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The flowing of small microcurrents in a thermal complex plasma
which exist under the interaction of dust grains or in the probe’s
measurements has been considered. A change of the ionization
degree of the plasma and the formation of nonequilibrium charge
carriers during the flowing of a direct microcurrent have been
demonstrated. The functional connection between the voltage
drops on the plasma layer and on the plasma—dust grain or
plasma—probe contact has been established.

1. Introduction

The combustion of a metal powder in the oxygen
medium is a perspective method to obtain high-purity
submicron metal oxides. The low-temperature plasma
with condensed dispersed phase is formed in the region
of condensation of the products of combustion of a metal
powder cloud. Such a plasma consists of the gas at
atmospheric pressure and solid or liquid dust grains
resulting from the volume condensation or being the
particles of a not-burnt fuel. The absolute temperature
of such a plasma is usually about 1500–3500 K (0.1–
0.3 eV), and the system is considered isothermal. It
usually contains easily ionizable atoms of alkali metals as
a natural impurity or in the form the special additional
agents which are the basic suppliers of free electrons and
singly charged positive ions.

Charged dust grains interact intensely with the
plasma and with one another. The interphase interaction
or the interaction of charged dust grains are
accompanied by the electric current flow. Therefore,
the knowledge of the mechanisms of the current flow
in a plasma is necessary both for the calculations
of parameters of the interaction of dust grains with

a plasma and with one another and for the correct
interpretation of the probe’s measurements.

The problem of the electric current in a plasma
has been studied for a long time since Langmuir who
was the first to propose the theory of an electrical
probe in the plasma, but for the collisionless plasma
within the orbit-limited probe model [1–5]. The current
flow in the thermal plasma (the theory of probes at
elevated pressures [6–8]) was studied mostly with regard
for magneto-hydrodynamic generators, where the basic
problem was the increase of the current up to the peak
value.

The dependence of the ionization equilibrium on
the electric microcurrent in a thermal plasma has been
insufficiently studied till now. The present paper is
devoted to the study of the influence of the flowing of
small direct currents, which do not heat a plasma, on
the nonequilibrium ionization in a thermal plasma by
the example of the interaction of charged metal planes
(probe electrodes).

2. Statement of the Problem

2.1. Ionization equilibrium in a thermal plasma

The ionization in the thermal plasma occurs due to
the collisions between gas particles. Therefore, such a
plasma is strongly collisional unlike a low-pressure gas-
discharge plasma. The thermal plasma is characterized
by the equality of the temperatures of electrons, ions,
and neutral particles. The equilibrium ionization in any
microvolume of such a plasma is described by the Saha
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equation [9, 10]

neni

na
=

gi

ga
νe exp

−I

T
≡ KS , (1)

where ne, ni, and na are the number densities
of electrons, ions, and atoms, respectively; νe =
2

(
meT/2π~2

)3/2 is the effective density of electron
states; gi and ga are the statistical weights of ions and
atoms; I is the potential of ionization of atoms of the
additional agent; T is the equilibrium temperature; me

is the electron mass; ~ is the Planck constant; and KS

is the Saha constant.
Here, the conditions of conservation of the mass and

the charge

ne = ni = n0, ni + na = nA (2)

should be fulfilled, where n0 is the nonperturbed number
density, and nA is the number density of the easily
ionizable additional agents. In the low-temperature
plasma, the ionization degree is so low that ni ¿ na ∼
nA.

The existence of any external perturbation leading
to an increase or decrease of the ionization degree of
the plasma causes a displacement of the ionization
equilibrium that can be described by the thermodynamic
parameter of the interphase interaction [11] ψ = µe+µi−
µa, where µj is the chemical potential of the component
j. In the low-temperature plasma, at a low degree of
ionization, the chemical potential of atoms changes a
little under the external action as na ≈ nA. Therefore,
the parameter ψ depends only on the changes of the
chemical potentials of electrons and ions ψ = δµe + δµi.

