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A precise study of the energy, radii, and basic structure functions
of a 4He nucleus is carried out using the variational method with
optimized Gaussian bases. We consider the Minnesota and AT
potentials, as well as a new NN -potential K1 proposed to achieve
a concordance of the main low-energy two-nucleon parameters
and the energies of three- and four-nucleon nuclei. The analysis
of the structure characteristics of a 4He nucleus is carried out. To
achieve the precise accuracy in calculations, we use the advantages
of the representation without isospin.

1. Introduction

The precise studies of the few-nucleon systems in
bound states are appreciably developing due to the
use of powerful variational methods [1–3] which open
a possibility to study the finest structural characteristi-
cs of the nuclear systems. The elaborated representati-
on without isospin [4, 5] gives us additional essential
advantages for studying the systems of few nucleons
due to a significant reduction of the number of
independent equations for the spatial components of
wave functions, which essentially simplifies the calculati-
onal problem. The variational method with the use
of a Gaussian basis has proved its high efficiency
and accuracy [3] in the applications to a number of
different few-particle problems, which is particularly
true while using the special schemes for the optimi-
zation of Gaussian bases [6–8]. This approach enables
us to achieve a high controllable precision in the
calculations of the energy levels and the correspondi-
ng wave functions even for loosely bound near-threshold
states [9].

In the present work, we study the properties of a
four-nucleon nucleus 4He using the variational method
with some schemes of optimization of the Gaussian bases
and using the representation without isospin (reduci-
ng the problem to the system of only two equati-
ons [4] for the spatial components of the wave functi-
on instead of twelve ones in the traditional isospin
formalism). The binding energy and radii, as well as
the main structure functions of this nucleus (density di-
stributions, formfactors, pair correlation functions, and
momentum distributions) are studied within the mi-
croscopic approach. We use the known popular interacti-
on potentials, the Minnesota (further denoted by M)
and Afnan–Tang (further AT) potentials, which give
reasonable values for the binding energy and radius of a
4He nucleus from the qualitative point of view. Intendi-
ng, in the future, to construct the nuclear potentials
for a satisfactory quantitative description of low-energy
few-nucleon data, we propose here the simplest versi-
on of a new potential describing simultaneously (on the
average) the main low-energy two-nucleon parameters
and the binding energies of three and four nucleons. Wi-
th this potential, we have found the three-nucleon bindi-
ng energies and radii and compare the results with those
for the M and AT potentials.

2. Statement of the Problem and Method of
Research

Consider a nucleus 4He in the ground state (the total
spin S = 0) with the central exchange nuclear interacti-
on potentials and with the Coulomb interaction between
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the protons. The Hamiltonian of the four-nucleon system
looks as

Ĥ = − ~2

2mp
(∆1 + ∆2)− ~2

2mn
(∆3 + ∆4)+

+
4∑

i>j=1

V̂ij +
e2

|r1 − r2| . (1)

We study the problem in the center-of-mass frame. The
pairwise nuclear potentials can be written in the form

V̂ij = [V +
s (rij)P̂s(σ) + V +

t (rij)P̂t(σ)](1 + P̂r)/2+

+[V −
s (rij)P̂s(σ) + V −

t (rij)P̂t(σ)](1− P̂r)/2 , (2)

where P̂s and P̂t are the projection operators onto the
singlet and triplet spin states of two nucleons, and P̂r

is the Majorana operator of permutation of the spati-
al coordinates of particles. To study the system of
four nucleons, we take advantage of the representati-
on without isospin [4], treating protons and neutrons
as different particles. The main advantage of the
representation without isospin is the essential simpli-
fication of the system of equations for the spatial
components of the wave function in comparison with the
system of equations in the equivalent traditional isospin
formalism (one has only two coupled equations instead
of twelve ones). Therefore, to achieve a high controllable
accuracy, it is more reasonable to use the representation
without isospin. In this representation, the total wave
function of a 4He nucleus has the form

Ψ =
1√
2
(ξ′Φ1 − ξ′′Φ2), (3)

where Φ1 and Φ2 are the symmetric and antisymmetric
spatial components, respectively, under the permutati-
ons of the identical protons 1 À 2 or identical neutrons
3 À 4 , and ξ′ and ξ′′ are the corresponding spin functi-
ons for the total spin S = 0 and the Young scheme [2,2].
The total wave function is antisymmetric with respect to
permutations of the protons or the neutrons. The system
of equations for the spatial components Φ1 and Φ2 has
the form [4]:

[K̂ +
e2

r12
+ V +

s(pp)(r12) + V +
s(nn)(r34)+

+
1
8

∑

ij 6=12,34

∑
+,−

(3V ±
t(np)(rij) + V ±

s(np)(rij))(1± P̂r(ij))−

−E]Φ1 +
√

3
8

∑

ij 6=12,34

∑
+,−

(−1)i+j(V ±
s(np)(rij)−

−V ±
t(np)(rij))(1± P̂r(ij))Φ2 = 0,

[K̂ +
e2

r12
+ V −

t(pp)(r12) + V −
t(nn)(r34)+

+
1
8

∑

ij 6=12,34

∑
+,−

(V ±
t(np)(rij) + 3V ±

s(np)(rij))(1± P̂r(ij))−

−E]Φ2 +
√

3
8

∑

ij 6=12,34

∑
+,−

(−1)i+j(V ±
s(np)(rij)−

−V ±
t(np)(rij))(1± P̂r(ij))Φ1 = 0. (4)

Here, K̂ is the kinetic energy operator, and P̂r(ij) is
the operator of permutation of the spatial coordinates
of particles with numbers i and j. The subscripts (pp),
(nn), and (np) at the potentials indicate the pairs of
interacting nucleons (p means the proton, and n does
the neutron). The system of equations (4) written in the
representation without isospin can be also considered
as a generalization of the equations for a 4He nucleus
onto the case where the interaction between nucleons is
charge-dependent. In a short form, these equations look
as

(Ĥ11 − E)Φ1 + Ĥ12Φ2 = 0,

Ĥ21Φ1 + (Ĥ22 − E)Φ2 = 0, (5)

where Ĥ12 = Ĥ21.
We study the bound state of 4He on basis of Eqs.

