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The surface partition of large clusters is studied analytically within
a framework of the “Hills and Dales Model”. Three formulations
are solved exactly by using the Laplace—Fourier transformation
method. In the limit of small amplitude deformations, the “Hi-
lls and Dales Model” gives the upper and lower bounds for the
surface entropy coefficient of large clusters. The found surface
entropy coefficients are compared with those of large clusters wi-
thin the 2- and 3-dimensional Ising models.

1. Introduction

The surface entropy of large clusters was introduced by
Fisher in his droplet model (FDM) [1]. During last forty
years, the FDM has been successfully used to analyze
the condensation of a gaseous phase (droplets of all si-
zes) into a liquid. The systems analyzed with the FDM
are numerous and involve the nuclear multifragmentati-
on [2], nucleation of real fluids [3], the compressibility
factor of real fluids [4], clusters within the Ising model
[5], and percolation clusters [6].

Fisher postulated that the leading contribution to
the surface entropy is proportional to the surface S, i.e.
ωS (in dimensionless units) based on the study of the
combinatorics of clusters. The coefficient ω is surface
energy coefficient σo(Tc) per one constituent taken at
the critical temperature Tc. The surface entropy was
studied recently in our paper [7]. There we developed
the “Hills and Dales Model” (HDM) which is a stati-
stical model of surface deformations that obeys the
volume conservation of clusters under consideration.
Using the novel mathematical method, the Laplace—
Fourier transform [8], we were able to find the grand
canonical surface partition (GCSP) of the HDM analyti-
cally. For vanishing deformations, we obtained the upper
limit for the surface entropy coefficient ω of large
clusters to be ω ≈ 1.06009 (in dimensionless units),
i.e. about 6 % larger than that according to Fisher’s
postulate.

In the grand canonical formulation, the cluster
volume is conserved on the average, but, in order
to apply the HDM to small and finite clusters, it is
necessary to consider a more strict form of the volume
conservation. Therefore, in the present paper, we consi-
der a specially constrained canonical formulation of the
HDM and obtain the lower estimates for the surface
entropy of finite and large clusters. For the limit of
vanishing deformations, we also introduce the semi-
grand canonical ensemble which occupies an intermedi-
ate place between the grand canonical and canoni-
cal surface ensembles. With the help of the Laplace—
Fourier transform technique [8], the constrained canoni-
cal surface partition (CCSP) and the semigrand canoni-
cal surface partition (SGCSP) are evaluated exactly for
any volume of cluster. For large clusters, the leading
contribution and its corrections are found analytically
for the CCSP and SGCSP. The obtained values for
the ω-coefficient are compared with the corresponding
values for the 2- and 3-dimensional Ising models for di-
fferent lattice geometries. It is shown that the values
of ω within all the 2- and 3-dimensional Ising models lie
between the supremum and infimum found by the HDM.

The paper is organized as follows. In Sect. 2, we
formulate three ensembles for surface deformations wi-
thin the HDM framework and solve them analytically
by the Laplace—Fourier transform technique. Section 3
is devoted to the analysis of isochoric ensemble singulari-
ties and to the derivation of the upper estimates of
the surface entropy coefficient. The lower estimates for
the surface entropy coefficients are found and compared
to the corresponding 2- and 3-dimensional Ising lattice
values in Sect. 4. The conclusions are formulated in Sect.
5.