In the equilibrium case, the nonperturbed number
density in the low-temperature plasma is equal,
according to Eq. (1), to

n0 =
√

nAKS = νe exp(µe0/T ). (3)

The presence of a perturbation leads to a change
of this number density. In this case, the ionization
equilibrium is described by the modernized Saha
equation

n2
q/nA = KS exp(ψ/T ), (4)

where nq =
√

neni is the quasinonperturbed number
density of charge carriers.

Respectively, the quasinonperturbed number density
looks as

nq = n0 exp(ψ/2T ). (5)

If the isolated electrodes are the perturbing factor,
the ionization equilibrium displacement, being a result
of the exchange of charges with the equilibrium
electrode (i.e. without current), can be described by the
introduction of a concept of bulk plasma potential ψ =
−eϕpl [11,12]. The bulk plasma potential characterizes
the charge of the whole plasma volume and depends
on the potential barriers on the phase boundaries. In
particular, the bulk plasma potential can by defined
by the expression [12] ϕpl = −2(T/e) tanh (eφs/4T ) for
semiinfinite plasmas with a potential barrier eφs on the
interface and by

ϕpl = −2
T

e
tanh

(
eφ1 + eφ2

4T

)
(6)

for the plasma layer restricted by two flat electrodes
with potential barriers eφ1 and eφ2. As long as the bulk
plasma potential remains constant or is a solution of
the Laplace equation ∆ϕpl = 0, the application of the
Poisson—Boltzmann theory is possible. Thus, the total
(measurable) value of the potential is ϕ = φ+ϕpl, where
φ is the solution of the Poisson equation.

2.2. Balance of currents on the isolated solid
surface

The potential barrier on the solid-plasma boundary is
determined by the balance of the currents that flow
through the surface of a dust grain or a probe electrode.
In the thermal plasma, there are the following currents:
(i) For the Richardson—Dushman thermionic emission
from the surface,

JT
e = −4πemeT

2

(2π~)3
exp

(
−W

T

)
, (7)

where J is the density of the electric current in the
direction from the electrode to the plasma; W is the
electron work function from the metal into the plasma,
which is less than the work function into the vacuum
W = Wm − (1/4)T ln(mi/me) [13].
(ii) The backflow of electrons absorbed by the electrode
surface,

Jabs
e = (1/4)enesvTe, (8)

where vTe =
√

8T/πme is the thermal velocity of
electrons, and nes is the electron number density at the
electrode surface.
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(iii) The current density of the surface recombination of
ions,

J rec
i = −(1/4)γsenisvTi, (9)

where vTi =
√

8T/πmi is the thermal velocity of
ions, nis is the surface number density of ions, γs

is the surface recombination coefficient γs = [1 +
(gi/ga) exp(−Eion

s /T )]−1; Eion
s = I − W − ψs is the

surface ionization energy; and ψs = T ln(nesnis/n2
0)

is the parameter of the interphase interaction at the
surface.
(iv) The current density of the surface ionization of
atoms,

J ion
a = (1/4)βsenasvTa, (10)

where vTa is the thermal velocity of atoms (vTi ≈ vTa),
nas ∼ nA is the surface number density of atoms,
and βs is the surface ionization coefficient βs = [1 +
(ga/gi) exp(Eion

s /T )]−1.
In the equilibrium state, the detailed balancing

principle is true, i.e. the current densities (7)—(10) in
pairs should be equal to

JT
e = −Jabs

e and J rec
i = −J ion

a , (11)

which allows us to determine the potential of an isolated
electrode φs0. The floating potential of the electrode is
defined by the sum

ϕf = φs0 + ϕpl, (12)

where the bulk plasma potential ϕpl depends on the
potentials of both electrodes bounding the plasma layer
[Eq. (6)].

The existence of the spatial charge in the plasma
at the electrode surface leads to the nonequilibrium
ionization. This case is considered in [14,15], where it
is shown that the surface number densities of electrons
and ions are as follows:

nes = nq
exp(2eφs/T )

2 cosh(eφs/T )− 1
, (13)

nis = nq
exp(−2eφs/T ) + 2 sinh(eφs/T )

2 cosh(eφs/T )− 1
. (14)

The potential of an isolated electrode with respect to
the bulk plasma potential can be determined, by basing
on the balance of currents, Eq. (11). In view of Eqs. (13)
and (14), this potential is a solution of the equation [13]

nq

νe
exp

[
W + 2eφs0

T

]
= 2 cosh

(
eφs0

T

)
− 1. (15)

The connection of the electrodes bounding the
plasma layer to an external power supply causes the
current flow through the layer under the action of a
voltage drop on it and due to the spatial inhomogeneity
of the ionization degree, which is accompanied by a
change of the number densities, Eqs. (13) and (14).
In the present paper, we study the influence of the
nonequilibrium ionization on the flowing of a direct
current through the plasma layer in the limit of small
currents which do not heat the plasma.

