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Our work considers spatially non-uniform states of particles weakly
interacting with a hydrodynamic medium. We have developed
a microscopic theory of such systems by using Bogolyubov’s
reduced description method. It has been shown that such a system
has both the kinetic and hydrodynamic stages of evolution. The
kinetic stage of evolution for particles interacting with a medium
has been considered. At this stage, the one-particle distribution
function is a reduced description parameter for particles, and,
therefore, a medium is described by five hydrodynamic parameters
(density, temperature and velocity). The coupled system of motion
equations for the reduced description parameters is obtained on the
basis of Bogolyubov’s reduced description method. The obtained
equations can be used, for example, for the description of neutrons
propagating in a hydrodynamic medium without multiplication
and capture.

1. Introduction

The development of the kinetic theory of particles
weakly interacting with a medium concerns both
the general theory of relaxation processes and
applied researches. Such a theory can be used in
studying the Brownian motion or the transfer of
neutrons in different media in a nuclear reactor.
The beginning of the theoretical research of such
systems dates back to the first works of Einstein
and Smoluchowski (see [2]), though many aspects
have not been studied yet. First of all, this concerns
the construction of a consistent microscopic approach
describing the kinetics of particles interacting with a
medium.

The reduced description method is the most
sequential and promising microscopic approach in
modern kinetics. The basic concepts of this method
used for the description of classical systems are
stated in the book [1] by N.N. Bogolyubov. The
extension of this method to quantum many-particle
systems is given in book [2]. The reduced description
method is based on the concept of a relaxation
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time hierarchy, the ergodic hypothesis, and the
principle of a weakening of spatial correlations.
The application of the reduced description method
results in a consistent microscopic approach which
allows us to obtain kinetic equations (when the
system is described by a one-particle distribution
function) and hydrodynamic equations (in the case
where the system is described with a set of
hydrodynamic parameters such as temperature, density,
and velocity).

However, such systems may include different
subsystems on different stages of their evolution. For
example, in a two-component system, one component
can be on the kinetic evolution stage, which means that
it is described by a one-particle distribution function,
while the other component evolves hydrodynamically
and is described by a set of hydrodynamic parameters.
Such a situation occurs when the system consists of
strongly interacting particles of one type (hydrodynamic
medium) and particles of the other type which weakly
interact with the medium, but do not interact with
one another owing their small number. One of the
specific examples of such systems are slow neutrons in a
hydrodynamic medium.

The consequent microscopic theory describing
the spatially homogeneous evolution of particles
in a hydrodynamic medium by means of the
reduced description method has been developed in
[2]. In the present work, we consider spatially
inhomogeneous states of particles weakly interacting
with a hydrodynamic medium by using the reduced
description method. As a result, we obtain a coupled
system of equations which describes the evolution of
a hydrodynamic medium and particles that weakly
interact with this medium.

Prior to the derivation of the system of equations,
we will formulate some basic definitions.
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2. Basic Description Parameters and Their
Properties

We describe the hydrodynamic medium by using a set
of parameters (, (x), @ = 0,4,4, where (p(x) = ¢ (x)
is the energy demnsity of the medium, (; (x) = m; (x)
is the momentum density, and ¢ (x) = p("™(x) is the
mass density. We can also introduce the operators éa (x)
of hydrodynamic parameters with densities (, (x), @ =
0,4, 4, where (g (x) = & (x) is the operator of the energy
density, ; (x) = #; (x) is operator of the momentum
density, and ¢ (x) = p™(x) is the operator of the
mass density. These operators are expressed in terms
of the creation T (x) and annihilation ¢ (x) operators
for particles of the medium:

é(x) = MV@ (x )Vgp(x)%—%/cﬁRx
xVin (R) " (x+ R) " (x) 0 (x) ¢ (x + R),
70 =3 (o - 28

ﬁ(m) (X) = mm<p+ (X) ¥ (X) .

Here, m,, is the mass of particles of the medium,
and Vi, (R) is the pairwise interaction potential of
particles of the medium. The mass M momentum PZ7
and energy (Hamiltonian) H(™ of the medium are
introduced according to (1) in the following way:

M = /d3:c[)(m)(x)

P, = /defri(x), (2)

HM™ = / dPré(x)

Obviously, these operators commute with one another,
hence the densities of the hydrodynamic parameters
éa (x), where « varies from 0 to 4, are the densities of
the additive integrals of motion of the medium. We note
that the interaction of particles of the medium can be
more complicated than that specified in (1), although
variables (2) play the role of the integrals of motion.