2. Hills and Dales Model

The HDM is a statistical model of surface deformations.
We impose a necessary constraint that the deformati-
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ons should conserve the total volume of the cluster of
A-constituents. As in our previous paper [7], the main
interest is focused on the deformations of vanishing
amplitudes. This is sufficient to find both the absolute
supremum and the absolute infimum for the ω-coefficient
of the HDM. In this case, the shape of a deformation
cannot be important for our consideration, so we can
choose the regular one. For this reason, we consider
cylindrical deformations of positive height hk > 0 (hi-
lls) and negative height −hk (dales) with k-constituents
at the base. For simplicity, it is assumed that the top
(bottom) of a hill (dale) has the same shape as the
surface of the original cluster of A-constituents. We also
assume that (i) the statistical weight of deformations
exp (−σo|∆Sk|/s1/T ) is given by the Boltzmann factor
due to a change of the surface |∆Sk| in units of the
surface per constituent s1; (ii) all hills of heights hk ≤ Hk

(Hk is the maximal height of a hill with k-constituents
at the base) have the same probability dhk/Hk besides
the statistical one; (iii) assumptions (i) and (ii) are valid
for the dales.

These assumptions are not too restrictive and allow
us to simplify the analysis and to find the one-particle
statistical partition of a deformation of the k-constituent
base as a convolution of two probabilities discussed
above:

z±k ≡
±Hk∫

0

dhk

±Hk
e−

σoPk|hk|
T s1 = Ts1

[
1− e−

σoPkHk
T s1

]

σoPkHk
, (1)

where the upper (lower) sign corresponds to hills (dales).
Here, Pk is the cylinder base perimeter. Our next step
is to find the geometrical partition (degeneracy factor)
or the number of ways to place the center of a gi-
ven deformation on the surface of an A-constituent
cluster which is occupied by the set of {n±l = 0, 1, 2, ...}
deformations of the l-constituents base.

For the grand canonical surface partition (GCSP),
the desired geometrical partition can be given in the
excluded-volume approximation [7] as

Ggc =
[
SA −

Kmax∑
k=1

k (n+
k + n−k ) s1

]
s−1
1 , (2)

where s1k is the area occupied by a deformation of the
k-constituent base (k = 1, 2, ...), SA is the full surface
of the cluster, and Kmax(SA) is the A-dependent size of
the maximal allowed base on the cluster. It is clearly
seen now that the first multiplier on the right-hand si-
de (r.h.s.) of (2) corresponds to the available surface
to place the center of each of {n±k } deformations that

exist on the cluster surface. It is necessary to impose
the condition Ggc ≥ 0 which ensures that the deformati-
ons do not overlap. Equation (2) is the van der Waals
excluded-volume approximation usually used in statisti-
cal mechanics at low particle densities [9–13] and can
be derived for objects of different sizes in the spirit of
Ref. [14].

According to Eq. (1) the statistical partition for the
hill with a k-constituent base matches that of the dale,
i.e. z+

k = z−k , and, therefore, the GCSP

Zgc(SA) =
∞∑

{n±k =0}




Kmax∏

k=1

[
z+
k Ggc

]

n+
k !

n+
k

[
z−k Ggc

]

n−k !

n−k

 Θ(s1Ggc) (3)

corresponds to the conserved (on the average) volume of
the cluster because the probabilities of a hill and a dale
of the same base are identical. The Θ(s1Ggc)-function
in (3) ensures that only the configurations with positi-
ve value of the free surface of a cluster are taken into
account, but this makes the calculation of the GCSP
very difficult.

For small and finite clusters, we have to impose a
more strict constraint of the exact volume conservation
of a cluster. This can be done in several ways, but here
we consider a special version of the canonical ensemble
assuming that the number of the hills n+

k of the k-
constituent base is always identical to the number of
the corresponding dales, i.e. n−k ≡ n+

k ≡ nk. Then the
canonical geometrical partition can be cast as follows

Gc =
[
SA − 2

Kmax∑
k=1

k nk s1

]
(2s1)−1 , (4)

where the factor of 2 in the denominator on the right-
hand side (r.h.s.) of (4) accounts for the fact that it is
necessary to place simultaneously the centers of two k-
constituent base deformations (a hill and a dale) out of
2nk on the surface of a cluster. Using the geometrical
partition (4), one can obtain the partition function of
the canonical ensemble by formally replacing Ggc → Gc

and inserting the Kronecker delta δn+
k ,n−k

for each k-
multiplier in (3). We consider, however, each pair of
hills and dales of the same base as a single degree of
freedom. Therefore, the number of ways to place each
pair out of nk distinguishable pairs [15] is still given
by the canonical geometrical partition Gc. Multiplying
it with the probability of a pair of deformations z+

k z−k
and repeating this for nk pairs, we obtain the CCSP as
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follows

