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The motion of an overdamped Lévy particle (a particle being
under the influence of an external random force with the Lévy
distribution law) in a potential well (a generalized Kramers’
problem) is considered. The mean crossing/escape time of the
particle and the crossing/escape time probability density as a
function of time are obtained. The method of numerical integration
of the overdamped Langevin equation is used for two types of
potential profiles and for the whole admitted region of Lévy
indices of the external force.

1. Introduction

The classical Kramers’ problem consists in evaluating
the mean particle’s escape time from a potential well
under the influence of an external random force with
the Gaussian distribution law. Primarily, this problem
was investigated in [1]; later on, it became a part of
nearly each textbook on stochastic processes and came to
a regular university course due to various applications:
— the modeling of chemical reactions;

— the electroconductivity theory in crystals;

— the modeling of nucleations, etc.

Even nowadays, this classical Kramers’ problem with
some new peculiarities finds its place in many research
works. Here, we suggest its generalization. We consider
an external random force with the a-stable, or Lévy,
distribution law, rather than the Gaussian one. The
generic Lévy motion, which is a natural generalization
of the Brownian motion, can be found, indeed, in a
lot of natural phenomena, e.g. in random walks along
a polymer chain, in Hamiltonian chaotic systems, and
foraging movement; see also examples in [2], [3]. It is
characterized by the probability distribution function
(PDF) that is dependent on the special parameter, the
so-called Lévy index «, 0 < a < 2, of the random force.
This parameter may be treated as the difference degree
from the Gaussian PDF: when « < 2, the PDF exhibits
a power-law decay,

1
p(x)“W~

The limit case of o = 2 corresponds to the Gaussian
PDF, which decays exponentially.
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Preliminarily, such a generalization was studied in [4]
for an overdamped particle embedded in a symmetric
double-well potential and for « ranging between 1 and
2. However, in the present work, the simulations are
performed with better precision and for the two-well and
metastable potential profiles in the whole domain of the
Lévy indices.

The Lévy motion is closely connected with a
Generalized Central Limit Theorem [5] which proves
that Lévy distributions, like the Gaussian distribution,
arise when the result of an experiment is determined by
the influence of a large number of random factors. Due to
this fact, such a generalization of the Kramers’ problem
appears to be quite actual. Moreover, the reason for this
lies in different applications, e.g. in stochastic climate
dynamics [6], single-molecule physics [7], engineering [§],
etc.

2. Problem Statement

A consistent analytical approach is connected with the
solution of the fractional Fokker-Planck equation with
a Riesz fractional derivative (a complicated integro-
differential equation in partial derivatives), thus raising
substantial difficulties. Therefore, our studies are based
on the numerical solution of the overdamped Langevin
equation

de(t) 1 dU(z)
dt  my dx

+ DYV, (t), (1)

where z(t) is a particle’s coordinate, m its mass, 7y
a viscosity constant, U(x) an external potential, &, (t)
an a-stable noise possessing the symmetric Lévy stable
probability distribution with a scale parameter equal to
unity, and D the Lévy noise intensity. We consider two
generic types of the potentials,

2 4

I Uy(2)=—a—+b—, ab>0; 2)
2 4
1.3
II U(x)= —a +bx, a,b>0. (3)
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Fig. 1. Shapes of the considered potentials of type I (above) and
type II (below)

The sketches of these potentials are shown in Fig. 1,
where a = b= 1.

The typical trajectories of a particle immersed in the
potentials are presented in Fig. 2. In the figure above,
the transition of a particle from one well to another
one in a potential of the first type is observed; the
figure below demonstrates the particle’s single crossing
of the metastable potential maximum. For U; (x), we
will be interested in investigating the first crossing time
problem. That is, we will evaluate the time needed
for a particle to cross the potential barrier, not taking
into account its possible subsequent retrieval. On the
contrast, for the second potential type, we will have the
first escape time problem, since, after jumping out of
the potential well, the particle has a relatively small
probability to return back.
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Fig. 2. Lévy motion in the potential profiles of type I (above) and
type II (below). The Lévy index a = 1.5

Now let us turn to the dimensionless variables
in the Langevin equation. To do this, we make the
substitutions x — xxg, t — ttg,, and D — DDy:

— for the first potential type, o = \/m, to = mvy/a,

a/2
D= (4)™"
m~y \b

— for the second potential type, g = +/b/a, toy =

my/vab, Dy = Vab (b)m.

my \a
This procedure is analogous to that described in [9] in
detail.

