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Our work considers spatially non-uniform states of particles weakly
interacting with a hydrodynamic medium. We have developed
a microscopic theory of such systems by using Bogolyubov’s
reduced description method. It has been shown that such a system
has both the kinetic and hydrodynamic stages of evolution. The
kinetic stage of evolution for particles interacting with a medium
has been considered. At this stage, the one-particle distribution
function is a reduced description parameter for particles, and,
therefore, a medium is described by five hydrodynamic parameters
(density, temperature and velocity). The coupled system of motion
equations for the reduced description parameters is obtained on the
basis of Bogolyubov’s reduced description method. The obtained
equations can be used, for example, for the description of neutrons
propagating in a hydrodynamic medium without multiplication
and capture.

1. Introduction

The development of the kinetic theory of particles
weakly interacting with a medium concerns both
the general theory of relaxation processes and
applied researches. Such a theory can be used in
studying the Brownian motion or the transfer of
neutrons in different media in a nuclear reactor.
The beginning of the theoretical research of such
systems dates back to the first works of Einstein
and Smoluchowski (see [2]), though many aspects
have not been studied yet. First of all, this concerns
the construction of a consistent microscopic approach
describing the kinetics of particles interacting with a
medium.

The reduced description method is the most
sequential and promising microscopic approach in
modern kinetics. The basic concepts of this method
used for the description of classical systems are
stated in the book [1] by N.N. Bogolyubov. The
extension of this method to quantum many-particle
systems is given in book [2]. The reduced description
method is based on the concept of a relaxation

time hierarchy, the ergodic hypothesis, and the
principle of a weakening of spatial correlations.
The application of the reduced description method
results in a consistent microscopic approach which
allows us to obtain kinetic equations (when the
system is described by a one-particle distribution
function) and hydrodynamic equations (in the case
where the system is described with a set of
hydrodynamic parameters such as temperature, density,
and velocity).

However, such systems may include different
subsystems on different stages of their evolution. For
example, in a two-component system, one component
can be on the kinetic evolution stage, which means that
it is described by a one-particle distribution function,
while the other component evolves hydrodynamically
and is described by a set of hydrodynamic parameters.
Such a situation occurs when the system consists of
strongly interacting particles of one type (hydrodynamic
medium) and particles of the other type which weakly
interact with the medium, but do not interact with
one another owing their small number. One of the
specific examples of such systems are slow neutrons in a
hydrodynamic medium.

The consequent microscopic theory describing
the spatially homogeneous evolution of particles
in a hydrodynamic medium by means of the
reduced description method has been developed in
[2]. In the present work, we consider spatially
inhomogeneous states of particles weakly interacting
with a hydrodynamic medium by using the reduced
description method. As a result, we obtain a coupled
system of equations which describes the evolution of
a hydrodynamic medium and particles that weakly
interact with this medium.

Prior to the derivation of the system of equations,
we will formulate some basic definitions.
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2. Basic Description Parameters and Their
Properties

We describe the hydrodynamic medium by using a set
of parameters ζα (x), α = 0, i, 4, where ζ0 (x) ≡ ε (x)
is the energy density of the medium, ζi (x) ≡ πi (x)
is the momentum density, and ζ4 (x) ≡ ρ(m)(x) is the
mass density. We can also introduce the operators ζ̂α (x)
of hydrodynamic parameters with densities ζα (x), α =
0, i, 4, where ζ̂0 (x) ≡ ε̂ (x) is the operator of the energy
density, ζ̂i (x) ≡ π̂i (x) is operator of the momentum
density, and ζ̂4 (x) ≡ ρ̂(m)(x) is the operator of the
mass density. These operators are expressed in terms
of the creation ϕ+ (x) and annihilation ϕ (x) operators
for particles of the medium:

ε̂(x) =
1

2mm
∇ϕ+ (x)∇ϕ (x) +

1
2

∫
d3R×

×Vm (R) ϕ+ (x + R) ϕ+ (x) ϕ (x)ϕ (x + R),

π̂i(x) =
i

2

(
∂ϕ+ (x)

∂xi
ϕ (x)− ϕ+ (x)

∂ϕ (x)
∂xi

)
, (1)

ρ̂(m)(x) = mmϕ+ (x) ϕ (x) .

Here, mm is the mass of particles of the medium,
and Vm (R) is the pairwise interaction potential of
particles of the medium. The mass M̂ , momentum P̂i,
and energy (Hamiltonian) H(m) of the medium are
introduced according to (1) in the following way:

M̂ =
∫

d3xρ̂(m)(x),

P̂i =
∫

d3xπ̂i(x), (2)

H(m) =
∫

d3xε̂(x).

Obviously, these operators commute with one another,
hence the densities of the hydrodynamic parameters
ζ̂α (x), where α varies from 0 to 4, are the densities of
the additive integrals of motion of the medium. We note
that the interaction of particles of the medium can be
more complicated than that specified in (1), although
variables (2) play the role of the integrals of motion.

Time derivative operators of additive motion
integrals in the Schrödinger representation are given by
expressions (see [2, 3])

˙̂
ζα (x) = i[H(m), ζ̂α (x)] = −∂ζ̂αk (x)

∂xk
, (3)

where variables ζ̂αk (x) are the densities of the flow
of additive motion integrals; namely, ζ̂0k (x) = q̂k (x)
is the operator of the energy flow density, ζ̂ik (x) =
t̂ik (x) is the operator of the momentum flow density
and ζ̂4k (x) = ĵ

(m)
k (x) is the operator of the mass

flow density. According to [2], the operators of the
additive motion integrals are expressed in terms of the
hydrodynamic parameters:

ĵ
(m)
k (x) = πk(x) = i

∫
d3x′x′k

1∫

0

dξ×

×
[
ε (x− (1− ξ)x′) , ρ(m) (x + ξx′)

]
,

t̂kl (x) = −ε (x) δkl + i

∫
d3x′x′k

1∫

0

dξ×

× [ε (x− (1− ξ)x′) , πk (x + ξx′)], (4)

q̂k (x) =
i

2

∫
d3x′x′k

1∫

0

dξ×

× [ε (x− (1− ξ)x′) , ε (x + ξx′)].

So, we have defined the operators required for the
description of the medium.

Particles, as was mentioned in Introduction, may be
on the kinetic evolution stage, where they are described
with a one-particle distribution function f (x,p). So we
introduce the operator of Wigner’s distribution function
(see [2, 4])

f̂p (x) ≡
∫

d3x′e−ipx′ψ+

(
x− x′

2

)
ψ

(
x +

x′

2

)
, (5)

where the variables ψ+ (x) and ψ (x) are the operators
of creation and annihilation of particles interacting with
the medium. It is essential that the operators of creation
and annihilation of particles of the medium and those of
the particles interacting with the medium commute:
[
ψ+ (x) , ϕ+ (x)

]
= 0, [ψ (x) , ϕ (x)] = 0,

[
ψ (x) , ϕ+ (x)

]
= 0,

[
ψ+ (x) , ϕ (x)

]
= 0.