(4) using the variational Galerkin method with optimi-
zation of the Gaussian bases. This method has proved its
high accuracy in the studies of few-particle systems with
various interactions. Using the Gaussian basis, we will
seek the spatial components of the variational function
Φν (ν = 1, 2) in the form

Φν = Ŝν

Kν∑
n=1

D(ν)
n ϕ(ν)

n ≡

≡ Ŝν

Kν∑
n=1

D(ν)
n exp(−

4∑

i>j=1

a
(ν,n)
ij r2

ij), (6)

where ϕν are the Gaussian basis functions, and Kν is the
dimension of the basis (K1 for Φ1, and K2 for Φ2). Ŝ1 is
the symmetrization operator (for the function Φ1), and
Ŝ2 is the antisymmetrization operator (for the function
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Φ2) with respect to the permutations of identical parti-
cles (the protons 1 À 2 or the neutrons 3 À 4). The
nonlinear parameters aij

(ν,n) are variational parameters.
One of the advantages of the Gaussian representation
of the wave function (6) is a simple explicit form of the
matrix elements of operators in Eq. (4) to be of the same
kind for all the basis elements. As known, the explicit
form of the matrix elements can be derived directly. In
particular, it is convenient to write the normalization in
the form

〈ϕ′|ϕ′′〉 = π
9
2 U− 3

2 , (7)

where

U ≡
4∑

i>j=1

4∑

k>q=1

4∑

m > l = 1
(ij) 6= (kq) 6= (ml)

uijukquml,

uij ≡ a
′(ν,n)
ij + a

′′(ν,n)
ij . (8)

The trilinear form U contains only the terms (their
total quantity equals 16) that have compulsorily all four
numbers of particles among the subscripts i, j, k, q,m, l.
In expression (8), the primed nonlinear parameters
appears from the left Gaussian function 〈ϕ′|, while the
double-primed ones come from the right Gaussian functi-
on |ϕ′′〉 in Eq. (7).

In this work, we consider the nuclear potentials in
different states with radial dependence in the form of
a superposition of the Gaussian functi-
ons V (rij) = =

∑
k V(0)k exp(−bkr2

ij). In this case, the
matrix elements of the potential energy 〈ϕ′|V (rij)|ϕ′′〉
look similar to expression (7), but with one of the terms
uij changed by ũij = a′ij

(ν,n) + a′′ij
(ν,n) + bk. Note that

potential intensity parameters V(0)k and the parameters
bk determining the radii of the interaction potentials are,
in general, different in different spin states and for the
different kinds of nucleon pairs.

The matrix elements of the kinetic energy,

〈ϕ′|K̂|ϕ′′〉 ≡ −
4∑

i=1

~2

2mi
〈ϕ′|∆i|ϕ′′〉, (9)

can be written in the form (for the first particle)

− ~2

2m1
〈ϕ′|∆1|ϕ′′〉 =

=
~2

2m1

6π
9
2

U
5
2

(a′12a
′′
12(u13u14 + u13u24 + u13u34+

+u14u23 + u14u34 + u23u24 + u23u34 + u24u34)+

+a′13a
′′
13(u12u14 + u12u24 + u12u34 + u14u23+

+u14u24 + u23u24 + u23u34 + u24u34)+

+a′14a
′′
14(u12u13 + u12u23 + u12u34 + u13u23+

+u13u24 + u23u24 + u23u34 + u24u34)+

+(a′12a
′′
13+a′13a

′′
12)(u14u23+u23u24+u23u34+u24u34)+

+(a′12a
′′
14+a′14a

′′
12)(u13u24+u23u24+u23u34+u24u34)+

+(a′13a
′′
14+a′14a

′′
13)(u12u34+u23u24+u23u34+u24u34)).

(10)

The expressions for three rest terms of the kinetic energy
operator differ from (10) only by a permutation of
the numbers of particles. The matrix element for the
Coulomb interaction potential is also rather simple:

〈ϕ′| e2

|r1 − r2| |ϕ
′′〉 =

2π4e2

U
√

S
. (11)

Here,

S ≡ u13u14 + u13u24 + u13u34 + u23u14+

+u23u24 + u23u34 + u14u34 + u24u34 . (12)

The trilinear form U in (10) and (11) is defined by (8).
Within the Galerkin variational method, the bound

states of a system can be found from the algebraic
system of equations (which is actually the algebraic
representation of the Schrödinger equation) determining
the wave function linear expansion coefficients Dn

(ν):