For the dimensionless variables in each case and after
the time quantization, we have

Up(z): Zpg1—axp = (mn — mi) ot+
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+(D6t)é£a (tn) ;

Us(z): Tpp1—ap = (xi - 1) ot+

H(D3t) 5 €4 () - (5)

For the simulations, we use a Lévy noise generator
described in [10]. For a potential of type I, the
computational modeling is conducted in such a way:
a "particle” is placed at the point = = —1, then
the iterations start. When the ”particle” reaches the
point z = 0, the iterations stop, and the event of
barrier crossing and the respective time instant are
determined. For a potential of type II, the ”particle”
again starts its motion from the point x = —1, but,
in contrast with the previous case, the iterations stop,
when the “particle” reaches x = 10. The mean time
is evaluated by averaging 10,000 such events. The
simulation was performed in two ways: we used, firstly,
the programming language Borland C++ Builder 6 and,
secondly, the mathematical package Mathematica 5. The
time step was taken to be equal to 0.01 in Borland
C++ Builder program and 0.1 in the simulation with
Mathematica. The calculations made on Borland C++
Builder and Mathematica gave the same results (the
accuracy was better than 0.7 percent). It was also proved
that the simulation scheme is independent of the time
quantization parameter (the inaccuracy did not exceed
the error for the usual scheme of integrating an ordinary
differential equation of the first order by using the
method of rectangles).

3. Mean Crossing/Escape Time

First, we are interested in evaluating the mean
crossing/escape time of a particle from the potential
well. The simulation shows that, as in the classical
case of a Gaussian random force, the Lévy particle’s
mean crossing/escape time does not depend much on the
form of the potential profile but on the barrier’s height.
Indeed, Fig. 3 representing such a dependence proves
this aspect due to the obvious similarity between the
top and bottom images.

At first, we note that the curves for « = 2 are in a
good agreement with classical results for the Kramers’
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Fig. 3. Mean crossing time for profile I (above) and the mean
escape time for profile II (below) versus the reciprocal noise

intensity

problem, demonstrating the exponential dependence on
the reciprocal noise intensity [11]:

™

Up(z): T= ﬁel/(‘m); (6)
3

@m;ngwwx (7)

Now let us turn to cases o < 2. As seen from Fig. 3,
the mean time versus D has power-law asymptotics
for D small enough. Furthermore, if we construct the
quantity p (a) such that

C (@)

(8)

297



O.Yu. SLIUSARENKO

1.08 |-
1.06 -

1.04 |-

w(a)

1.02 -

1.00 -

0.98—“.““““““““A e T

1.08

(o)

1.06
1.04
1.02

1.00

098l b1l

Fig. 4. Power-law asymptotics for potentials of type I (above) and
type II (below)

he) = S )

it will tend to 1 for all @ < 1, see Fig. 4. This fact
may have the following explanation. It is a well-known
property of the Lévy noise that the less is the parameter
«, the longer become the so-called Lévy flights: the
outliers, or sudden and sharp high peaks in the noise
which arise due to the steep power-law asymptotics of
the Levy stable PDFs (for illustrations, see, e.g., [12]).
So there may occur the relation between a sudden force’s
value and the barrier’s height such that the particle
will jump out of the well in several steps. That is why
the particle behaves in the way as there is no potential
barrier at all. The calculated values for the quantity
C () are shown in Fig. 5. In both cases, we detect a
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Fig. 5. Obtained values for lg C' () for potentials of type I (above)
and type II (below)

weak inflection of the curves at the intermediate
values. Also the value C' («) tends to 1 at small o’s.