The Hamiltonian of free (i.e. not interacting with
one another) particles in terms of the creation and
annihilation operators looks as

Hp =
1

2m

∫
d3x∇ψ+ (x)∇ψ (x), (6)

282 ISSN 0503-1265. Ukr. J. Phys. 2007. V. 52, N 3



ON THE KINETICS OF SPATIALLY NON-UNIFORM STATES

where m is the mass of particles. It is obvious that

−i

[∫
d3xf̂p (x),H(p)

]
= 0, (7)

which means that the Wigner’s distribution function
operator f̂p (x) can be treated as an additive motion
integral of the subsystem of particles. By the consequent
application of expression (6) for the Hamiltonian of
free particles Hp and the definition of the Wigner’s
distribution function (5), we can show that

i
[
Hp, f̂p (x)

]
= −pk

m

∂

∂xk
f̂p (x) . (8)

The variable

f̂pk (x) ≡ pk

m
f̂p (x) (9)

can be treated as the flow of the Wigner’s distribution
function.

We also mention several formulas relevant to the
Wigner’s distribution function which will be used in
future calculations. By using definition (5), we can easily
find another expression for the Wigner’s distribution
function operator:

f̂p (x) = V
∫

d3p1d
3p2a

+
p1

ap2
×

×e−ix(p1−p2)δ

(
p1 + p2

2
− p

)
, (10)

where V is the system’s volume, δ (p) is the Dirac’s
delta function, and a+

p , ap are the operators of creation
and annihilation of particles having momentum p. These
operators are introduced with the following expressions:

ψ+ (x) = V− 1
2

∑
p

a+
p e−ipx, ψ (x) = V− 1

2

∑
p

apeipx.(11)

After integrating (10), we obtain
∫

d3xf̂p (x) ≡ Va+
p ap ≡ γ̂p. (12)

In order to formalize further expressions, we
introduce a general symbol for the operators used as
description parameters. We introduce a generalizing
symbol ζ̂A (x), where the index ”A” possesses the value
of A = {α,p}. For the operators of the additive motion
integrals of the medium ζα (x) , α = 0, i, 4 and the
Wigner’s distribution function operator f̂p (x) (see (1),
(5)), we have

ζ̂A (x) |A=α = ζ̂α (x) , ζ̂A (x) |A=p = f̂p (x) . (13)

Similarly, we introduce a generalizing symbol ζ̂Ak (x) for
the flow operators (compare with (9)):

ζ̂Ak (x) |A=α = ζ̂αk (x) ,

ζ̂Ak (x) |A=p = f̂p,k (x) ≡ pk

m
f̂p (x) . (14)

Further, we will need the symmetry properties of
the above-inroduced operators in respect to space-time
reversal transformations. The unitary space reversal
operator P transforms the field operators of our system
ϕ (x) and ψ (x) by the formulas

ϕ′ (x) = ϕ (−x) = Pϕ (x)P+,

ψ′ (x) = ψ (−x) = Pψ (x)P+. (15)

The unitary time reversal operator T transforms the
field operators as

ϕ′ (x) = ϕ (x)∗ = T ϕ (x) T +,

ψ′ (x) = ψ (x)∗ = T ψ (x) T +. (16)

We have the following expressions for the space and
time reversal transformations of the operators of additive
motion integrals ζ̂A (x) and their flows ζ̂Ak (x) by using
(15) and (16) (see [2] for details):

T P ζ̂A (x) (PT )+ = ζ̂∗A (−x) ,

T P ζ̂Ak (x) (T P)+ = ζ̂∗Ak (−x) . (17)

Thus, we have defined all the quantities and their
operators in the secondary quantization representation
that are necessary for the description of the medium
subsystem and the particle subsystem separately.
These two subsystems are joined with the complete
Hamiltonian H, which is defined as

H = H0 + V̂ , H0 = Hm +Hp, (18)

where H0 describes the non-interacting subsystems
of the medium and particles, and V̂ describes the
interaction of these subsystems. Operators Hm and Hp

were defined by formulas (2) and (6). Here, we assume
that the interaction Hamiltonian has the structure

V̂ =
∑
p1,p2

Ĵ (p1,p2) a+
p1

ap2
, (19)

where a+
p1
, ap2

are the operators of creation
and annihilation of particles in the momentum
representation (see (11)), and the operator Ĵ (p1,p2)
contains only the medium’s operators. We will not
specify the structure of Ĵ (p1,p2). However, the
Hermitian property of the Hamiltonian implies that

Ĵ + (p1,p2) = Ĵ (p2,p1) . (20)
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3. Postulates of the Method of Reduced
Description in the Kinetic Theory of
Particles Interacting with the
Hydrodynamic Medium

The physical quantities and their operators defined in
the previous section will be used in our study of spatially
inhomogeneous states of the medium and particles
interacting with the medium. Now, we formulate the
basic concepts of the reduced description method and
apply them to our system.

At an arbitrary time t, our system can be described
with a statistical operator ρ (t) which evolves according
to the Liouville equation

∂ρ(t)
∂t

= −i[H, ρ(t)], (21)

where H is the system’s Hamiltonian. For the closed
systems, the solution of this equation can be written as

ρ (t) = e−iHtρeiHt, (22)

where ρ is the statistical operator of the initial state.
The operator ρ (t) satisfies two fundamental

principles according to the reduced description method’s
concepts (see [2] for details). They are the principle
of a weakening of spatial correlations and the ergodic
relation. The principle of a weakening of spatial
correlations represents a simplification of traces of the
statistical operator ρ (t) and the products of quasilocal
operators a (x) and b (y) (see [2]) when their arguments
are separated:

Spρ (t) a (x) b (y) →
|x−y|Àrc

Spρ (t) a (x) ·Spρ (t) b (y) .(23)

Here, rc is the correlation radius of the state with ρ (t).
The ergodic relation describes the asymptotic form of

the statistical operator ρ (t) (and, certainly, traces with
this operator) at large times:

ρ (t) = e−iHtρeiH →
t→∞

w. (24)

Here, w is the equilibrium Gibbs operator. Actually,
relation (24) represents the fact that our system
transforms into a state of statistical equilibrium at large
time scales described with the Gibbs statistical operator
w. The structure of this operator is determined by a
collection of physical parameters of the equilibrium state
of the system. For our system, the Gibbs statistical
operator w is given by expression

w (Y ) = exp {Ω− YAγ̂A} , (25)

where γ̂A are the operators of additive motion integrals

γ̂A =
∫

d3xζ̂A (x) (26)

commuting with the Hamiltonian H0 (see (13))

[H0, γ̂A] = 0. (27)

The relation for the thermodynamic potential Ω and
generalized thermodynamic forces YA in (25) can be
derived from the normalization requirement

Spw (Y ) = 1, (28)

and the thermodynamic forces YA are functions of the
additive motion integrals γA which are derived from the
equations (see also (26))

Spw (Y ) γ̂A = γA. (29)

The reduced description method is based on the
Bogolyubov’s concept of relaxation time hierarchy.
According to this concept, a system evolves towards
an equilibrium with different sets of the description
parameters on different evolution stages. Moreover, as
the system approaches the equilibrium, the number of
parameters required for the description of the system
decreases, and the system’s description simplifies (see [2]
for more details). A set of parameters which describes the
system on one evolution stage is called the set of reduced
description parameters of the system.