K1∑
n=1

D(1)
n (〈Sϕ

(1)
j |Ĥ11|Sϕ(1)

n 〉 − E〈Sϕ
(1)
j |Sϕ(1)

n 〉)+

+
K2∑
n=1

D(2)
n 〈Sϕ

(1)
j |Ĥ12|Sϕ(2)

n 〉 = 0,

K1∑
n=1

D(1)
n 〈Sϕ

(2)
k |Ĥ21|Sϕ(1)

n 〉+

+
K2∑
n=1

D(2)
n (〈Sϕ

(2)
k |Ĥ22|Sϕ(2)

n 〉 − E〈Sϕ
(2)
k |Sϕ(2)

n 〉) = 0,

j = 1, 2, ..., K1; k = 1, 2, ..., K2. (13)

We recall that the linear coefficients Dn
(ν) are found

within the Galerkin method from the system of linear
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algebraic equations (13) for all the possible bound states.
Within the Ritz method for the ground state energy (wi-
th the use of notations (5)), one has

E ≤ 〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 =

=
〈Φ1|Ĥ11|Φ1〉+ 2〈Φ1|Ĥ12|Φ2〉+ 〈Φ2|Ĥ22|Φ2〉

〈Φ1|Φ1〉+ 〈Φ2|Φ2〉 , (14)

and the above-mentioned coefficients become the vari-
ational parameters along with the rest ones (in parti-
cular, the nonlinear parameters aij

(ν,n) in the case of
the Gaussian bases). As a result, to find the linear
parameters within the Ritz method needs much greater
efforts. But we used the Ritz method at some stages of
precise calculations in the framework of the procedures
of optimization (in the nonlinear parameters) of the
Gaussian bases in order to speed up the calculations
at the large dimensions of the bases. This is efficient
due to the fact that, at small variations of a nonli-
near parameter, the linear expansion coefficients in the
double sums in the numerator and denominator of (14)
can be considered approximately invariable (the double
sums originate from the expansion of the wave functi-
on (6)). These sums are calculated rapidly, especially
in the case of the variation of only one of the nonli-
near parameters, when the main part of the terms of
these sums remains fixed. On the other hand, within
the Galerkin method, small variations of a nonlinear
parameter make it necessary to solve the system of
algebraic equations (13) once more. This may consume
the essential time at large dimensions of the bases. Thus,
it is efficient to use both methods in turn in order to have
optimal calculational procedures.

To achieve a prescribed high accuracy in variati-
onal calculations at minimal dimensions of the Gaussian
bases, it is essentially important to optimize the bases
by varying the nonlinear parameters. We combine the
stochastic methods of optimizing the Gaussian bases

(see [1, 3])) efficient at the first stage of the optimizati-
on procedure with the regular methods [6–9] of optimi-
zation by varying several parameters or some groups of
parameters. This enables us to obtain a high precision
(the best in comparison with the results of other authors)
in an optimal way and at moderate dimensions of the
bases.

The bound states of three nucleons (the 3He and 3H
nuclei) are also studied in the framework of the vari-
ational method with the use of Gaussian bases using
the equations for spatial components of the wave functi-
on within the representation [4] without isospin. It is
well known that the matrix elements of operators of
the kinetic and potential energies of these systems have
explicit simpler form than those for four nucleons. The
procedure of optimal calculations of the bound states
and all necessary three-particle values is very similar to
that for four-particle values, by consuming the essenti-
ally less time due to a smaller number of variables
and the simpler expressions for matrix elements to be
computed. As to the two-nucleon problem, we use the
standard methods of calculation of the deutron energy
and its wave function. The two-particle phase shifts and
the corresponding low-energy scattering parameters are
found on the basis of the variable phase approach [10].

3. Binding Energies and Radii of Few-Nucleon
Systems

The calculations of the binding energies and radii of
few-nucleon nuclei are carried out for several semireali-
stic nuclear potentials. Table 1 contains the parameters
of the used interaction potentials M and AT+ (their
components are denoted as V +

s(nn) = V +
s(pp) =

V +
s(np) = Vs, V +

t(np) = Vt, all the odd parity
components being equal zero). In addition, the properties
of a 4He nucleus are studied for the interaction potential
AT having the components of odd parity equal to those

T a b l e 1. Parameters of potentials and the two-nucleon low-energy parameters (energies and intensities of potentials
are given in MeV, scattering lengths and radii – in fm)

Potential Vt(r) Vs(r) B(D) at as r0t r0s

M 200 exp(−1.487r2)− 200 exp(−1.487r2)− 2.202269 5.427 −16.804 1.758 2.885
−178 exp(−0.639r2) −91.85 exp(−0.465r2)

AT 1000 exp(−3r2)− 1000 exp(−3r2)− 2.215822 5.391 −16.312 1.731 2.742
−326.7 exp(−1.05r2)− −166 exp(−0.8r2)−
−43 exp(−0.6r2) −23 exp(−0.4r2)

K1 23789.46 exp(−(r/0.42)2)− −27.38 exp(−(r/1.93)2) 2.224575 5.424 −23.748 1.79 2.932
−1169.92 exp(−(r/0.85)2)

Experiment 2.224575 5.424 −23.748 1.75 2.75
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of even parity, as well as for the potential AT∗ differi-
ng from AT by the absence of the triplet interaction
between identical nucleons. All the above versions of
potentials have sense and are used in the literature. In
Table 1, we also present the parameters of the proposed
new potential (to be denoted by K1). The main idea
of constructing such a potential was to describe the
main low-energy parameters of a two-nucleon system
simultaneously with the energies of three- and four-
nucleon systems. For the presented simplest version of
the potential (containing a small number of parameters),
the deuteron binding energy B(D), the triplet at and si-
nglet as scattering lengths were fitted exactly, and the
binding energies of the nuclei 3Н, 3He, and 4He were fi-
tted on average (the energies of 3Н and 3He – with the
accuracy of ∼ 0.1 MeV, and the energy of 4He – about
∼ 0.3 MeV).