Zcc(SA) =
∞∑

{nk=0}

[
Kmax∏

k=1

[
z+
k z−k Gc

]

nk!

nk
]

Θ(2s1Gc) . (5)

It is clear that, by construction, this partition obeys the
volume conservation more strictly than the GCSP. As
in the case of the GCSP, the Θ(2s1Gc)-function in the
CCSP ensures that only the configurations with positive
value of the free surface of a cluster are accounted for,
but this constraint makes the calculation of partition (5)
very difficult.

An additional problem in evaluating partitions (3)
and (5) appears due to the explicit dependence SA of the
maximal base of deformations via Kmax(SA), because
the standard method to deal with the excluded volume
partitions, the usual Laplace transform [10–13] in SA,
cannot be applied in this case. However, as shown in [7],
GCSP (3) can be solved analytically with the help of the
Laplace—Fourier technique [8]. The latter employs the
identity

G(SA) =

+∞∫

−∞
dξ

+∞∫

−∞

dη

2π
eiη(SA−ξ) G(ξ) (6)

which is based on the Fourier representation of the
Dirac δ-function. Similar to the GCSP, representation
(6) allows us to decouple the additional SA-dependence
in Kmax(SA) of the CCSP and to reduce it to the
exponential one which can be integrated by using the
Laplace transformation [7, 8]

Zcc(λ) ≡
∞∫

0

dSA e−λSA Zcc(SA) =

=

∞∫

0

dS′
+∞∫

−∞
dξ

+∞∫

−∞

dη

2π
eiη(S′−ξ)−λS′ ×

×
∞∑

{nk=0}




Kmax(ξ)∏

k=1

[
z+
k z−k S′e2k s1(iη−λ)

]

nk! (2 s1)nk

nk
]

Θ(S′) =

=

∞∫

0

dS′
+∞∫

−∞
dξ

+∞∫

−∞

dη

2π
eiη(S′−ξ)−λS′+S′Fcc(ξ,λ−iη) . (7)

After changing the integration variable SA → S′ = SA−
2

Kmax(ξ)∑
k=1

k nk s1, the constraint of the Θ-function has

disappeared. Next all nk were summed independently

leading to the exponential function. Now the integrati-
on over S′ in (7) can be done by giving the canonical
isochoric partition

Zcc(λ) =

+∞∫

−∞
dξ

+∞∫

−∞

dη

2π

e−iηξ

λ− iη − Fcc(ξ, λ− iη)
, (8)

where the function Fcc(ξ, λ̃) is defined as

Fcc(ξ, λ̃) =
Kmax(ξ)∑

k=1

z+
k z−k
2 s1

e−2 k s1λ̃ . (9)

Representation (8) is generic, and it is also valid for the
GCSP, if the canonical function (9) is replaced by the
grand canonical one

Fgc(ξ, λ̃) =
Kmax(ξ)∑

k=1

[
z+
k

s1
+

z−k
s1

]
e−k s1λ̃ . (10)

Before making the inverse Laplace transformation
and studying the structure of singularities of functi-
ons (9) and (10), it is necessary to discuss one more
ensemble for the surface deformations which will be
called hereafter as the semigrand canonical surface
partition.

This ensemble occupies an intermediate position
between the constrained canonical and grand canonical
formulations. It corresponds to the case where the hills
and dales of the same base are considered to be indisti-
nguishable. For that, we would like to explore the fact
that the statistical probabilities of hills and dales of the
same base are equal according to (1). Then, for the infini-
tesimally small amplitudes of deformations, the volume
conservation constraint is fulfilled trivially. In the resent
work, this ensemble will be used for the deformations of
vanishing amplitudes only, but it may be used also for
finite amplitudes of deformations, if the volume is not
conserved.