Now we formulate the concepts of the reduced
description method concerning our system.

We suppose that the number of particles is small, so
we can neglect the interaction among them. Therefore,
the operatorHp (6) has the structure of a Hamiltonian of
free particles. In distinction from this, we assume that
the Hamiltonian Hm describes a strong interaction of
particles of the medium with one another. This leads
to the fast relaxation of this subsystem to a local
equilibrium state. Also the interaction of subsystems is
weaker than that of particles of the medium with one
another. Therefore, the relaxation time for the medium
subsystem is substantially lower than that for the
both subsystems τ0, determined by the inter-subsystem
interaction. Consequently, the relaxation time of the
whole system is determined by the weaker interaction
V̂ . According to the basic concepts of the reduced
description method [2], we accept that, at times t À τ0,
the additive integrals densities ζA (x) (see (13)) can be
taken as reduced description parameters. This means
that the statistical operator ρ (t), which describes our
system on the evolution stage when the corresponding
time interval is greater than the specific relaxation
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time τ0, has the following functional dependence on the
additive integrals densities ζA (x):

ρ (t) = e−iHtρeiHt →
tÀτ0

σ (ζ (x′, t; ρ)) . (30)

We note that, according to (30), the only dependence
of the statistical operator ρ (t) on the initial state
(statistical operator ρ) is included in the reduced
description parameters ζA (x, t; ρ). The operator σ is
called the coarse-grained statistical operator and has
functional dependence on the description parameters
ζA (x). The coarse-grained statistical operator must
satisfy the relation

ζA (x) ≡ Spσ (ζ) ζ̂A (x) . (31)

It is obvious that, according to (21),

e−iHτσ (ζ (x′, t; ρ)) eiHτ = σ (ζ (x′, t + τ ; ρ)) , (32)

ζA (x′, t; ρ) = ζA

(
x′, t + τ ; e−iHtρeiHt

)
. (33)

By differenting (33) with respect to τ and setting τ = 0,
we obtain

−i [H,σ (ζA (x′, t; ρ))] =
∂

∂t
σ (ζA (x′, t; ρ)) =

=
∫

d3x
δσ (ζ (x′))
δζA (x)

LA (x, ζ (x)) , (34)

LA (x ζ (x)) ≡ ζ̇A (x) . (35)

(In relation (34) and further, we assume the summation
by repeating indices A.) By multiplying (34) by ζB (x),
calculating the trace, and performing some simple
transformation, we come to the expression

LA (x, ζ (x)) = iSpσ (ζ (x′))
[
H, ζ̂A (x)

]
. (36)

By substituting (18) and using formulas (3), (8), (35),
and (36), we come to the following evolution equation
for the additive motion integrals:

ζ̇A (x) = iSpσ (ζ (x′))
[
V̂ , ζ̂A (x)

]
−

− ∂

∂xk
Spσ (ζ (x′)) ζ̂Ak (x) . (37)

In order to obtain an integral equation for the
coarse-grained statistical operator σ (ζ (x′)), which can
be used in the perturbation theory method for a
small interaction, we consider the evolution of the
system without interaction V̂ , i.e. when our system is
described by the HamiltonianH0. In this case, a spatially

inhomogeneous state will be formed after some time. We
will describe this state by a coarse-grained statistical
operator σ0

e−iH0τρeiH0τ →
τ→∞

σ0

(
ζ0 (x′, τ ; σ)

)
, (38)

where (compare with (31))

ζ0
A (x) = Spσ0

(
ζ0(x′, τ ; ρ)

)
ζ̂A (x) . (39)

It is worth noting that any statistical operator ρ
which satisfies the principle of a weakening of spatial
correlations (23) satisfies (38). Consequently, to define
ρ in (38), we introduce an operator w(Y (x′)),

w(Y (x′)) = exp
{

Ω(Y (x′))−
∫

d3x′YA(x′)ζ̂A (x′)
}

,(40)

where YA(x′) are arbitrary numeric functions, and
Ω(Y (x′)) is determined by the normalization relation
Spw(Y (x′)) = 1. The choice of the initial statistical
operator in the form (40) is explained by the following
reasons [2]. First, such an operator satisfies the principle
of a weakening of spatial correlations. Secondly, it
contains the arbitrary functions YA(x′), which allows
us to define the operator σ0

(
ζ0(x′, τ ; ρ)

)
. Moreover, if

YA (x) = YA = const, then w (Y (x′)) = exp {Ω− YAγ̂A}
(see (25)), and, consequently, [H0, w (YA)] = 0. The last
fact allows us to apply the perturbation theory method
of small gradients of the reduced description parameters
ζA (x).

According to (38), we obtain, by using (30):

e−iH0τσ (ζ (x′)) eiH0τ →
τ→∞

σ0

(
ζ0 (x′, τ ;σ)

)
,

e−iH0τw(Y (x′))eiH0τ →
τ→∞

σ0

(
ζ0 (x′, τ ; w)

)
. (41)

The choice of functions YA(x′) must satisfy the condition

ζA (x′, 0; σ) = ζA (x′, 0;w) . (42)

In this case, the following relation takes place:

e−iH0τ (σ (ζ (x′))− w(Y (x′))) eiH0τ →
τ→∞

0. (43)

By having in mind that

d

dτ

{
e−iH0τ (σ (ζ (x′))− w(Y (x′))) eiH0τ

}
=

= −ie−iH0τ [H0, σ (ζ (x′))− w(Y (x′))] eiH0τ

and integrating the formula with respect to τ , we obtain

e−iH0τ (σ (ζ (x′))− w(Y (x′)) eiH0τ = σ (ζ (x′))− ρ−

ISSN 0503-1265. Ukr. J. Phys. 2007. V. 52, N 3 285



S.O. NIKOLAYENKO, S.V. PELETMINSKII, Yu.V. SLYUSARENKO

−i

τ0∫

0

dτe−iH0τ [H0, σ (ζ (x′))− w(Y (x′)] eiH0τ . (44)

By turning τ →∞ and replacing the integration variable
τ by −τ , we come up to the following relation, by taking
(43) into account:

σ (ζ (x′)) = w(Y (x′) + i

0∫

−∞
dτ×

×eiH0τ {[H0, σ (ζ (x′))]− [H0, w(Y (x′)]} e−iH0τ . (45)

We have obtained the integral equation for σ (ζ (x′))
in the case where the subsystems do not interact, i.e.
V̂ = 0. However, according to (41), we can obtain
a similar equation for the interacting subsystems. By
substituting (34), (37), and (18) into (44), we obtain
an integral equation for the coarse-grained statistical
operator:

σ (ζ (x′)) = w(Y (x′)− i

0∫

−∞
dτeiH0τ {[H0, w(Y (x′)]−

−
∫

d3x
δσ (ζ (x′))
δζA (x)

∂

∂xk
Spσζ̂Ak (x) +

[
V̂ , σ (ζ (x′))

]
+

+ i

∫
d3x

δσ (ζ (x′))
δζA (x)

Spσ
[
V̂ , ζ̂A (x)

]}
e−iH0τ . (46)

4. Perturbation Theory for a Coarse-Grained
Statistical Operator

The integral equation (46) and Eq. (37) formally define
the evolution of the system when t À τ0. We use
the perturbation theory method to solve this equation
and to obtain the equation of motion for the reduced
description parameters ζA (x). We suppose that the free
paths of particles of both subsystems are much less than
the specific inhomogeneity length [2]. Thats why the
perturbation theory method can be applied owing to
small gradients of the reduced description parameters
and the low inter-subsystem interaction V̂ .