In the course of computations of the bound state of
4He, it is established that the channel of the symmetric
spatial wave function Φ1 from (4) makes the decisive
contribution to the system energy, whereas the role of
the antisymmetric Φ2 is less important. Thus, it has
sense to achieve a closer approximation for, first of all,
the symmetric spatial component of the wave function
by using the expansion of basis functions. The optimal
ratio is found for the corresponding dimensions K1 and
K2 in the expansion (6) to be K1 ≈ 3K2. Generally,
the sufficient total dimension is to be within the range
of two or three hundreds of basis functions in order to
have the results for binding energies correct up to the
third digit after the decimal point. By the way, for the
case of potential M, the dimension of the basis should

be noticeably less than that for potentials AT or K1,
since the latter potentials have essentially more intense
repulsion and more rapid change in their behavior in
space. The intense short-range repulsion of a potenti-
al leads to an abrupt change in the behavior of the
system’s wave function, and we need a considerable
amount of the Gaussian basis functions from (6) to
properly reproduce it.

Using the obtained simple precise variational functi-
ons (6), we calculate the r.m.s. radii of the distributi-
on of protons Rp and that of neutrons Rn, as well as
the mass distribution radius Rm which obeys the relati-
on Rm

2 = 1
2 (Rp

2 + Rn
2). As seen from Table 2, the

radii Rp in a 4He nucleus are somewhat greater than
the corresponding radii Rn due to the Coulomb repulsi-
on between the protons. It also follows from Table 2
that the proposed potential K1 gives better results both
for the binding energy and radii of 4He. To compare
our results with those of other authors, we cite (in
parentheses) some results of calculations by Varga and
Suzuki [3] obtained by the stochastic method within
the variational approach with the use of Gaussian bases
and in the framework of the traditional isospin formali-
sm.

Our results of variational calculations of the binding
energy with the M potential (B(4He) = 29.948 MeV)
and the AT∗ potential (B(4He) = 30.376 MeV) are
the best in accuracy (only the last decimal digit can
contain an error) and are obtained within a more effici-
ent approach than the results from [3]. In Table 3, we
give the binding energies and r.m.s. radii (Rp and Rn are,
respectively, the radii of the distributions of protons and

T a b l e 2. Binding energy and r.m.s. radii of 4He nucleus (in parenthesis, the results from [3] are cited)

Potential М АТ+ АТ АТ∗ K1 Experiment
B(4He), МеV 29.948 29.733 30.827 30.376 28.60 28.296

(29.937) (30.37)
Rm(4He), fm 1.411 1.430 1.417 1.422 1.442

(1.41) (1.42)
Rp(4He), fm 1.413 1.432 1.419 1.425 1.445 1.47
Rn(4He), fm 1.408 1.428 1.414 1.420 1.439

T a b l e 3. Binding energies and r.m.s. radii of the 3H and 3He nuclei

Potential М АТ+ АТ K1 Experiment
B(3H), МеV 8,389 8,494 8.765 8.467 8.482
Rm(3H), fm 1.706 1.693 1.673 1.708
Rp(3H), fm 1.586 1.576 1.546 1.602 1.57
Rn(3H), fm 1.763 1.749 1.733 1.758

B(3He), МеV 7.712 7.836 8.110 7.758 7.718
Rm(3He), fm 1.736 1.720 1.698 1.738
Rp(3He), fm 1.798 1.780 1.763 1.794 1.70
Rn(3He), fm 1.604 1.593 1.560 1.621

EC = B(3H)−B(3He), МеV 0.677 0.658 0.655 0.709 0.764
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neutrons, and Rm correponds to the mass distribution)
also for 3H and 3He nuclei.

The r.m.s. radius of the mass distribution for a 3H
nucleus is defined as Rm = ( 1

3R2
p + 2

3R2
n)

1
2 , and that

for 3He – as Rm = ( 1
3R2

n + 2
3R2

p)
1
2 . The essential di-

fference between the radii of the distributions of protons
and neutrons (Rp > Rn for 3He and Rp < Rn for 3H, as
for mirror nuclei) is mainly due to a noticeable difference
between the nuclear forces in the triplet state (where
the attraction is greater) and in the singlet state (wi-
th a weaker attraction), while the role of the Coulomb
interaction is not important. The calculated Coulomb
energy EC = B(3He)− B(3He) appears to be, as usual,
less than the experimental value, and we did not resolve
this problem. Nevertheless, the proposed potential K1
results in a somewhat better value for the Coulomb
energy. But the complete explanation of this value is
a well-known problem and needs, probably, the consi-
deration of the quark structure of nucleons.