Time derivative operators of additive motion
integrals in the Schrodinger representation are given by
expressions (see [2, 3])

aéozk (X)

Ca () = i[H o (0] = =25 3)
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where variables (or (x) are the densities of the flow
of additive motion integrals; namely, Cor (X) = Gk (X)
is the operator of the energy flow density, (x) =
tir (x) is the operator of the momentum flow density
and Cy (x) = j’,(cm) (x) is the operator of the mass
flow density. According to [2], the operators of the
additive motion integrals are expressed in terms of the
hydrodynamic parameters:

j,im) (x) = mp(x) = i/dgm’x;/dfx
0
% [ele= (1= )x) . p") (x4 )]

1
B (%) = —& (x) O+ / &'z, / de
0

X [5 (X - (1 - 5) X/) » Tk (X + fx/)], (4)
/d3x xk/dfx
x[e(x—(1-8x),e(x+&x)).

So, we have defined the operators required for the
description of the medium.

Particles, as was mentioned in Introduction, may be
on the kinetic evolution stage, where they are described
with a one-particle distribution function f (x,p). So we
introduce the operator of Wigner’s distribution function
(see [2, 4])

B = [eservt (5ol ) @

where the variables 7 (x) and ¢ (x) are the operators
of creation and annihilation of particles interacting with
the medium. It is essential that the operators of creation
and annihilation of particles of the medium and those of
the particles interacting with the medium commute:

[V (x),¢" (x)] =0, [¥(x),¢(x)]=0,
(v (x), 0" (x)] =0, [¢F(x),0(x)] =0.

The Hamiltonian of free (i.e. not interacting with
one another) particles in terms of the creation and
annihilation operators looks as

Hy= 5 / BVt (x) Vi (x), (6)
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where m is the mass of particles. It is obvious that

i| [ ey 0.7 <o, 7)

which means that the Wigner’s distribution function
operator fp (x) can be treated as an additive motion
integral of the subsystem of particles. By the consequent
application of expression (6) for the Hamiltonian of
free particles H, and the definition of the Wigner’s
distribution function (5), we can show that

i [ fo ()] = 220 f (s 0

m Oxy,

The variable
Jor (%) = 72 o () 9)

can be treated as the flow of the Wigner’s distribution
function.

We also mention several formulas relevant to the
Wigner’s distribution function which will be used in
future calculations. By using definition (5), we can easily
find another expression for the Wigner’s distribution
function operator:

fol00 =V [ dnidpcay, »

xe~x(P1=P2) 5 (pl TP p>, (10)

2

where V is the system’s volume, § (p) is the Dirac’s
delta function, and a; , a, are the operators of creation
and annihilation of particles having momentum p. These
operators are introduced with the following expressions:

YT (x) = VA Zaﬁe_ipx7 P (x) = VA Zapeipx.(ll)
p P
After integrating (10), we obtain

/d3xfp (x) = Vafa, = p. (12)
In order to formalize further expressions, we
introduce a general symbol for the operators used as
description parameters. We introduce a generalizing
symbol 4 (x), where the index ”A” possesses the value
of A ={a,p}. For the operators of the additive motion
integrals of the medium (, (x), « = 0,i,4 and the
Wigner’s distribution function operator fp (x) (see (1),
(5)), we have
Ca (%) |a=a = Ca (%),

Ca (%) [ap = fp (x). (13)
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Similarly, we introduce a generalizing symbol é Ak (x) for
the flow operators (compare with (9)):

Car (%) [a=a = Car (%),
Car (09) Lamp = foe () = 22 (30

Further, we will need the symmetry properties of
the above-inroduced operators in respect to space-time
reversal transformations. The unitary space reversal
operator P transforms the field operators of our system
¢ (x) and 1 (x) by the formulas

¢ (x) = ¢ (—x) = Pp (x) P¥,
P (x) =9 (—x) = Py (x) PT.

The unitary time reversal operator 7 transforms the
field operators as

¢ (x)=px)" =Tp(x)TT,
Y (x)=¢p(x)" =Ty (x)T".

We have the following expressions for the space and
time reversal transformations of the operators of additive
motion integrals (4 (x) and their flows Cay (x) by using
(15) and (16) (see [2] for details):

TPCa (x) (PT)" = (h (—x),
TPlar () (TP)" = (i (%) -

Thus, we have defined all the quantities and their
operators in the secondary quantization representation
that are necessary for the description of the medium
subsystem and the particle subsystem separately.
These two subsystems are joined with the complete
Hamiltonian H, which is defined as

H="Ho+V, Ho=Hm+H,p, (18)

where Hy describes the non-interacting subsystems
of the medium and particles, and V describes the
interaction of these subsystems. Operators H,, and H,
were defined by formulas (2) and (6). Here, we assume
that the interaction Hamiltonian has the structure

(14)

(15)

(16)

(17)

V="> J(p1,p2)a},ap,, (19)
P1,P2
where agl, a,, are the operators of creation

and annihilation of particles in the momentum
representation (see (11)), and the operator J (pi,p2)
contains only the medium’s operators. We will not
specify the structure of J (pi,p2). However, the
Hermitian property of the Hamiltonian implies that

j+ (P1,P2) :j(pz,pl). (20)
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3. Postulates of the Method of Reduced
Description in the Kinetic Theory of
Particles Interacting with the
Hydrodynamic Medium

The physical quantities and their operators defined in
the previous section will be used in our study of spatially
inhomogeneous states of the medium and particles
interacting with the medium. Now, we formulate the
basic concepts of the reduced description method and
apply them to our system.