We note that the following translation relations are
valid for the creation and the annihilation operators
of the medium ϕ+ (x, ) ϕ (x) and those for particles
ψ+ (x, ) ψ (x):

e−iPxϕ (x′) eiPx = ϕ (x′ + x) ,

e−iPxϕ+ (x′) eiPx = ϕ+ (x′ + x) ,

e−iPxψ (x′) eiPx = ψ (x′ + x) , (47)

e−iPxψ+ (x′) eiPx = ψ+ (x′ + x) .

In relations (47), the total momentum operator P

Pi =
∫

d3xπi(x) +
∑
p

pia
+
p ap (48)

acts as a translation operator. The first term in (48)
represents the total momentum of medium (see (1), (2)),
and the second addend represents the total momentum
of particles. It is obvious that, according to definitions
(13) and (14), the relations similar to (47) take place
for the additive motion integrals ζ̂A (x) and their flows
ζ̂Ak (x):

e−iPxζ̂A (x) eiPx = ζ̂A (x′ + x) ,

e−iPxζ̂Ak (x) eiPx = ζ̂Ak (x′ + x) . (49)

We find consequently that the following equality is valid:

eiPxw (Y (x′)) e−iPx = w (Y (x + x′)) . (50)

By using equalities (47) and (50), we find that

eiPxσ (ζ (x′)) e−iPx = σ (ζ (x + x′)) . (51)

Hence, the equality

Spσ (ζ (x′)) a (x) = Spσ (ζ (x + x′)) a (0) (52)

takes place for any translation invariant operator
a (x) (i.e. the operator satisfying the relation

i
∂a (x)
∂xk

= [Pk, a (x)]).

The right-hand side of (52) contains the operator
a (x) with zero argument x = 0. Owing to low gradients,
only ζ (x + x′) with the argument x′ ≈ 0 makes a
significant contribution to the mean value of a (x) in
(52). The last fact allows us to use the series expansion

ζ (x + x′) = ζ (x) + x′k
∂ζ (x)
∂xk

+ ... (53)

to build a theory of corrections to the coarse-grained
statistical operator σ under small gradients of the
reduced description parameters ζA (x):

σ (ζ (x)) = σ(0) (x) + σ(1) (x) ...,

where

σ(0) (x) = σ (ζ (x′))|ζ(x′)=ζ(x) , (54)
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σ(1) (x) =
∂ζA (x)

∂xk

∫
d3x′x′k

δσ (ζ (x′))
δζA (x′)

∣∣∣∣
ζ(x′)→ζ(x)

.

According to (31), the condition Spσ (ζ (x + x′)) ζ̂A (0) =
ζA (x) is held, so we find that

Spσ(k) (ζ (x + x′)) ζ̂A (0) = ζA (x) δk0, k = 0, 1. (55)

In order to find the operators σ(0) (x), σ(1) (x), we
expand the operator w (Y (x + x′)) into series in the
gradients of the functions YA (x) (see (2), (51)):

w (Y (x + x′)) = w(0) (x) + w(1) (x) + ... (56)

We use the following expansion of the operator
exp

(
Â + B̂

)
in a polynomial series in a small operator

B̂ (see [2]) in order to obtain the operators w(0) (x) and
w(1) (x) from expression (40):

exp
(
Â + B̂

)
= eÂ



1 +

1∫

0

dλe−λÂB̂eλÂ + ...



 . (57)

Finally, we obtain

w(0) (x) = exp {Ω(x)− YA (x) γ̂A} , (58)

w(1) (x) = −∂YA (x)
∂xk

w(0) (x)×

×
1∫

0

dλ

∫
d3x′x′

k

(
ζ̂A (x′, λ)−

〈
ζ̂A

〉)
. (59)

Here, some new symbols have been introduced:

a (x′, λ) = w(0)−λa (x′)w(0)λ, 〈a〉 ≡ Spw(0)a, (60)

which simplifies the expressions.

The relations
[
H0, ζ̂A (x′, λ)

]
= i

∂ζ̂Ak (x′, λ)
∂xk

and
[
H0, w

(0) (x)
]

= 0 follow from Eqs. (25), (26), (3),
and (60). Hence, the first-order approximation
for[H0, w(Y (x′)] in Eq. (46) is equal to

[
H0, w

(1) (x)
]

= −i
∂YA (x)

∂xj
w(0) (x)×

×
1∫

0

dλ

∫
d3x′x′

j

∂

∂xk
ζ̂Ak (x′, λ).

By integrating the right-hand side of this equality by
parts and taking the principle of a weakening of spatial
correlations into account, we get
[
H0, w

(1) (x)
]

= i
∂YA (x)

∂xk
w(0) (x)×

×
1∫

0

dλ

∫
d3x′

(
ζ̂Ak (x′, λ)−

〈
ζ̂Ak

〉)
. (61)

Equations (54)—(61) allow us to construct the series
expansion for the coarse-grained statistical operator σ
in small gradients of the reduced description parameters
ζA (x) and a small inter-subsystem interaction V̂ :

σ (x) = σ(0,0) (x) + σ(0,1) (x) + σ(1,0) (x) + ... (62)

In what follows, we use the symbol D(n,m) to label
the terms of the perturbation series in the variable
D. The term D(n,m) is derived in the n-th order in
the gradients of ζA (x) and in the m-th order in the
interaction V̂ . By taking Eqs. (54)—(61) and (46) into
account, we get

σ(0,0) (x) = w(0) (x) . (63)

In accordance with (55), the thermodynamic potential
Ω(x) ≡ Ω (Y (x)) and the thermodynamic forces YA (x)
follow from the relations

Spw(0) (x) = 1, Spw(0) (x) ζ̂A (0) = ζA (x) . (64)

We emphasize that, according to (58) and (63),
the expression for the statistical operator σ(0,0) (x)
coincides with the Gibbs equilibrium operator (25) where
the parameter YA is replaced by the function YA (x).
Therefore, the statistical operator defined by (58) is
called the locally equilibrium Gibbs distribution w(0) (x).