4. Structure of a 4He Nucleus

In the variational method with Gaussian bases, one
obtains simultaneously the energy and the wave functi-
on of a system in a suitable Gaussian representation.
This allows one, in particular, to analyze all the main
structure functions of a 4He nucleus. The density distri-
bution of protons in a 4He nucleus can be found (in the
assumption of point-like nucleons) as

ρp(r) = 〈Ψ|1
2

2∑

k=1

δ(r− (rk −Rc.m))|Ψ〉, (15)

where the wave function is normalized by unity. A simi-
lar expression can be written for the density distribution
of neutrons ρn(r) (changing the numbers of particles 1
and 2 by 3 and 4), and the mass density distribution
of nucleons is ρm(r) = 1

2 (ρp(r) + ρn(r)). In Fig. 1, the
dotted lines present the density distribution of protons in
a 4He nucleus for the potentials M (curve 1), AT+ (curve
2), and K1 (curve 3). Note that the density distribution
of neutrons in a 4He nucleus is almost the same as that
of protons since the structure of the nucleus is determi-
ned by the nuclear forces (being charged-independent),
and the Coulomb interaction is not essential. Due to the
fact that the potentials AT+ and К1 have more signifi-
cant repulsion as compared with the M potential at short
distances, the probability to find the nucleons at these
distances for such potentials is substantially smaller. In
spite of the fact that all the potentials have short-
range repulsion, the density

Fig. 1. Charge density distribution profiles of 4He nucleus. Dotted
curves show the profiles for the case of point-like nucleons, solid
lines do the same for the case of non-point-like nucleons, and the
dashed line depicts the experiment from [11]

distributions do not manifest any “dips” at short di-
stances for all the three cases of potentials. This is in
concordance with the density distribution derived in [11]
from the experimental charge formfactor obtained ibi-
dem (with the model interpolation F (q2) ≈
≈ (1 − (a2q2)6) exp(−b2q2), where the parameters a =
0.316 fm and b = 0.681 fm). The dashed line in Fig. 1
shows the charge density distribution which is the Fouri-
er transform of this charge formfactor. To compare our
results with this density distribution obtained from the
experimental data for the formfactor, it is necessary,
as usual, to take into account that nucleons are of fi-
nite size. Let np(r) be the charge density distribution
of a proton (with normalization

∫
np(r)dr = 1), and

let nn(r) be that for a neutron (with the normalizati-
on

∫
np(r)dr = 0, since the neutron is neutral). In view

of the finite size of nucleons, the charge density distri-
bution in a 4He nucleus has the form of a convolution
product (see, for example, [12])

ρch(r) =
∫

ρp(r−r′)np(r′)dr′+
∫

ρn(r−r′)nn(r′)dr′,(16)

where the normalization is chosen to be
∫

ρch(r)dr = 1.
In Fig. 1, the solid lines depict the charge density distri-
butions calculated with the use of (16). In this case, the
charge density distributions of individual nucleons are
given by the expressions

np(r) =
3
√

3
πa3

p

exp(−2
√

3
r

ap
),
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Fig. 2. Difference between the density distributions of neutrons
and protons in a 4He nucleus

nn(r) =
3
√

3
πa3

1

exp(−2
√

3
r

a1
)− 3

√
3

πa3
2

exp(−2
√

3
r

a2
) (17)

which follow from the simple interpolations of the experi-
mental formfactors of nucleons [13,14]

GE,p(q2) ≈ (1 +
1
12

a2
pq

2)−2,

GE,n(q2) ≈ (1 +
1
12

a2
1q

2)−2 − (1 +
1
12

a2
2q

2)−2 (18)

with the parameters ap ≈ 0.811 fm, a2
1 ≈ 0.58 fm2,

a2
2 ≈ 0.70 fm2. In our calculations, we used the latest

value for the proton radius, ap ≈ 0.875 fm [15]. It follows
from the analysis of the charge density distributions with
the assumption that nucleons are not point-like particles
that the results for the potentials AT+ and K1 are closer
to the experimental dotted line than that for the potenti-
al M, since the latter potential has weaker repulsion than
the former ones. But, in all the cases, the calculated
density at the nucleus center is noticeably greater
than the experimental value. To achieve the complete
accordance with the experiment, it is necessary to use
potentials with even stronger repulsion and, perhaps,
more adequate models of the nucleon structure.

To show the difference between the distributions of
neutrons and protons (in the approximation of point-
like nucleons) more clearly, we depict the difference
ρn(r) − ρp(r) in Fig. 2. Due to the Coulomb repulsi-
on between protons, the density of neutrons at short
distances in a 4He nucleus is a little bit greater than
the density of protons. At larger distances, the situati-
on is inverse. This difference, relative to the density,
is at most ∼ 1.5%. The neutron density excess at the
nucleus center, being the most noticeable in the case of

the K1 potential, is related to the fact that the neutrons
in the singlet state can freely approach the short di-
stances due to the absence of repulsion in the K1 potenti-
al in this state. On the contrary, the potential AT+ has
the strongest repulsion in the singlet state among the
three considered ones, and, therefore, the neutron densi-
ty excess is noticeably less. The M potential takes the
intermediate position. The region of the proton densi-
ty excess extends from ∼ 1.4 fm to greater radii and
becomes practically model-independent farther than a
few fm, out of the range of nuclear forces.

Consider the formfactors of a 4He nucleus. They are
more sensitive to the short-range interaction between
nucleons as compared with the density distributions.
The formfactor of the distribution of protons is defined
as

Fp(q2) =
∫

ρp(r) exp(−i(qr))dr. (19)

A similar expression can be written for the formfactor
of neutrons Fn(q2), and also for the mass distribution
formfactor Fm(q2). To compare the calculated charge
formfactor with the experiment, it is necessary to take
into account that the nucleons are not point-like parti-
cles. Let GE,p(q2) denote the charge formfactor of a si-
ngle proton (GE,p(0) = 1), and let GE,n(q2) denote the
same for a neutron (GE,n(0) = 0, since the neutron is
neutral). Then the charge formfactor of the 4He nucleus
is