3. Displacement of Ionization Equilibrium by
a Current

3.1. Balance of the surface currents and the
conduction currents

The flowing of an electric current through the plasma
is a complex process which is accompanied by both
the injection of electrons into the contact area and a
change of the plasma ionization degree. The current of
the external circuit Jc = Je + Ji is provided by the
imbalance of currents (11) on the surface of electrodes,

Je = JT
e

(
1− nes

nes0

)
and Ji = J ion

a

(
1− nis

nis0

)
,

(16)

where nes0 and nis0 are, respectively, the surface number
density of electrons [Eq. (13)] and ions [Eq. (14)] without
current.

The thermionic current (7) remains constant at the
surface of the positive electrode, whereas the current
owing to the absorption of electrons (8) increases,
providing the current of the external circuit. The current
of the recombination of ions (9) decreases to the value
J rec

i = 0, and the current of the external circuit
is supported by the current caused by the ionization
of atoms, which has a constant value in the low-
temperature plasma. Therefore, the current arisen from
the ionization of atoms J ion

a is the saturation current for
the positive electrode.

The current owing to the absorption of electrons
decreases to the value Jabs

e = 0 at the surface of the
negative electrode, and the current of the external circuit
is maintained by the thermionic current. Therefore,
the thermionic current JT

e is the saturation current
for the negative electrode. The current caused by the
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recombination of ions increases, which ensures the
current flow in the external circuit.

The electroneutrality of plasma is disturbed only in
the space charge region at the electrode surface. The
rest of the volume of the plasma remains electroneutral.
The electroneutrality of plasma means that the following
relations should be valid outside of the space charge
region:

ne = ni = nq, ∇ ·E = 0. (17)

In addition, while the current of the external circuit
is less than the saturation currents, it is completely
provided by the imbalance of currents Eq. (11) and
should not cause a spatial change of the electron and ion
number densities. Therefore, the current of the external
circuit should be provided by the conduction currents

Je = σeE and Ji = σiE, (18)

where, for the plasma layer bounded by flat electrodes,
E = δU/d, δU is the voltage drop on the plasma
layer, d is the layer thickness; σe(i) = eKe(i)nq is the
electron (ion) conductivity, and Ke(i) is the electron
(ion) mobility.

3.2. Change of the ionization degree of the
plasma as a result of the current flow

Let the voltage of the external power supply be set in
such a manner that electrode 1 is positive, and electrode
2 is negative. The voltage drops on the contacts make
δφ1 > 0 and δφ2 < 0. Thus, φ1 = φs0 + δφ1 and
φ2 = φs0 + δφ2. The total voltage U = δU + δφ1 − δφ2.

Equations (16) and (18) connect the voltage drop on
the contact δφ and the voltage drop on the plasma layer
δU . Let us assign

Ωe =
exp

[
2
e(φs0 + δφ)

T

]

2 cosh
[
e(φs0 + δφ)

T

]
− 1

,

Ωi =
exp

[−2e(φs0 + δφ)
T

]
+ 2 sinh

[
e(φs0 + δφ)

T

]

2 cosh
[
e(φs0 + δφ)

T

]
− 1

.

Then, for the positive contact,

σe

JT
e

δU

d
= 1− Ωe

nq

nes0
, (19)

σi

J ion
a

δU

d
= 1− Ωi

nq

nis0
. (20)

Respectively, for the negative contact, it is necessary to
change the sign of the right parts of the equations.