For σ(0,1) (x), we easily obtain

σ(0,1) (x) = −
0∫

−∞
dτeiH0τ

{
i
[
V̂ , w(0) (x)

]
+

+i

∫
d3x′

δw(0) (x)
δζA (x′)

Spw(0) (x′)
[
V̂ , ζ̂A (0)

]}
e−iH0τ . (65)

By using (46) and (58) and making some
transformations, we derive (see [5] for details) the
expression for σ(1,0) (x)

σ(1,0) (x) = w(1) (x) +

0∫

−∞
dτ

1∫

0

dλ

∫
d3x′

{
∂YA (x)

∂xk
×

×eiH0τw(0) (x)
(
ζ̂Ak (x′, λ)−

〈
ζ̂Ak

〉)
e−iH0τ+
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+
δw(0) (x)
δζA (x′)

∂

∂xj
Spw(0) (x′) ζ̂Aj (0)

}
−

−∂w(0) (x)
∂ζA (x)

Spw(1) (x) ζ̂A (0) , (66)

where

〈...〉 ≡ Spw(0) (x) ... . (67)

The above-obtained expressions can be simplified if
we use the fact that the locally equilibrium statistical
operator w(0) (x) commutes with the additive motion
integrals γ̂A =

∫
d3xζ̂A (x) (see (26), (58)),

[
w(0) (x) , γ̂A

]
= 0. (68)

So, for example, the quantity Spw(0) (x′)
[
V̂ , ζ̂A (0)

]

appearing on the right-hand side of equality (65) can be
reduced to the expression

Spw(0) (x′)
[
V̂ , ζ̂A (0)

]
=

=
1
V

∫
d3xSpw(0) (x′)

[
V̂ , ζ̂A (x)

]
=

=
−1
V SpV̂

[
w(0) (x′) , γ̂A

]
= 0, (69)

and the further simplification of (65) becomes obvious:

σ(0,1) (x) = −i

0∫

−∞
dτeiH0τ

[
V̂ , w(0) (x)

]
e−iH0τ . (70)

Operations similar to (69) allow us to replace the
mean values of ζ̂A (0) with more simple mean values of
γ̂A. Such a method is widely used below.

A further simplification of expression (66) is also
possible. Some terms in (66) are equal to zero owing
to their symmetry. According to the definitions of the
space-time reverse transformation operators (15)-(17), it
is obvious that T P γ̂A (T P)−1 = γ̂∗A. So, by using (58),
we obtain

T Pw(0) (x) (T P)−1 = w(0) (x)∗ . (71)

In view of the equality
〈
ζ̂A

〉
=

〈
ζ̂A

〉∗
, we obtain

T Pw(1) (x) (T P)−1 = −∂YA (x)
∂xk

1∫

0

dλ

∫
d3x′x′

k
×

×w(0) (x)(1−λ)∗
(
ζ̂A (−x′)−

〈
ζ̂A

〉)∗
w(0) (x)λ∗

,

which leads finally to

T Pw(1) (x) (T P)−1 = −w(1) (x)∗ . (72)

It is obvious from expression (17) which defines the
space-time reverse transformations of additive integrals
densities and their flows that

Spw(1) (x) ζ̂A (0) = 0, Spw(1) (x) ζ̂Ak (0) = 0. (73)

By using the last two equations and the equality
δw(0) (x)
δζA (x′)

= δ (x′ − x)
∂w(0) (x)
∂ζA (x′)

, we simplify expression

(66):

σ(1,0) (x) = w(1) (x) +

0∫

−∞
dτ

1∫

0

dλ

∫
d3x′

{
∂YA (x)

∂xk
×

× eiH0τw(0) (x)
(
ζ̂Ak (x′, λ)−

〈
ζ̂Ak

〉)
e−iH0τ

}
+

+

0∫

−∞
dτ

1∫

0

dλ
∂w(0)

∂ζA

∂
〈
ζ̂Aj

〉

∂xj
. (74)

As the next step, we turn to formulas obtained in [2]:

∂
〈
ζ̂A

〉

∂YB
=

∂
〈
ζ̂B

〉

∂YA
,

∂
〈
ζ̂Ak

〉

∂YB
=

∂
〈
ζ̂Bk

〉

∂YA
, (75)

∂w(0)

∂YB
= −w(0)

1∫

0

dλ

∫
d3x′

(
ζ̂B (x′, λ)−

〈
ζ̂B

〉)
. (76)

By using these two formulas, the following equality can
be easily proved:

∂w(0)

∂ζA

∂ 〈ζAj〉
∂xj

= −∂YA

∂xj

∂ 〈ζAj〉
∂ζB

w(0)

1∫

0

dλ

∫
d3x′×

×
(

w(0)−λ ∂ 〈ζAj〉
∂ζB

ζ̂A (x′)w(0)λ −
〈

ζ̂B
∂ 〈ζAj〉
∂ζB

〉)
. (77)

In accordance with (77) after introducing a new variable

ζ̂ ′Aj (x′) = ζ̂Aj (x′)−
∂

〈
ζ̂Aj

〉

∂ζB
ζ̂B , (78)

expression (74) is transformed into

σ(1,0) (x) = w(1) (x) +
∂YA (x)

∂xk
w(0) (x)

0∫

−∞
dτ

1∫

0

dλ×
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×
∫

d3x′
{

eiH0τ
(
ζ̂ ′Ak (x′, λ)−

〈
ζ̂ ′Ak

〉)
e−iH0τ

}
. (79)

In what follows, we use two new operators

w(0)
p (x) = exp {Ωp (x)− Yp (x) γ̂p} ,

w(0)
m (x) = exp {Ωm (x)− Yα (x) γ̂α} . (80)

We note that definition (58) and the expressions
[
ζ̂α (x) , f̂p (x)

]
= 0, [γ̂α, γ̂p] = 0

yield (see also (26))

Ω(x) = Ωp (x) + Ωm (x) ,

w(0) (x) = w(0)
p (x)w(0)

m (x) . (81)

The dependence of the thermodynamic potentials
Ωm (x) and Ωp (x) on Yα (x) and Yp (x) can be clarified
by using the normalization requirements

Spw(0)
m (x) = 1, Spw(0)

p (x) = 1. (82)

The thermodynamic forces Yα (x) and Yp (x) are
functions of the reduced description parameters ζα (x),
fp (x). The relevant functional dependence is defined by
the relations

Spw(0)
m (x) ζ̂α(0) = ζα (x) ,

Spw(0)
p (x) f̂p (0) = fp (x) . (83)

Thus, we have separated the operator w(0) (x) into
a product of two terms. One term contains only the
operators related to the medium, and the another
term accounts for the particles only. Consequently
in accordance with (81), the operators w(1) (x) and
σ(1,0) (x) can be transformed into

w(1) (x) = w(0)
m (x)w(1)

p (x) + w(0)
p (x)w(1)

m (x) ,

w(1)
m (x) = −∂Yα (x)