Then the geometrical factor reads as

Gsg =
[
SA −

Kmax∑
k=1

k nk s1

]
s−1
1 , (11)

and the SGCSP has the form

Zsg(SA) =
∞∑

{nk=0}

[
Kmax∏

k=1

[
z+
k Gsg

]

nk!

nk
]

Θ(s1Gsg) . (12)

It is easy to show that, using the Laplace—Fourier
transformation technique [8], the SGCSP (12) can be
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transformed into the generic representation (8) for the
function

Fsg(ξ, λ̃) =
Kmax(ξ)∑

k=1

z+
k

s1
e−k s1λ̃ . (13)

By construction, Eqs. (12) and (13) are less fundamental
than the corresponding grand canonical and constrained
canonical functions.

3. Analysis of Singularities

To study the structure of singularities of the isochoric
partition (8), it is necessary to make the inverse Laplace
transformation (α ∈ {gc, sg, cc}):

Zα(SA) =

χ+i∞∫

χ−i∞

dλ

2πi
Zα(λ) eλ SA =

+∞∫

−∞
dξ

+∞∫

−∞

dη

2π

χ+i∞∫

χ−i∞

dλ

2πi

eλ SA−iηξ

iλ− iη − Fα(ξ, λ− iη)
=

=

+∞∫

−∞
dξ

+∞∫

−∞

dη

2π
eiη(SA−ξ)

∑

{λ̃n}
eλ̃n SA

[
1− ∂Fα(ξ,λ̃n)

∂λ̃n

]−1

,

(14)

where the contour integral with respect to λ is reduced
to the sum over the residues of all singular points λ =
λ̃n + iη with n = 0, 1, 2, .., since this contour in the
complex λ-plane obeys the inequality χ > max(Re{λ̃n}).
Now all integrations in (14) can be done, and all three
surface partitions (α ∈ {gc, sg, cc}) can be written as

Zα(SA) =
∑

{λ̃n}
eλ̃n SA

[
1− ∂Fα(SA,λ̃n)

∂λ̃n

]−1

, (15)

i.e. the double integral in (14) simply reduces to the
substitution ξ → SA in the sum over singularities. This
remarkable answer for all three surface partitions is a
partial example of the general theorem on the Laplace-
Fourier transformation properties proved in [8].

The simple poles in (14) are defined by the condi-
tion λ̃n = Fα(SA, λ̃n), and the latter can be cast for
each ensemble as a system of two coupled transcendental

equations

Rα
n =

Kmax(SA)∑

k=1

φα
k e−k Rα

n cos(Iα
n k) , (16)

Iα
n = −

Kmax(SA)∑

k=1

φα
k e−k Rα

n sin(Iα
n k) (17)

for dimensionless variables defined as Rα
n = s1Re(λ̃n)

and Iα
n = s1Im(λ̃n) for the GCSP and SGCSP, and as

Rc
n = 2s1Re(λ̃n) and Ic

n = 2s1Im(λ̃n) for the CCSP.
Here, the function φα

k is given by the expression

φα
k =





z+
k + z−k , for α = gc ,

z+
k z−k , for α = cc ,

z+
k , for α = sg .