However, these two equations cannot provide for
the identical dependence between δφ and δU , if the
quasinonperturbed number density nq remains the
constant. The voltage drop on the plasma—electrode
boundary caused by the electron current Je provides
for a change of the potential barrier by the value
δφ [Eq. (19)]. At such a change of the barrier, the
ion number density caused by the imbalance of the
ionization current and the recombination current is
more than the one, which is necessary for the flowing
of the ionic current Ji, or it is less. The intensity
of the collisional ionization in the thermal plasma is
proportional to nenA, and the volumetric recombination
rate is proportional to neni. Therefore, the change of the
electron concentration does not influence (if one does
not consider a change of the volumetric recombination
coefficient) the ionization degree of the plasma as it
affects the ionization and recombination rates. At the
same time, the increase of the ion number density leads
to an increase of the recombination rate and a decrease of
the ionization degree of plasma. Moreover, the decrease
of the ion number density leads to an increase of the
ionization degree of the plasma due to the decrease of
the recombination rate.

Therefore, in Eqs. (19) and (20) instead of the
constant value nq which is determined by the bulk
plasma potential, it is necessary to use some other
value nqs which provides for the conformity of the
currents through the barrier with the currents through
the plasma layer. Thus, we obtain the equation for
nqs(δφ), having excluded the voltage drop on the plasma
layer δU from Eqs. (19) and (20):

nqs =
J ion

a /σi − JT
e /σe

J ion
a

σi

Ωi

nis0
− JT

e

σe

Ωe

nes0

. (21)

The values of nqs(δφ) are different for the positive
and negative voltage drops δφ. As an example, Fig.
1 presents the dependence of the ratio of nqs to the
equilibrium value nq0 on the voltage drop on the contact.
In this case, the following parameters of the plasma
are used: the isothermal temperature T = 0.2 eV (2300
K); the electron work function of a metal into vacuum
Wm = 4.5 eV, that provides the thermionic current
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Fig. 1. Dependences of the relative quasinonperturbed number
density at the electrode surface on the voltage drop on the contact:
light markers for δφ1 > 0 and dark markers for δφ2 < 0

density JT
e ≈ −14 kA/m2. Here, we take three different

number densities of the additional agent, potassium,
(I = 4.34 eV): nA1 = 1018m−3, nA2 = 1020m−3, and
nA3 = 1022m−3. This provides the current densities
of the ionization of atoms J ion

a1 ≈ 17A/m2, J ion
a2 ≈

130A/m2, and J ion
a3 ≈ 2 kA/m2.

It should be noted that the ionization degree can
simultaneously be incremented at both contacts or be
simultaneously decreased. Nevertheless, in any case,
there is a gradient of the quasinonperturbed number
density which is accompanied by the gradient of the
chemical potential [Eq. (3)]. This gradient causes the
ambipolar diffusion of electrons and ions which can be
directed along the field or against it.

3.3. Voltage drop on the plasma layer and on the
contact

Any of Eq. (19) or Eq. (20) after the replacement nq

by nqs obtained from Eq. (21) allows us to determine
the relation between the voltage drops on the contact
and the plasma layer. In the case where the potential of
the isolated electrodes φs0 ∼ 0, it is possible to use the
following asymptotic expressions:

δφ1 ≈ T

e
ln

(
1− σe

JT
e

δU

d

)
= −T

e
ln

(
1− σi

J ion
a

δU

d

)
,

Fig. 2. Dependences of the voltage drop on the contact on the
voltage drop on the plasma layer with the additional agent,
potassium, at T = 0.2 eV; and with the additional agent, caesium,
with nA = 1023m−3 at the temperature T = 0.1 eV

δφ2
∼= T

e
ln

(
1 +

σe

JT
e

δU

d

)
= −T

e
ln

(
1 +

σi

J ion
a

δU

d

)
.

(22)

The limiting of the external current by the saturation
currents leads to the limiting of the voltage drop on
the plasma layer. As follows from Eq. (22), the current
through the positive electrode imposes limiting δU <
J ion

a d/σi, and the current through the negative electrode
imposes the limiting δU < −JT

e d/σe.
In Fig. 2, the dependence δφ(δU) is presented for the

plasma parameters which are the same as those in Fig.
1. The voltage drop on the contact is usually much less
than the voltage drop on the plasma layer. Therefore,
the dependence is linear in the limit of the external
supply voltages under consideration. This does not hold,
when the conduction current of the plasma exceeds the
currents through the electrode surface. For example, if
the additional agent, caesium, (I = 3.9 eV) with the
large number density nA = 1023m−3 is used, and the
temperature is lowered to T = 0.1 eV, δφ > δU in the
range of small values of the external supply voltage.