∂xk
w(0)

m (x)×

×
1∫

0

dλ

∫
d3x′x′

k

(
w(0)−λ

m ζ̂α (x′) w(0)λ
m −

〈
ζ̂α

〉
m

)
,

w(1)
p (x) = −∂Yp (x)

∂xk
w(0)

p (x)×

×
1∫

0

dλ

∫
d3x′x′

k

(
w(0)−λ

p ζ̂p (x′)w(0)λ
p −

〈
ζ̂p

〉
p

)
, (84)

σ(1,0) (x) = w(0)
m (x)σ(1,0)

p (x) + w(0)
p (x) σ(1,0)

m (x) ,

σ(1,0)
m (x) = w(1)

m (x) +
∂Yα (x)

∂xk
w(0)

m (x)

0∫

−∞
dτ

1∫

0

dλ×

×
∫

d3x′
{

eiH0τ
(
ζ̂ ′αk (x′, λ)−

〈
ζ̂ ′αk

〉
m

)
e−iH0τ

}
,

σ(1,0)
p (x) = w(1)

p (x) +
∂Yp (x)

∂xk
w(0)

p (x)

0∫

−∞
dτ

1∫

0

dλ×

×
∫

d3x′
{

eiH0τ

(
ζ̂ ′pk (x′, λ)−

〈
ζ̂ ′pk

〉
p

)
e−iH0τ

}
. (85)

We have introduced the following new symbols for
traces:

〈a〉m = Spw(0)
m a, 〈a〉p = Spw(0)

p a. (86)

It is important that the operator σ
(1,0)
p (x) does

not contain operators relevant to the medium, and
the operator σ

(1,0)
m (x) does not contain the operators

related to particles. Moreover, Spσ
(1,0)
m (x) = 0 and

Spσ
(1,0)
p (x) = 0.

It is obvious from (9) that
∂〈ζ̂pj〉
∂ζp′

= δpp′
pj

m , and,
hence, we get

ζ̂ ′pj (x′) =
pj

m
f̂p (x′)− δpp′

pj

m
f̂p′ (x′) = 0. (87)

As a consequence, the integrand in expression (85) for
σ

(1,0)
p (x) is equal to zero, so that

σ(1,0)
p (x) = w(1)

p (x) . (88)

Expressions (70), (84), (85), and (88) determine
the coarse-grained statistical operator in the first order
of perturbation theory in gradients and interactions.
Hence, we can consider the equations for the reduced
description parameters in the second-order of the
approximation:

∂ζA (x)
∂t

= L
(1,0)
A (x) + L

(0,1)
A (x)+

+L
(1,1)
A (x) + L

(0,2)
A (x) + L

(2,0)
A (x) ,

L
(1,0)
A (x) = − ∂

∂xk
Spw(0) (x) ζ̂Ak (0) ,

L
(2,0)
A (x) = − ∂

∂xk
Spσ(1,0) (x) ζ̂Ak (0) ,
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L
(0,1)
A (x) = iSpw(0) (x)

[
V̂ , ζ̂A (0)

]
,

L
(0,2)
A (x) = iSpσ(0,1) (x)

[
V̂ , ζ̂A (0)

]
,

L
(1,1)
A (x) = − ∂

∂xk
Spσ(0,1) (x) ζ̂Ak (0)+

+iSpσ(1,0) (x)
[
V̂ , ζ̂A (0)

]
. (89)

The derivation of L
(i,k)
A (x) is given in the next section.

5. Equations of Motion

In this section, expressions (89) are analyzed, and some
rearrangements are made, which result in obtaining the
coupled motion equations. The equations have structure
similar to that of the kinetic equation for particles and
the hydrodynamic equations for a medium.

It is important that the explicit dependence of
the Wigner’s distribution function f (p,x) on the
thermodynamic forces Yp (x) can be expressed as

f (p,x) = Spw(0)
p (x) a+

p ap =
1

eYp(x) + 1
. (90)

We concentrate on calculating the functions
L

(i,k)
A (x) defined in (89). The transformations similar

to (69) lead to the expressions

L
(0,1)
A (x) = iSpw(0) (x)

[
V̂ , ζ̂A (0)

]
= 0, (91)

L
(0,2)
A (x) =

i

V Spσ(0,1) (x)
[
V̂ , γ̂A

]
. (92)

According to (70), we obtain

L(0,2)
p (x) =

=

0∫

−∞
dτSpeiH0τ

[
V̂ , w(0) (x)

]
e−iH0τ

[
V̂ , a+

p ap

]
. (93)

We introduce a new operator

V̂ (τ) ≡ eiH0τ V̂ e−iH0τ . (94)

After а cyclic rearrangement of the operators in (93)
in accordance to the relations [H0, γ̂A] = 0 and
[H0, w0 (x)] = 0, we obtain

L(0,2)
p (x) =

0∫

−∞
dτSpw(0) (x)

[[
V̂ (−τ) , a+

p ap

]
, V̂

]
. (95)

By using the Jacobi identity and the relation

Spw(0) (x)
[[

V̂ (−τ) , a+
p a+

p

]
, V̂

]
=

= Spw(0) (x)
[[

V̂ (τ) , a+
p a+

p

]
, V̂

]
,

we expand the integration limits in (95) towards −∞
and ∞:

L(0,2)
p (x) =

= −1
2

+∞∫

−∞
dτSpw(0) (x)

[
V̂ ,

[
V̂ (τ) , a+

p a+
p

]]
. (96)

It is more convenient to introduce a new operator
Ĵ (1, 2; τ) similarly to (94) as

V̂ (τ) =
∑
1,2

Ĵ (1, 2; τ) a+
1 a2e

i(ε1−ε2)τ ,

Ĵ (1, 2; τ) = eiHmτ Ĵ (1, 2) e−iHmτ , (97)

where the indices ”1”, ”2” label the momentum vectors
p1 and p2. Let us return to commutators in the collision
integral (96). Owing to the anticommutation of the
fermion operators a and a+, we find that
[
V̂ , a+

p ap

]
=

∑
1,2

Ĵ (1, 2)
[
a+
1 a2, a

+
p ap

]
=

=
∑
1,2

Ĵ (1, 2) a+
1 a2 (δ2p − δ1p). (98)

The operator Ĵ (1, 2) does not contain operators relevant
to particles, hence, we have

L(0,2)
p (x) = −1

2

+∞∫

−∞
dτ

∑

1,2,1′,2′
(δ2p − δ1p)×

×
{〈
Ĵ (1′, 2′; τ) Ĵ (1, 2)

〉
m

〈
a+
1′a2′a

+
1 a2

〉
p
−

−
〈
Ĵ (1, 2) Ĵ (1′, 2′; τ)

〉
m

〈
a+
1 a2a

+
1′a2′

〉
p

}
. (99)

After calculating the mean values in (99), we obtain

L(0,2)
p (x) =

∑
1,2

(δ1p − δ2p) f2 (x) (1− f1 (x))×

×
+∞∫

−∞
dτ

〈
Ĵ (2, 1; τ) Ĵ (1, 2)

〉
m

ei(ε1−ε2)τ . (100)
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Here, we use a shortened labeling for the distribution
function fi (x) ≡ f (pi,x).