4. PDF for the First Crossing/Escape Problem

Now let us obtain the probability density function of a
particle to escape the well as the function of walking
time. The simulation of this problem is conducted in a
way much common with the previous one. The numerical
integration of the overdamped Langevin equation is held
for a fixed value of D (the noise intensity) and stops
each time as the "particle” reaches the point z = 0 for
the potential U; (z) and = = 10 for the potential U, (x).
The obtained times are not averaged, and, after a certain
number of such events, they are handled with a simple
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routine (written on Mathematica) that calculates the
probability density function (normalizing it by 1). The
following calculations were done using again Borland
C++ Builder 6 and Mathematica (the latter — to obtain
the distribution function). The values of the parameters
are as follows:

1. for Uy (z), dt = 0.01; statistics = 200,000 events;
D=10"2% 20 = —1; a = 0.1,0.5,1.0, 1.5;

2. for Uy (x), 6t = 0.01; statistics = 200,000 events;
D=10"1"% 20 = —1; @ = 0.1,0.5,0.9,1.0, 1.5.

For both potential profiles and for the whole set of Lévy
indices, it possesses an exponential law (see Fig. 6).

As easily seen, it is possible to evaluate the mean
crossing/escape times by using these distributions.
Indeed, if p(t) = wve "' is our probability density
function, then

=1

= O = 10
L= m, (10)

where (T') is the mean crossing/escape time. Another
way to evaluate it by means of these probability density
functions is the following:

(T)=— <M>_l =7. (11)

dt

The carried out calculations give the coincidences

between crossing/escape times obtained in such ways

and those calculated in Section 2 with accuracy better
than 1.5 percent (Table).

5. Conclusion

In this paper, the mean first crossing/escape times
have been evaluated for two types of potentials using
three separate methods, all are based on the numerical
integration of the overdamped Langevin equation. It
was shown that the mean crossing/escape time of a
Lévy particle obeys a different law comparing to that
of the classical Brownian particle. Indeed, instead of
the exponential law at o = 2, it possesses a power-law
asymptotics at small values of the noise intensity.

Comparison of mean crossing/escape times obtained in
three different ways

U1 U2
o simul. ‘ T ‘ T2 simul. ‘ T ‘ To
0.1 119.7 117.4 118.1 34.2 33.9 34.1
0.5 187.1 185.1 187.1 78.3 77.8 78.1
1.0 260.8 257.1 258.2 153.7 153.0 153.5
1.5 446.5 443.4 448.4 346.6 342.9 344.9
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Fig. 6. Crossing/escape probability density functions for both
types of potentials (type I above, type II below)

However, the probability density function for the first
crossing/escape problem in the domain of Lévy indices
(0 < & < 2) is proportional to exp(—v (a)t), like in the
case of the Gaussian probability distribution function of
an external random force. The results point clearly to the
necessity for creating a consistent kinetic theory which
has not been constructed yet.
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JIO IOJILOTIB JIEBI ¥V TIOTEHIIAJIBHIN AMI

0.10. Carocapenko
PeszmowMme

PosrnamryTo pyx nepememmdosanol gactuaku Jlesi (tobro 6po-
YHIBCHKOI YaCTHHKH, 1[0 IepebyBa€ miJ Ji€l0 30BHINIHBOI BUMIAI-
KOBOI CHJIX i3 3aKOHOM posnoziny Jlesi) B morennjanpuiit simi. Ha-
IIOI0 METO0 OYyJIO OTPUMAHHSI METOJOM YHCEJIBHOI'O IHTErpyBaHHS
nepeeMiihoBaHOro piBHSAHHH JlaH>KeBeHa Cepe/HiX JaciB BUIbOTY
YaCTHUHKHU 3 IMOTEHIIaJIbHOI MU Ta (PYHKI] PO3MOAiLy IUX daciB.
Byno nmocnijizkeno BapiloBaHHSI IIMX BEJIUYUH 31 3MIHOIO BHIVISITY
[OTEHIiajly Ta 3HAYeHb napamMeTpa JIeBi BUIIAIKOBOI CUIIU.
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