonmonotonic dependence of the experimental value of
m̃′

1 on the mass number A in Fig. 5 is due to the
shell effects which are not taken into account within the
semiclassical kinetic theory used in this work.

5. Conclusions

Using the Landau—Vlasov kinetic theory, we have
studied the linear response function and the EWS mk

Fig. 5. Dependence of the enhancement factor m̃′
1/m̃1 of the EWS

m′
1 for isovector giant dipole resonances on the mass number

A. The results of calculations were obtained by the use of Eqs.
(97) and (99) for two values of the isovector amplitude F ′1 = 1.2

(solid line) and F ′1 = 0.58 (dashed line) at the constant value of
F1 = −0.64; points are the experimental data from [20]

for the isoscalar and isovector excitations in heavy
nuclei and the nuclear matter. An advantage of our
approach is the possibility to derive the explicit analytic
expressions and to carry out a detailed analysis for
some important nuclear characteristics. One of them is
the nuclear stiffness coefficient. The dynamical Fermi-
surface distortion influences significantly the formation
of the nuclear stiffness. For a slow (adiabatic) nuclear
deformation, the nuclear stiffness coefficient is derived
by the low-energy sum m−1 and coincides with the
stiffness coefficient of the classical (non-Fermi) liquid.
This stiffness coefficient (adiabatic incompressibility K)
causes the propagation of the first sound in a Fermi-
liquid which is not accompanied by the Fermi surface
distortions [see (10), (47), and (49)]. In the general case
of fast motion, the derivation of the nuclear stiffness
coefficient requires to solve the dispersion equation
(43). A specific role is played here by the scaling
approximation. In this last case, the quadrupole Fermi
surface distortion is only taken into consideration. We
have shown that the stiffness coefficient in the scaling
approximation is determined by the high-energy sum m3

and exceeds significantly the adiabatic incompressibility
K. At the same time, the sound velocity approaches that
of the Landau’s first sound [see (48), (51), and (59)].

In the presence of the velocity dependent nuclear
forces, the EWS for the isoscalar and isovector
excitations are significantly different [see (49) and
(71)]. First of all, the EWS m1, which is model
independent for the isoscalar excitations, becomes model
dependent in the case of the isovector excitations.
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Another consequence of the mentioned difference of sums
(49) and (71) is the different asymptotic behavior of
the zero-sound velocity on an increase of the nucleon-
nucleon interaction (see Figs. 3 and 4).

A feature of the isoscalar excitations is that the
zero-sound velocity approaches the first-sound one with
increase in the internucleon interaction. This means that
the influence of the Fermi surface distortion on the
isoscalar collective motion in the nuclear Fermi-liquid
becomes negligible on the increase of the internucleon
interaction. In contrast to this, the increase of the
internucleon interaction for the isovector mode leads
to the asymptotic zero-sound velocity u′0 which exceeds
the relevant first-sound velocity. The above-mentioned
difference between isoscalar and isovector EWS allows
one to explain the fact that, in many cases, the
experimental measurement of the EWS m′

1 for the
isovector giant dipole resonance gives the more than 100
% exhaustion of the corresponding sum rule. According
to Eqs. (71) and (72), the dependence of the effective
nuclear forces on the nucleon velocities generates the
enhancement factor 1 + κI > 1, which is absent for the
isoscalar excitations, in the sum m′

1 for the isovector
excitations (see Fig. 5). Note that the enhancement
factor (72) depends on the isovector amplitude F ′1.
This gives, in principle, the possibility to determine the
interaction amplitude F ′1 from the fit of the EWS m̃′

1 to
the experimental data.

1. O. Bohigas, A.M. Lane, and J. Martorell, Phys. Rep. 51, 267
(1979).

2. A.M. Lane, Description of giant resonances, in Proceedings
of Intern. Symp. on Highly Excited States in Nuclei Jülich
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ЕНЕРГЕТИЧНО ЗВАЖЕНI СУМИ ДЛЯ КОЛЕКТИВНИХ
ЗБУДЖЕНЬ В ЯДЕРНIЙ ФЕРМI-РIДИНI

В.М. Коломiєць, С.В. Лук’янов, О.О. Худенко

Р е з ю м е

В рамках кiнетичної теорiї, адаптованої до опису двокомпо-
нентної ядерної фермi-рiдини, дослiджено безмодельну m1,
адiабатичну m−1 та високоенергетичну m3 зваженi суми для
iзоскалярних та iзовекторних збуджень ядра. В адiабатичному
i скейлiнг-наближеннях встановлено зв’язок енергетично зва-
жених сум (ЕЗС) m−1 та m3 з ядерною жорсткiстю та швидко-
стями першого i нульового звукiв. Дослiджено коефiцiєнт пiд-
силення в ЕЗС для iзовекторних збуджень, який дозволяє по-
яснити перевищення 100%-вого вичерпування ЕЗС m′

1 в експе-
риментах зi збудження iзовекторного гiгантського дипольного
резонансу. Дано пояснення залежностi коефiцiєнта пiдсилення
вiд масового числа A та проаналiзовано його залежнiсть вiд
величини iзовекторної амплiтуди взаємодiї Ландау F ′1.
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