(18)

To this point, Eqs. (16), (17) and (18) are general
and can be used for particular models which specify the
height of hills and the depth of dales. But it is possi-
ble to give both the upper and lower estimates for all
three partition functions of large clusters, and even to
estimate corrections for finite and small clusters. For the
upper estimate, let us consider the real root (Rα

0 ; Iα
0 = 0)

of these equations. It is sufficient to consider the limit
Kmax(SA) →∞, because the r.h.s. of (16) for Iα

n = Iα
0 =

0 is a monotonously increasing function of Kmax(SA).
Since z+

k = z−k are the monotonously decreasing functi-
ons of Hk, the maximal value of the r.h.s. of (16)
corresponds to the limit of infinitesimally small ampli-
tudes of deformations, Hk → 0 ⇒ z+

k = z−k = 1 . Under
these conditions, Eq. (17) for Iα

n = Iα
0 = 0 becomes an

identity, and Eq. (16) acquires the form

Rα
0 = Bα

∞∑

k=1

e−k Rα
0 = Bα

[
eRα

0 − 1
]−1

, (19)

where Bgc = 2 and Bcc = Bsg = 1. Therefore, the
real roots of (16) and the corresponding surface entropy
coefficients ωα

U are as follows:

Rα
0 =





ωgc
U = max{ωgc} ≈ 1.060090 , α = gc ,

2ωcc
U = 2 max{ωcc} ≈ 0.806466 , α = cc
ωsg

U = max{ωsg} ≈ 0.806466 , α = sg .
(20)

Results (20) correspond to the upper estimate for the
surface partitions because, for Iα

n 6= 0 defined by (17),
the inequality cos(Iα

n k) ≤ 1 cannot become the equality
for all values of k simultaneously. Then it follows that
the real root of (16) obeys the inequality Rα

0 > Rα
n>0.

The last result means that, in the limit of infinite cluster
SA → ∞, all surface partitions (15) are represented
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by the farthest right singularity among all simple poles
{λ̃n},

max{Zα(SA)} → e
ωα

U
SA

s1

1 + Rα
0 (Rα

0 +Bα)
Bα

= gα e
ωα

U
SA

s1 , (21)

where the geometrical degeneracy prefactor gα is defi-
ned as follows: ggc ≈ 0.38139 and gcc = gsg ≈ 0.407025.
Thus, the geometrical factor of the leading term for all
three models is practically the same.

Remarkably, result (21) is model independent. This
is a consequence of the limit of vanishing deformati-
ons, in which all model specific parameters vanish. The
second remarkable fact is that Eq. (21) is valid for
any self-non-intersecting surfaces of cluster. This is so
because both the shape and dimensionality of the cluster
under consideration do not enter into our equations
explicitly. For our analysis of the HDM surface parti-
tions, it was sufficient to require that the cluster surface
together with deformations is a regular surface without
self-intersections. Therefore, for vanishing deformations,
the latter means that Eq. (21) should be valid for any
self-non-intersecting surfaces.

For large, but finite clusters, it is necessary to take
into account not only the farthest right singularity λ̃0 in
(15), but all other roots with positive real part Rα

n>0 > 0.
The analysis presented in Appendix A shows that, besi-
des the opposite signs, there are two branches of soluti-
ons, Iα +

n and Iα−
n , for the same n ≥ 1 value:

|Iα±
n | ≈ 2πn± Bα

2πn
, (22)

Rα
n ≈

(Bα)2

8π2n2
. (23)

The exact solutions (Rα
n ; Iα±

n ) for n ≥ 1 which have the
largest real part are shown in Fig. 1 together with the
curve parametrized by functions Iα +

x and Rα
x taken from

Eqs. (22) and (23), respectively. It is clear from Eq. (23)
and Fig. 1 that the largest real part Rgc

1 ≈ 0.0582 for
the GCSP is about 18 times smaller than Rgc

0 , whereas,
for the CCSP and SGCSP, the real part Rcc

1 = Rsg
1 of

the first rightest complex root of Eqs. (16) and (17) is
about 63.6 times smaller than Rcc

0 = Rsg
0 . Therefore,

for a cluster of a few constituents, the correction to the
leading term (21) is exponentially small for all consi-
dered partitions. Using approximations (22) and (23),
one can estimate the upper limit of the (Rα

n; Iα±
n ) root

contribution into Eq. (15) for n > 2 as
∣∣∣∣eλ̃n SA

[
1− ∂Fα(SA,λ̃n)