4. Diffusion of Nonequilibrium Charge
Carriers

4.1. Continuity equations

The imbalance of the surface current densities (11) leads
to a change of the ionization degree of the plasma
near the electrode surface, when the current flows
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through it. The change of the surface value of the
quasinonperturbed number density defined by (21) leads
to the spatial distribution of nq(r), which causes the
ambipolar diffusion of nonequilibrium charge carriers
[14].

Let us consider the continuity equations for the
electron and ion current densities in the plasma layer
[16, 17]

∂ne

∂t
=

1
e

∂

∂r
Je + βV nenA − γV neni,

∂ni

∂t
= −1

e

∂

∂r
Ji + βV nenA − γV neni, (23)

where βV is the alkali-metal atom ionization rate, and γV

is the electron-ion volumetric recombination coefficient.
Here, it is considered that the ionization degree in the
low-temperature plasma is low enough to assume the
atom number density to be equal to the number density
of the additional agent na ∼ nA.

Outside the space charge region, ne = ni = nq.
Therefore, the current densities are as follows:

Je = σeE + eDe
∂

∂r
nq, Ji = σiE − eDi

∂

∂r
nq. (24)

Then, it follows from Eqs. (23) and (24) in the stationary
case that

De
∂2

∂r2
nq + Ke

∂

∂r
(nqE) + G = 0, (25)

Di
∂2

∂r2
nq −Ki

∂

∂r
(nqE) + G = 0, (26)

where G = βV nqnA − γV n2
q.

We now multiply Eq. (25) by σi and Eq. (26) by σe

and combine both equations as

σiDe + σeDi

σe + σi

∂2

∂r2
nq +

σiKe − σeKi

σe + σi

∂

∂r
(nqE) + G =

D
∂2

∂r2
nq + K

∂

∂r
(nqE) + G = 0, (27)

where D is the ambipolar diffusion coefficient, and K is
the ambipolar drift mobility:

D =
niDiDe + neDeDi

neDe + niDi
= 2

DeDi

De + Di
, (28)

K =
niKiKe − neKeKi

neKe + niKi
= 0. (29)

As follows from Eq. (29), the ambipolar mobility is
equal to zero in the electroneutral plasma, i.e. outside
the space charge region, and the external electric field
does not influence the movement of charge carriers.
It is determined by the attractive forces between the
electrons and ions which considerably surpass the forces
applied to the charges by the external field. Therefore,
the action of the field on the electrons and ions, whose
number densities are equal, is counterpoised. Without
the current, G = βV nq0nA − γV n2

q0 = 0; therefore,
Eq. (27) can be reduced to the form

λ2
R

d2

dr2

(
nq

nq0

)
−

(
nq

nq0

)2

+
nq

nq0
= 0, (30)

where λR =
√

D/βV nA is the recombination length.
In the thermal plasma at atmospheric pressure, λR ∼
0.01− 0.1 µm.

4.2. Space distribution of nonequilibrium
carriers caused by the current flow

Let us present the quasinonperturbed number density
in the form of a deviation from the equilibrium value
nq = nq0 + δnq. Respectively, the ratio nq/nq0 = 1 +
δnq/nq0 ≡ 1 + ξ. Then Eq. (30) is reduced, after the
change x = r/λR, to

ξ′′ − ξ2 − ξ = 0. (31)

Having lowered the order of Eq. (31), we obtain the
equation with parted variables which can be presented
as
∫

dξ√
(2/3)ξ3 + ξ2 + C1

= ±x + C2. (32)