Then we define the correlation function

I1,2 (τ,x) ≡
〈
Ĵ (2, 1; τ) Ĵ (1, 2)

〉
m

, (101)

and the spectral function

I1,2 (ω,x) =
1
2π

∞∫

−∞
dτI1,2 (τ,x) eiωτ , (102)

which is the Fourier transform of the correlation
function.

By substituting relation (102) into the collision
integral (100), we obtain finally

L(0,2)
p (x) = 2π

∑
1,2

δ2p {f1 (x) (1−f2 (x)) I2,1 (ε1−ε2,x) −

−f2 (x) (1− f1 (x)) I1,2 (ε2 − ε1,x)} . (103)

Let us return back to the commuting operators γ̂α (see
(2)), where γ̂0 = Hm is the total energy operator of
the medium, γ̂i = P̂

(m)
i is the momentum operator

of the medium, γ̂4 = M̂ (m) is the mass operator of
the medium. The eigenvalues of these operators can
be labeled as (γ0)n = E(m)

n ,(γi)n =
(
P

(m)
i

)
n
, (γ4)n =

M
(m)
n . According to expressions (101) and (102), we

obtain〈
Ĵ (2, 1; τ) Ĵ (1, 2)

〉
m

=

=
∑
n,m

∣∣∣Ĵm,n (1, 2)
∣∣∣
2

eiτ(En−Em)
(
w

(m)
0 (x)

)
n
,

I1,2 (ω,x) =

=
∑
n,m

δ (ω + En − Em)
∣∣∣Ĵm,n (1, 2)

∣∣∣
2 (

w
(m)
0 (x)

)
n
.(104)

It is seen that I1,2 (ω,x) > 0. It is important that
the interaction operator V̂ commutes with the total
momentum operator
[
V, P̂(m) +

∑
p

pa+
p ap

]
= 0. (105)

Consequently, the coefficient functions Ĵm,n (1, 2) are
not equal to zero only if the equality Pn+p1−Pm−p2 =
0 takes place. Hence, according to (20) and (104), we
obtain a symmetry relation for I1,2 (ω,x) in the form

I2,1 (−ω,x) =

= I1,2 (ω,x) exp (−Y0 (x)ω − Yi (x) (p2 − p1)i) (106)

Substituting (106) in (103), we find that the collision
integral looks as

L(0,2)
p (x) = 2π

∑
1,2

δ2pI1,2 (ε2 − ε1,x) {(1− f2 (x)) ×

×f1 (x) exp (−Y0 (x) (ε2 − ε1)− Yi (x) (p2 − p1)i)−

−f2 (x) (1− f1 (x))} . (107)

The equilibrium condition for the medium and
particles can be easily derived by using (107). The
collision integral L

(0,2)
p (x) vanishes, L

(0,2)
p (x) = 0,

when the above-mentioned distribution function in the
collision integral is determined by equality (90), where
the function Yp (x) is given by the expression

Yp (x) = Y0 (x) εp + Yi (x) pi + c (x) . (108)

Here, c (x) is an arbitrary numerical function
independent of p. Relation (108) claims that particles
are in equilibrium with medium when their temperature
and mean velocity are equal to those of the medium. By
using (107), we can also find that the following equality
takes place for an arbitrary distribution function fp (x):
∑
p

L(0,2)
p = 0. (109)

The last fact represents the conservation law for the
number of particles.

Further, we find the relation for the collision
integral ÃL(0,2)

p (x) and the functions L
(0,2)
α (x) defined

by expression (92), where A = α. As long as the
interaction V̂ does not affect the mass of our system,
the equality

[
V̂ , γ̂4

]
= 0 takes place. Hence, by using

(92) and assuming α = 4, we obtain

L
(0,2)
4 (x) = 0. (110)

According to (105), we have [V, γ̂i] = −∑
p

pia
+
p ap.

Substituting this expression into (92) and assuming α =
i, we find

L
(0,2)
i (x) = −

∑
p

piL
(0,2)
p (x) . (111)

It is easy to prove that the following equality takes
place:

Spw(0) (x)
[
V (τ) ,

[
V̂ , Hm + Hp

]]
=
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= Spw(0) (x)
[
V̂ , [V (−τ) ,H0]

]
=

= −iSpw(0) (x)

[
V̂ ,

∂V̂ (−τ)
∂τ

]
.

By using this equality together with (105) and (92) and
by assuming α = 0, we obtain

L
(0,2)
0 (x) = −

∑
p

εpL(0,2)
p (x) . (112)

The introduction of the new functions

χ0 (p) =
p2

2m
, χi (p) = pi, χ4 (p) = m (113)

allows us to combine equalities (110)-(112) in a single
formula

L(0,2)
α (x) = −

∑
p

χα (p)L(0,2)
p (x) . (114)

Next, we will calculate L
(1,1)
A (x). By using (85), we

split (89) into three terms:

L
(1,1)
A (x) = L

(1,1)
1A (x) + L

(1,1)
2A (x) + L

(1,1)
3A (x) . (115)

Here,

L
(1,1)
1A (x) = − ∂

∂xk
Spσ(0,1) (x) ζ̂Ak (0) ,

L
(1,1)
2A (x) = +iSpw(0)

p (x)σ(1,0)
m (x)

[
V̂ , ζ̂A (0)

]
,

L
(1,1)
3A (x) = +iSpw(0)

m (x)w(1)
p (x)

[
V̂ , ζ̂A (0)

]
.

It is easy to find that L
(1,1)
1p (x) = 0. Indeed,

L
(1,1)
1p (x) =

i

V
∂

∂xk

0∫

−∞
dτ

pk

m
Sp

[
V̂ , w(0) (x)

]
γ̂p = 0.(116)

The equality
[
σ

(1,0)
m (x) , γ̂p

]
= 0 is valid since

the operator σ
(1,0)
m (x) does not contain any operators

relevant to the particles. Therefore, the following
equality is satisfied:

L
(1,1)
2p (x) =

i

V iSpσ(1,0)
m (x) V̂

[
γ̂p, w(0)

p (x)
]

= 0. (117)

The operator V̂ has the symmetry properties

T PV̂ (T P)−1 = V̂ ∗, (118)

which is seen from the definitions of the translation
operators (15)—(17). By using the last relation, we
obtain

L
(1,1)
3p (x) = 0. (119)

Thus, we have found that L
(1,1)
p (x) = 0. However,

the function L
(1,1)
α (x) = 0 can be nonzero now. The

equalities

L
(1,1)
2α (x) = −

∑
p

χα (p)L(1,1)
2p (x) = 0,

L
(1,1)
3α (x) = −

∑
p

χα (p)L(1,1)
3p (x) = 0

are obtained in the same way as equalities (110)–(112).
Although the equality L

(1,1)
1α (x) = 0 takes place only if

the operator Ĵ (1, 2) depends exclusively on the density
operator of the medium. In the present work, we do
not consider the structure L