FE(q2) = Fp(q2)GE,p(q2) + Fn(q2)GE,n(q2), (20)

where Fp(q2) and Fn(q2) are found from the expressi-
ons of the type (19) containing the density distributi-
ons obtained for point-like nucleons. For the formfactors
of lone nucleons we used parametrizations (18). The
profiles of the absolute value of the charge formfactor
(20) versus the momentum transfer squared are given
in Fig. 3, both theoretical and experimental ones. All
the curves contain a typical “dip” in the dependence
on the momentum transfer squared at q2

min. We recall
the experimental value q2

min,exp = 10.4 fm−2 for the
4He nucleus. The formfactor “dip” position is directly
related to the amplitude of the scattering by the short-
range repulsion between nucleons [16]. For an attracti-
ve potential without short-range repulsion, a “dip” in
the formfactor is absent at all. For a potential wi-
th rather weak short-range repulsion, the “dip” takes
place at comparatively large q2

min, whereas the repulsive
core of a significant intensity results in the “dip” of the
formfactor dependence at less q2

min, which is the known
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fact and confirmed by the given examples as well. Note
that the calculated formfactors for the AT+ and K1
potentials are more close to the experiment than that
for the M potential. We believe that the introduction
of a short-range repulsion also into the K1 interacti-
on in the singlet state will improve the concordance of
the calculated formfactor with the experiment. Taking
into account that nucleons are not point-like, i.e. more
accurately treating the size of the nucleus, we make the
behavior of the formfactor at small momenta transfer
to be more close to the experimental one in compari-
son with that for the formfactor for point-like nucleons,
because the behavior of the formfactor at small momenta
transfer is uniquely bound with the r.m.s. radius of the
nucleus, 〈R2〉 1

2 = −6 ∂
∂(q2)F (q2)|q=0. At the same time,

the formfactor decreases at large momenta transfer, if we
take into account that the nucleons are not point-like,
and the concordance with the experiment becomes worse
within this range of momenta, which is the well-known
problem. The position of the “dip” of the profile of the
formfactor modulus is practically unchanged if one takes
into account that nucleons are not point-like particles,
because this “dip” is present due to the change of si-
gns in the formfactors Fp(q2) and Fn(q2) for point-like
nucleons.

Let us consider the pair correlation functions which
reflect, in particular, the nucleon correlations at short
distances. The proton-proton correlation function of the
4He nucleus is defined as

gpp(r) = 〈Ψ|δ(r− (r2 − r1))|Ψ〉. (21)

A similar expression is valid for the neutron-neutron pair
correlation function gnn(r) (substituting the numbers of
particles 1 and 2 by 3 and 4). The neutron-proton pair
correlation function is defined as follows:

gnp(r) = 〈Ψ|1
4

∑

(ij)6=(12),(34)

δ(r− (ri − rj))|Ψ〉. (22)

Since the role of the Coulomb interaction in the 4He
nucleus is not essential, the functions gpp(r) and gnn(r)
should be close to each other. But the neutron-proton
pair correlation function gnp(r) visibly differs from them,
because the essentially more attractive triplet potential
plays a more important role in the interaction between
a neutron and a proton, than between the identical
nucleons interacting in the singlet state, where a weaker
singlet potential acts (assuming the charge-independent
nuclear forces). Figure 4,a shows all three pair correlati-
on functions in the case of the M potential, Fig. 4,b does
the same for the AT+ potential, and Fig.

Fig. 3. Charge formfactor of a 4He nucleus versus the momentum
transfer squared. The dashed line depicts the interpolation of
experimental data [11] (the dots correspond to the experimental
values without error bars)

4,c depicts the results for K1. It is seen in all the cases
that, if a potential contains the short-range repulsion,
it manifests itself directly in the behavior of the pair
correlation functions at small distances in the form of
a “dip”. The decrease at small distances is absent only
in gpp(r) and gnn(r) for the K1 potential, because our
simplest model of interaction contains no repulsion in
the singlet state. We hope that the introduction of a
short-range repulsion into the improved versions of the
potential should make the profiles of the pair correlation
functions to be typical. It is important to emphasize that
the pair correlation functions reflect, to a great extent,
the behavior of the pairwise potentials, and they are very
similar to the squared modulus of the two-particle wave
function for the given potential. To confirm this fact, we
give the squared modulus of the deuteron wave functi-
on |ψD(r12)|2 ≡ gnp,D(r12) in Fig. 4 by dashed lines
(for respective potentials). They would almost coincide
with the correlation functions gnp(r) within the range
of distances from zero to about 2 fm, if it were not the
normalization factor (because of the contribution of large
distances, where the deuteron wave function decreases
slower due to the less binding energy of a deuteron).
Only for the K1 potential, there exists a visible di-
fference at short distances between the squared deuteron
wave function (almost zero in the region of the strong
core) and the pair correlation function gnp(r), which is
nonzero and has another behavior at short distances due
to the contribution of the singlet channel present in the
interaction between a neutron and a proton in a 4He
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a

b

c

Fig. 4. The pair correlation functions of a 4He nucleus for the
potentials M (a), АТ+ (b), and K1 (c). The dashed line shows the
squared deuteron wave function

nucleus (we recall that the singlet K1 interaction is
purely attractive).