We note that our aim is not to find the exact solution
to Eq. (31) which can be expressed in terms of the
elliptic functions [18], but to define the most simple
function describing this solution. At first, let us consider
the case |ξ| ¿ 1, when we can neglect the quadratic
term in Eq. (31). The solution of the equation ξ′′ = ξ
is the function ξ = C1 exp(x) + C2 exp(−x). For the
semiinfinite plasma, ξ = ξ1 exp(−x). The gauge of the
solution is defined by the recombination length which is
much less than the screening length rD ∼ 1 µm. The
thickness of the plasma layer d should be much more
than the screening length, i.e. d À λR. Therefore, the
solution for |ξ| ¿ 1 can be presented as

ξ = ξ1 exp(−x) + ξ2 exp(x− d/λR). (33)
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For great values of ξ, it is possible to use a
superposition of solutions for the semiinfinite plasma,
which means C1 = 0 in Eq. (32). Then the solution of
Eq. (32),

ξ =
3
2

1
cosh2(x/2 + C2)

,

can be presented, after the definition of the constant
from the requirement ξ(0) = ξ1, as

x

2
= ln

(√
ξ1

ξ
× 1 +

√
1 + 2ξ/3

1 +
√

1 + 2ξ1/3

)
.

This allows us to put down the superposition of the
solutions for each electrode in the form of an equation
which similar to Eq. (33),

ξ = ξ1 exp(−x)δ2
1 + ξ2 exp(x− d/λR)δ2

2

or

nq = nq0 + (nq1 − nq0) exp
(−r

λR

)
δ2
1+

(nq2 − nq0) exp
(

r − d

λR

)
δ2
2 (34)

in the dimensional form, where nq1 and nq2 are
determined by Eq. (21). The equilibrium value (without
current) of nq0 is determined by the bulk plasma
potential [Eq. (6)]: nq0 = n0 exp{tanh[e(φ1 + φ2)/4T ]},

δ1 ≈
1 +

√
1 +

2
3

(
nq1

nq0
− 1

)
exp

(−r

λR

)

1 +

√
1 +

2
3

(
nq1

nq0
− 1

) ,

δ2 ≈
1 +

√
1 +

2
3

(
nq2

nq0
− 1

)
exp

(
r − d

λR

)

1 +

√
1 +

2
3

(
nq2

nq0
− 1

) . (35)

It should be noted that δ1 ∼ δ2 ∼ 1 in most cases.
Therefore, we have presented the solution in a form
which allows using the solution of the linearized equation
[Eq. (33)] with regard for possible small nonlinearities.

The space distribution of nonequilibrium charge
carriers (34) defines their ambipolar diffusion and
depends on the current flowing through the plasma
layer. Thus, the nonequilibrium ionization is promptly
damped, because the gauge of the spatial changes of ξ is
defined by the recombination length λR ¿ rD ¿ d.

5. Conclusion

The flowing of a direct microcurrent through a
thermal plasma at atmospheric pressure is accompanied
by a change of the ionization degree of the
plasma and establishes the spatial distribution of
nonequilibrium electrons and ions along the streamlines.
The nonequilibrium ionization caused by the current
flow is promptly damped, while removing from the
solid—plasma contact, but influences the relation
between the voltage drops on the contact and on the
plasma layer.

The presented model of the nonequilibrium
ionization of a thermal plasma under the flowing of
a direct current is applicable only to the currents which
are smaller than the saturation currents that correspond
to the limit of the voltage drop on the plasma layer:
JT

e d/σe < δU < J ion
a d/σi. If the current of the external

circuit exceeds the saturation current, the additional
ionization of the plasma caused by the injection of charge
carriers will occur.
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ПРОТIКАННЯ ПОСТIЙНОГО МIКРОСТРУМУ
У ТЕРМIЧНIЙ ПЛАЗМI

В.I. Вишняков

Р е з ю м е

Дослiджено протiкання малих мiкрострумiв у термiчнiй ком-
плекснiй плазмi, котрi iснують за умови взаємодiї частинок
або у зондовiй дiагностицi. Продемонстровано змiну ступе-
ня iонiзацiї плазми та утворення нерiвноважних носiїв заря-
ду под дiєю мiкроструму. Встановлено функцiональний зв’язок
мiж падiнням напруги на шарi плазми i на контактi плазма–
частинка або плазма–зонд.
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