(1,1)
1α (x). Nevertheless, in the

equations of motion, we neglect the function L
(1,1)
A (x)

[see (89) and (115)].
Next, we introduce the rest of the functions defined

in (89). We have the following expressions related to the
particles:

L(1,0)
p (x) = − ∂

∂xk
Spw(0) (x) ζ̂Ak (0) =

= −pk

m

∂

∂xk
f (p,x) , (120)

L(2,0)
p (x) = − ∂

∂xk

pk

m

(
Spw(0)

p (x)σ(1,0)
m (x) ζ̂p (0)+

+ Spw(1)
p (x)w(0)

m (x) ζ̂p (0)
)

=

= − ∂

∂xk

pk

m

(
Sp(m)σ(1,0)

m (x) Sp(p)w(0)
p (x) ζ̂p (0)+

+ Sp(m)w(0)
m (x) Sp(p)w(1)

p (x) ζ̂p (0)
)

= 0. (121)

The functions L
(1,0)
α (x) and L

(2,0)
α (x) determine the

hydrodynamic equations. Obviously,

L(1,0)
α (x) =

= − ∂

∂xk
Sp(m)w(0)

m (x) ζ̂αk (0) = − ∂

∂xk
ζ
(0)
αk (x) . (122)

In view of the relation Spσ
(1,0)
p (x) = 0 and (84), we

obtain

L(2,0)
α (x) =
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= − ∂

∂xk
Sp(m)σ(1,0)

m (x) ζ̂αk (0) = − ∂

∂xk
ζ
(1)
αk (x) . (123)

Expressions (122) and (123) include no operators
related to the subsystem of particles. However, the
direct calculation of traces (122) and (123) is rather
complicated. Moreover, the calculation of (123) requires
to know the interaction of particles of the medium
introduced into the Hamiltonian Hm. The structure of
the hydrodynamic equations can be obtained by using
the symmetry of the operators ζ̂α (x) and ζ̂αk (x) in
respect to the Galilei transformations (see [2]). By using
the symmetry properties, we find the expressions for the
flows of the hydrodynamic parameters ζ

(0)
αk (x):

ζ
(0)
4k (x) ≡ j

(0)
k (x) = ρ (x)uk (x) ,

ζ
(0)
ik (x) ≡ t

(0)
ik (x) = p (x) δik + ρ (x) ui (x)uk (x) ,

ζ
(0)
0k (x) ≡ q

(0)
k (x) = p (x)uk (x) + ε0 (x)uk (x) +

+
1
2
ρ (x)u2 (x) uk (x) . (124)

Here, β (x) = Y0 (x) = 1/T (x) is the inverse
temperature T (x), and πk (x) = −Yk(x)

Y0(x)ρ (x), so that

uk (x) = −Yk(x)
Y0(x) = πk(x)

ρ(x) is the local velocity of the

medium; ε0 (x) = Sp(m)w
(0)
m (x) ε̂ (0) is the density of

internal energy of the medium, and p (x) is the medium
pressure defined by the formula

p (x) = Spw(0)
m (x) t̂kl (0) .

The functions ζ
(1)
αk (x) are given by the following

expressions (see [2] for details):

ζ
(1)
4k (x) ≡ j

(1)
k (x) = 0,

ζ
(1)
ik (x) ≡ t

(1)
ik (x) = −ζδik

∂ul (x)
∂xl

−

−η

(
∂ui (x)

∂xk
+

∂uk (x)
∂xi

− 2
3
δik

∂ul (x)
∂xl

)
,

ζ
(1)
0k (x) ≡ q

(1)
k (x) = ui (x) t

(1)
ik (x) +

κ̄

β2 (x)
∂β (x)
∂xk

. (125)

Here, η, ζ are the first and second viscosity factors,
respectively, and κ̄ = β2κ is the thermal conductivity
factor. These factors are defined in terms of the
correlation function 〈âb̂〉x,t as

η =
1
2
β

∞∫

−∞
dτ

∫
d3x

〈
t̂12t̂12

〉
x,τ

,

ζ =
1
2
β

∞∫

−∞
dτ

∫
d3x

〈
t̂ik t̂ik

〉
x,τ

,

κ̄ =
β2

2

∞∫

−∞
dτ

∫
d3x 〈q̂′lq̂′l〉x,τ ,

where

q̂′l (x) = q̂l (x)− ∂ 〈q̂l〉
∂ζα

ζ̂α (x) .

Finally, we obtain the system of equations of motion
for our system:

∂f (p,x)
∂t

+
pk

m

∂f (p,x)
∂xk

= L(0,2)
p (x) ,

∂ζa (x)
∂t

+
∂

∂xk
ζ
(0)
αk (x) +

∂

∂xk
ζ
(1)
αk (x) = L(0,2)

α (x) ,

L(0,2)
p (x) = 2π

∑
1,2

δ2p {I2,1 (ε1 − ε2,x) f1 (x) ×

× (1− f2 (x))− I1,2 (ε2 − ε1,x) f2 (x) (1− f1 (x))} ,

L(0,2)
α (x) = −

∑
p

χα (p)L(0,2)
p (x) . (126)

Here, the variables ζ
(0)
αk (x), ζ

(1)
αk (x) are defined by

formulas (124) and (125). This system of coupled
equations of motion describes the kinetics of spatially
inhomogeneous states of particles that weakly interact
with the hydrodynamic medium. The obtained equations
describe, for example, neutrons propagating in a medium
without multiplication and capture.
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ДО КIНЕТИКИ ПРОСТОРОВО НЕОДНОРIДНИХ
СТАНIВ ЧАСТИНОК, ЩО ВЗАЄМОДIЮТЬ
IЗ ГIДРОДИНАМIЧНИМ СЕРЕДОВИЩЕМ

С.О. Нiколаєнко, С.В. Пелетминський, Ю.В. Слюсаренко

Р е з ю м е

Побудовано кiнетичну теорiю просторово неоднорiдних станiв
частинок, що слабо взаємодiють iз гiдродинамiчним середо-
вищем. Для побудови мiкроскопiчної теорiї такої системи ви-
користано метод скороченого опису. Розглянуто випадок, ко-

ли пiдсистема частинок, що взаємодiють iз середовищем, пе-
ребуває на кiнетичному етапi еволюцiї й описується одноча-
стинковою функцiєю розподiлу. У рамках методу скороче-
ного опису одержано зв’язанi рiвняння руху для парамет-
рiв скороченого опису: одночастинкової функцiї розподiлу
для частинок, що взаємодiють iз середовищем, та гiдроди-
намiчних характеристик середовища (його густини, темпера-
тури та середньої швидкостi частинок середовища). Прикла-
дом фiзичного об’єкта, еволюцiя якого описується отримани-
ми рiвняннями, можуть служити нейтрони, якi поширюються
у гiдродинамiчному середовищi без поглинання та розмножен-
ня.
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