∂λ̃n

]−1
∣∣∣∣ ≤ e

(Bα)2 SA

8π2n2s1 / (2π2n2) . (24)

0 0.02 0.04 0.06 0.08
 Rn

0

5

10

15

20

25

30

 I
n

 GCSP
 In

−
  GCSP

 In

+
  GCSP

 CCSP, SGCSP
 In

−
  CCSP, SGCSP

 In

+
  CCSP, SGCSP

Fig. 1. The first quadrant of the complex plane s1λ̃n ≡ Rn + iIn

shows the roots of the system of equations (16) and (17). The
symbols represent the two branches I−n and I+

n of the roots for
the upper estimate of three surface partitions. The curve is defi-
ned by the approximation given by (22) and (23) (see text for
more details)

This result shows that, for all three considered partiti-
ons, the total contribution of all complex poles in (15) is
negligibly small compared to the leading term (21) for a
cluster of a few constituents or more.

4. Surface Entropy Coefficients

To complete our analysis of the limit of vanishing
deformations, we would like to find the lower estimate
for the GCSP, CCSP and SGCSP for large clusters.
This estimate corresponds to the absence of all other
deformations except for those of the smallest base. In
other words, one has to substitute Kmax(SA) = 1 in
all corresponding expressions. Then Eqs. (16) and (17)
become, respectively,

Rα
n = φα

1 e−Rα
n cos(Iα

n ) , (25)

Iα
n = −φα

1 e−Rα
n sin(Iα

n ) . (26)

Similar to the previous consideration, the leading term
of the lower estimate for the surface partitions (15) is
given by the real root (Rα

0 ; Iα
0 = 0) of system (25), (26):

Rα
0 =





ωgc
L = min{ωgc} ≈ 0.852606 , α = gc,

2ωcc
L = 2 min{ωcc} ≈ 0.567143 , α = cc,
ωsg

L = min{ωsg} ≈ 0.567143 , α = sg.
(27)
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−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5
 Rn

0

5

10

15
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25

30

35

40

 I
n

 In GCSP
 In CCSP, SGCSP

Fig. 2. The second quadrant of the complex plane s1λ̃n ≡ Rn+iIn

shows the complex roots of the system of equations (25) and (26)
with the largest real parts. The circles and squares represent the
roots for the lower estimate of the GCSP and CCSP(SGCSP),
respectively

Again, as in the case of upper estimates, one can
show that the real root (Rα

0 ; Iα
0 = 0) approximates well

the lower estimate for the partition function for a system
of a few constituents. In fact, each of three surface parti-
tions has only a single root with positive real part which
coincides with (Rα

0 ; Iα
0 = 0). In Fig. 2, a few complex

roots of Eqs. (25) and (26) with the largest real parts
are shown. Since all these roots have negative real part,
they generate an exponentially small contribution to the
lower estimate of the surface partition for a system of a
few constituents.

The ω-coefficients for the upper and lower estimates
of all three surface partitions are summarized in the
Table 1. A comparison with the corresponding coeffi-
cient for liquids should be made with care, because
various contributions to the surface tension, i.e., the
eigen surface tension of a liquid drop, the geometri-
cal degeneracy factor (surface partition), and the part
induced by the interaction between clusters, are not
exactly known. Therefore, even the linear temperature
dependence of the surface tension σ(T ) = σo(Tc−T )/Tc

due to Fisher [1] applied to a nuclear liquid (σo ≈ 18
MeV; Tc ≈ 18 MeV [9]) may be used to estimate the
ω-coefficient, if both the eigen surface tension and the
interaction-induced one are non-increasing functions of
temperature. Under these assumptions, one can get the

following inequality for a nuclear liquid:

ωnucl ≤ 1 < ωgc
U = 1.060090 . (28)

That is, the upper estimate for the GCSP provides,
indeed, the upper limit for the surface partition of the
nuclear matter.