It is suitable to deal with the pair correlation functi-
ons separately for the singlet or triplet state. In parti-
cular, the neutron-proton pair correlation functions are
defined as follows

g+
np,t(r)=

1
4

∑

(ij)6=(12),(34)

(
3
8
〈Φ1|δ(r−rij)(1+P̂r(ij))|Φ1〉+

+
1
8
〈Φ2|δ(r− rij)(1 + P̂r(ij))|Φ2〉+

+
√

3
4
〈Φ1|(−1)i+jδ(r− rij)(1 + P̂r(ij))|Φ2〉),

g−np,t(r)=
1
4

∑

(ij)6=(12),(34)

(
3
8
〈Φ1|δ(r−rij)(1−P̂r(ij))|Φ1〉+

+
1
8
〈Φ2|δ(r− rij)(1− P̂r(ij))|Φ2〉+

+
√

3
4
〈Φ1|(−1)i+jδ(r− rij)(1− P̂r(ij))|Φ2〉),

g+
np,s(r)=

1
4

∑

(ij)6=(12),(34)

(
1
8
〈Φ1|δ(r−rij)(1+P̂r(ij))|Φ1〉+

+
3
8
〈Φ2|δ(r− rij)(1 + P̂r(ij))|Φ2〉−

−
√

3
4
〈Φ1|(−1)i+jδ(r− rij)(1 + P̂r(ij))|Φ2〉),

g−np,s(r)=
1
4

∑

(ij)6=(12),(34)

(
1
8
〈Φ1|δ(r−rij)(1−P̂r(ij))|Φ1〉+

+
3
8
〈Φ2|δ(r− rij)(1− P̂r(ij))|Φ2〉−

−
√

3
4
〈Φ1|(−1)i+jδ(r− rij)(1− P̂r(ij))|Φ2〉). (23)

The sum over these functions results in (22) for gnp(r),
and only the total sum being normalized by unity. It is
also interesting to consider the neutron-proton correlati-
on functions for the triplet and singlet states, gnp,t ≡
g+

np,t + g−np,t and gnp,s ≡ g+
np,s + g−np,s, respectively.

The singlet and triplet proton-proton pair correlati-
on functions also can be formally subdivided into the
functions for the states with even and odd parity,

g+
pp,s(r) =

1
2
〈Φ1|δ(r− r12)(1 + P̂r(12))|Φ1〉,

g−pp,s(r) =
1
2
〈Φ1|δ(r− r12)(1− P̂r(12))|Φ1〉,
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g+
pp,t(r) =

1
2
〈Φ2|δ(r− r12)(1 + P̂r(12))|Φ2〉,

g−pp,t(r) =
1
2
〈Φ2|δ(r− r12)(1− P̂r(12))|Φ2〉, (24)

but it makes sense to consider simpler expressions for
the pair correlation functions without such a subdivi-
sion by parity, the singlet correlation function gpp,s ≡
g+

pp,s + g−pp,s = 〈Φ1|δ(r − r12)|Φ1〉 and the triplet one
gpp,t ≡ g+

pp,t + g−pp,t = 〈Φ2|δ(r − r12)|Φ2〉, since the
protons interact in the definite states. The sum of functi-
ons (24) results in expression (21) for gpp(r) (and only
the total function is normalized by unity). Expressions
for the neutron-neutron correlation functions differ from
(24) only by changing the numbers of particles (1 and 2
by 3 and 4), and their sum coincides with the expressi-
on for gnn(r). We emphasize that the analysis of the
structure characteristics of pair correlation functions is
important, because, in particular, the average potential
energy of the system can be expressed in terms of these
functions as

〈Ψ|V̂ |Ψ〉 =
∑

λ

∫
Vλ(r)gλ(r)dr, (25)

where the sum over λ means the summation over all the
pairs of nucleons, over the triplet and singlet states, and
over the parity states. In other words, each component of
the nuclear interaction is integrated with a correspondi-
ng pair correlation function. Thus, the contribution
of a potential into the energy depends not only on
the interaction potential profile, but on the correlati-
on function as well. Figure 5 depicts the pair correlati-
on functions (23) for the potentials M and AT+. It
is evident that the triplet correlation functions exceed
the singlet ones because the neutrons interact with the
protons mainly in the triplet state (due to the statisti-
cal weight of this state, being three times greater, and
because the triplet interaction between a neutron and
a proton is more efficient in energy). Note that identi-
cal nucleons interact mainly in the singlet state. This
is confirmed by small values of the triplet correlation
functions of identical nucleons. In addition, the neutron-
neutron correlation functions are close to the proton-
proton ones (because of the insignificant role of the
Coulomb interaction, as indicated above). It is interesti-
ng that, in the absence of the triplet interaction between
identical nucleons, the triplet pair correlation function
for these particles is, nevertheless, nonzero, though bei-
ng small. This manifests some influence of the other
nucleons of the nucleus on the given pair of nucleons,
i.e. not everything in the many-particle system

Fig. 5. Neutron-proton pair correlation functions of 4He: gnp,t(r)

– for the triplet state, gnp,s(r) – for the singlet state

with pairwise interactions can be reduced to the pair
correlations only.

The averaged characteristics of the pair correlation
functions are the correlation radii

rpp = (
∫

r2gpp(r)dr)
1
2 ,

rnn = (
∫

r2gnn(r)dr)
1
2 ,

rnp = (
∫

r2gnp(r)dr)
1
2 , (26)

i.e. the root-mean-square distances between protons,
neutrons, and between neutrons and protons, respecti-
vely (see Table 4). Using the distances between nucleons
(26), one can find the radii (see Table 2)

Rp =
1
2

√
r2
np +

3
4
r2
pp −

1
4
r2
nn,

Rn =
1
2

√
r2
np +

3
4
r2
nn −

1
4
r2
pp,

Rm =
1
4

√
4r2

np + r2
pp + r2

nn, (27)

but we calculated all the values presented in the tables
independently from one another.