A similar analysis for real liquids is difficult because
of a complicated temperature dependence of the surface
tension. Therefore, we would like to compare the ω-
coefficients from Table 1 with the ω-coefficients for the
large spin clusters of various 2- and 3-dimensional Isi-
ng models which are listed in Tables 2 and 3, respecti-
vely [16]. Such a comparison can be made because the
surface entropy of large spin clusters on the Ising lattices
are similar to the considered surface partitions (15) [16].

The ω-coefficient for the d-dimensional Ising model
is defined as the energy 2J required to flip a given spin
interacting with its q-neighbors to the opposite direction
per (d − 1)-dimensional surface divided by the value of
critical temperature

ωlat =
q J

Tc d
. (29)

Here, q is the coordination number for the lattice, and J
denotes the coupling constant of the model. A compari-
son of Tables 1– 3 shows that all lattice ωlat-coefficients,
indeed, lie between the upper estimates for the constrai-
ned canonical and grand canonical surface

T a b l e 1. The maximal and minimal values of the
ω-coefficient for three statistical partitions of the HDM

Partition max{ωα} min{ωα}
GCSP 1.060090 0.852606
SGCSP 0.806466 0.567143
CCSP 0.403233 0.283572

T a b l e 2. The values of the ωlat-coefficient for various
2-dimensional Ising models. For more details see the text

Lattice type ωlat = σ
Tc

Honeycomb 0.987718
Kagome 0.933132
Square 0.881374

Triangular 0.823960
Diamond 0.739640

T a b l e 3. The values of the ωlat-coefficient for various
3-dimensional Ising models

Lattice type ωlat = σ
Tc

Simple cubic 0.44342
Body-centered cubic 0.41989
Face-centered cubic 0.40840
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partitions,

0.403233 = ωcc
U < ωlat < ωgc

U = 1.060090 , (30)

i.e. ωcc
U and ωgc

U are the infimum and supremum for 2-
and 3-dimensional Ising models, respectively.

The HDM partitions do not have an explicit
dependence on the surface dimension, but a compari-
son of the HDM and Ising model ω-coefficients shows
that the HDM ensembles seem to possess some sort of
internal dimension: the GCSP is close to honeycomb,
kagome, or square lattices, whereas the SGCSP is simi-
lar to triangular and diamond lattices, and the max{ω}
of the CCSP is closer to the 3-dimensional Ising models.
In some cases, the agreement with the lattice data is
remarkable – ωgc

L coincides with the arithmetical average
of the ω-coefficients for square and triangular lattices up
to a fifth digit, but, in most cases, the values agree within
a few per cent. The latter is not surprising, because the
HDM estimates the surface entropy of a single cluster,
whereas, on the lattice, the spin clusters do interact wi-
th each other and this, of course, changes the surface
tension and, consequently, affects the value of critical
temperature. It is remarkable that the so oversimplifi-
ed estimates of the surface partitions for a single large
cluster reasonably approximate the ω-coefficients for 2-
and 3-dimensional Ising models.

It would be interesting to check whether the lower
estimate of the CCSP, ωcc

L ≈ 0.283572, is an infimum
for the Ising lattices of higher dimensions d > 3. If this
is the case, then we can give an upper limit for the cri-
tical temperature of those lattices, by using Eq. (29),
as
Tc

J
≤ q

ωcc
L d

≈ 3.5264
q

d
. (31)

On the other hand, the lower estimate for the critical
temperature of Ising lattices, Tc

J ≥ q
ωgc

U d
, is provided

by the supremum of the ω-coefficients of surface partiti-
ons.

5. Conclusions

We have formulated the grand canonical and constrai-
ned canonical partitions of surface deformations in the
framework of the HDM. Both partitions conserve the
volume of a deformed cluster and take into account
all surface deformations with non-negative value of the
free surface of this cluster. The grand canonical surface
partition conserves the cluster volume on the average,
whereas it is conserved exactly in the constrained canoni-
cal formulation. These partitions are solved exactly

for an arbitrary (finite or infinite) size of the largest
deformation by the Laplace—Fourier transformation
technique, and the general analytical expression (15) for
these partitions in terms of the set of isochoric ensemble
singularities is derived.

Similarly, we have introduced and solved a special
ensemble, a semigrand canonical partition, which obeys
all constraints discussed above in the limit of vani-
shing deformations and occupies an intermediate place
between the grand canonical and constrained canonical
ensembles.

Then we considered the limit of vanishing deformati-
ons for all three surface partitions, and obtained the
upper and lower estimates for the surface entropy for
each of these partitions. The comparison of the obtained
ω-coefficients for surface partitions with the correspondi-
ng coefficients for the large spin clusters of 2- and 3-
dimensional Ising models shows that the upper estimate
of the GCSP is a supremum, whereas the upper estimate
of the CCSP is an infimum for the considered lattices.
The question of the Ising lattice ω-coefficients for higher
dimensions is discussed.

The developed formalism is rather general and,
therefore, may be applied to the surface deformations
of any kind of clusters, if the underlying mechanism of
the surface deformations is given.

This work was supported by the US Department of
Energy.

APPENDIX A

For large, but finite clusters, it is necessary to take into account not
only the farthest right singularity λ̃0 in (15), but all other roots
of Eqs. (16) and (17) which have positive real part Rα

n>0 > 0.
In this case for each Rα

n>0, there are two roots ±Iα
n of (17),

because the partition function (15) is real by definition. The roots
of Eqs. (16) and (17) with the largest real part are insensitive to
the large values of Kmax(SA), therefore, it is sufficient to keep
Kmax(SA) →∞. Then, in the limit of the vanishing amplitude of
deformations, Eqs. (16) and (17) can be, respectively, rewritten as

BαRα
n

(Rα
n)2 + (Iα

n )2
= eRα

n cos(Iα
n )− 1 , (A1)

BαIα
n

(Rα
n)2 + (Iα

n )2
= − eRα

n sin(Iα
n ) . (A2)

After some algebra, the system of (A1) and (A2) can be
reduced to a single equation for Rα

n

cos

�h
Bα(Bα+2Rα

n)

e2Rα
n−1

− (Rα
n)2
i1/2

�
=

= cosh Rα
n −

Bα

Bα + 2 Rα
n

sinh Rα
n , (A3)
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and the quadrature Iα
n =

r
Bα(Bα+2Rα

n)

e2Rα
n−1

− (Rα
n)2. The analysis

shows that, besides the opposite signs, there are two branches of
solutions, Iα +

n and Iα−
n , for the same n ≥ 1 value. Expanding

both sides of (A3) for Rα
n ¿ 1 and keeping the leading terms, one

obtains (22) and (23). In Fig. 1, this approximation is compared
with a few exact solutions (Rn; I±n ) for n ≥ 1 which have the
largest real part.
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ТОЧНО РОЗВ’ЯЗУВАНI МОДЕЛI ДЛЯ ФУНКЦIЙ
РОЗПОДIЛУ ПОВЕРХОНЬ ВЕЛИКИХ КЛАСТЕРIВ

К.О. Бугаєв, Дж.Б. Еллiотт

Р е з ю м е

В рамках “моделi пагорбiв та долин” аналiтично дослiджую-
ться функцiї розподiлу поверхонь великих кластерiв. Три фор-
мулювання моделi розв’язанi точно iз застосуванням методу
перетворення Лапласа—Фур’є. У границi деформацiй малих
амплiтуд “модель пагорбiв та долин” визначає верхню та ни-
жню межi для коефiцiєнта поверхневої ентропiї великих кла-
стерiв. Проведено порiвняння знайдених коефiцiєнтiв поверх-
невої ентропiї з коефiцiєнтами поверхневої ентропiї великих
кластерiв в дво- та тривимiрнiй моделi Iзiнга.
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