T a b l e 4. Root-mean-square distances between the
nucleons in the 4He nucleus

Potential М AT+ K1
rpp, fm 2.368 2.401 2.403
rnn, fm 2.357 2.391 2.385
rnp, fm 2.273 2.305 2.336
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Fig. 6. Momentum distribution of protons in a 4He nucleus.
The experimental data (the squares with error bars) and the
interpolation of the data (shown by the dashed line) are taken
from [18]

Note that the distance between a neutron and a
proton is shorter (due to the stronger attractive tri-
plet interaction) than the distances between identical
particles (interacting via the weaker attractive singlet
interaction). As mentioned above, a small difference
between rpp and rnn is related to a minor role of the
Coulomb repulsion between protons (as a result, rpp >
rnn).

The momentum distributions of protons, np(k), and
neutrons, nn(k), [17, 18] are the important structure
functions of a 4He nucleus. In terms of these functi-
ons, the average kinetic energy looks as

〈K̂〉 = 2(
∫

k2

2mp
np(k)dk +

∫
k2

2mn
nn(k)dk ). (28)

By definition,

np(k) = 〈Ψ̃|1
2

2∑

i=1

δ(k− (ki −Pc.m))|Ψ̃〉, (29)

where the wave functions are in the momentum
representation and are normalized by unity, and Pc.m

is the center-of-mass momentum. A similar definition
is valid for nn(k) as well (with the sum over the thi-
rd and fourth particles). Since the interaction between
protons differs from that between neutrons by only
the Coulomb potential slightly influencing (in compari-
son with the nuclear forces) the nucleus structure, the
momentum distributions are to be almost identical both
for neutrons and protons. Figure 6 shows the momentum

distribution of protons for the potentials M, AT+, and
K1. The dashed line is the interpolation [18] of the
experimental data for the proton momentum distributi-
on in a 4He nucleus. It is seen that, for low k2, the
momentum distributions are practically the same for all
the potentials and coincide with the experimental data.
This is explained by the correspondence between the
small momenta and large distances of the system, i.e.
the asymptotics of the wave function of a 4He nucleus.
Since the asymptotics of the wave function is practi-
cally model-independent and is determined by the bi-
nding energy of the nucleus (approximately the same for
all the potentials), the momentum distributions at low
momenta have almost the model-independent behavior.
On the other hand, at higher k2 because of the essenti-
al difference in the behaviors of potentials at short di-
stances (i.e. due to the repulsion of different intensities),
the momentum distributions reveal noticeably different
dependences. The best concordance with the experiment
(on the average) is appeared to be for the proposed
potential K1. Note that the nucleon momentum distri-
butions evidently show two regimes in their dependences
on the momentum, which reflects the averaged behavior
of potentials (low momenta) and the short-range repulsi-
on (high momenta). Between the two regimes, there exi-
sts a certain “dip” in theoretical curves. One should keep
in mind that the main contribution to the kinetic energy
that can be expressed through the momentum distri-
butions is made by just comparatively high momenta
k2 ∼ 10 fm−2 due to the additional multiplier ∼ k4.
Some of the known potentials (e.g., the M potential)
appear to be absolutely inadequate for the description of
this part of the momentum distribution. This potential
has insufficiently rapid variation at short distances, in
particular a deficient repulsion, in order to be able to
reproduce the momentum distribution at k2 ∼ 10 fm−2.

5. Summary

To summarize, we notice the main results. In this
work, the ground state of the 4He nucleus is studied
with high controllable precision within the variational
method, applying the optimization of the Gaussian bases
and using the efficient representation without isospin.
The energy and the main structure characteristics of
this four-nucleon nucleus are studied for a few nuclear
interaction potentials. We have obtained the best results
for the binding energy and radii in comparison with
those available for the commonly used Minnesota and
Afnan-Tang potentials. The correspondence between the
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structure functions of the nucleus and the pair interacti-
on potentials behavior, in particular at short distances,
is found. Starting from the idea to construct the nuclear
potential for the simultaneous description of the few-
nucleon data at low energies, we propose a simple preli-
minary version of a new NN -interaction potential whi-
ch qualitatively correctly describes both the main low-
energy parameters of two nucleons and the energies of
three- and four-nucleon systems. It is found that the
main structure functions of the four-nucleon system are
also more satisfactorily described by this potential. We
expect that the further efforts in this direction would
enable to have more accurate simultaneous description
of the main low-energy parameters of the few-nucleon
systems and believe that such a potential might be used
to treat more complicated nuclei.

With a profound gratitude, the authors think of the
collaboration with A.I.Steshenko on the initial stage of
this work.
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СТРУКТУРНI ОСОБЛИВОСТI ЯДРА 4Не
У МIКРОСКОПIЧНОМУ ПIДХОДI

Б.Є. Гринюк, Д.В. П’ятницький, I.В. Сименог

Р е з ю м е

З високою точнiстю дослiджено енергiї, розмiри i основнi стру-
ктурнi функцiї ядра 4Не в рамках варiацiйного методу з опти-
мiзованими гаусоїдними базисами для потенцiалiв Мiннесо-
та, Aфнана–Tанга i запропонованого нового варiанта NN -
потенцiалу К1, який узгоджує основнi низькоенергетичнi па-
раметри двох нуклонiв i енергiї три- та чотиринуклонних ядер.
Проведено аналiз структурних особливостей ядра 4Не. Для до-
сягнення прецизiйної точностi розрахункiв малонуклонних си-
стем використано переваги представлення без iзоспiну.
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