At an arbitrary time ¢, our system can be described
with a statistical operator p (¢) which evolves according
to the Liouville equation

Ip(t)

ot

where H is the system’s Hamiltonian. For the closed
systems, the solution of this equation can be written as

p(t)

where p is the statistical operator of the initial state.

The operator p(t) satisfies two fundamental
principles according to the reduced description method’s
concepts (see [2] for details). They are the principle
of a weakening of spatial correlations and the ergodic
relation. The principle of a weakening of spatial
correlations represents a simplification of traces of the
statistical operator p(t) and the products of quasilocal
operators a (x) and b (y) (see [2]) when their arguments
are separated:

Spp (t) a (x)b(y) |x—;>>rc

= —i[H, p(t)]; (21)

— e—thpeth7 (22)

Spp (t) a (x)-Spp (t) b(y) .(23)

Here, r. is the correlation radius of the state with p (¢).

The ergodic relation describes the asymptotic form of
the statistical operator p (t) (and, certainly, traces with
this operator) at large times:

p (t) — e—th

e — w.
t—oo

p (24)
Here, w is the equilibrium Gibbs operator. Actually,
relation (24) represents the fact that our system
transforms into a state of statistical equilibrium at large
time scales described with the Gibbs statistical operator
w. The structure of this operator is determined by a
collection of physical parameters of the equilibrium state
of the system. For our system, the Gibbs statistical
operator w is given by expression

w(Y) =exp{Q—Yaja}, (25)
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where 44 are the operators of additive motion integrals

ia= [ dala ) (26)
commuting with the Hamiltonian Hy (see (13))
[H()a ﬁ/A] =0. (27)

The relation for the thermodynamic potential 2 and
generalized thermodynamic forces Y4 in (25) can be
derived from the normalization requirement

Spw (Y) =1, (28)

and the thermodynamic forces Y4 are functions of the
additive motion integrals 4 which are derived from the
equations (see also (26))

Spw (Y) 44 = ya. (29)

The reduced description method is based on the
Bogolyubov’s concept of relaxation time hierarchy.
According to this concept, a system evolves towards
an equilibrium with different sets of the description
parameters on different evolution stages. Moreover, as
the system approaches the equilibrium, the number of
parameters required for the description of the system
decreases, and the system’s description simplifies (see [2]
for more details). A set of parameters which describes the
system on one evolution stage is called the set of reduced
description parameters of the system.

Now we formulate the concepts of the reduced
description method concerning our system.

We suppose that the number of particles is small, so
we can neglect the interaction among them. Therefore,
the operator H,, (6) has the structure of a Hamiltonian of
free particles. In distinction from this, we assume that
the Hamiltonian H,, describes a strong interaction of
particles of the medium with one another. This leads
to the fast relaxation of this subsystem to a local
equilibrium state. Also the interaction of subsystems is
weaker than that of particles of the medium with one
another. Therefore, the relaxation time for the medium
subsystem is substantially lower than that for the
both subsystems 7y, determined by the inter-subsystem
interaction. Consequently, the relaxation time of the
whole system is determined by the weaker interaction
V. According to the basic concepts of the reduced
description method [2], we accept that, at times ¢ > 7,
the additive integrals densities (4 (x) (see (13)) can be
taken as reduced description parameters. This means
that the statistical operator p(¢), which describes our
system on the evolution stage when the corresponding
time interval is greater than the specific relaxation
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time 79, has the following functional dependence on the
additive integrals densities (4 (x):

p(t)=eTpe™ — o (((x,t;p)).

3
t>70 ( 0)

We note that, according to (30), the only dependence
of the statistical operator p(t) on the initial state
(statistical operator p) is included in the reduced
description parameters (4 (x,t;p). The operator o is
called the coarse-grained statistical operator and has
functional dependence on the description parameters

Ca (x). The coarse-grained statistical operator must

satisfy the relation

Ca (%) = Spo (¢) ¢a (x). (31)
It is obvious that, according to (21),

e Mo (C(x' t:p) €M7 =0 (C(Xst +75p)), (32)

Ca (X t;p) = Ca (X b+ 7567 T pelt) (33)

By differenting (33) with respect to 7 and setting 7 = 0,
we obtain

il (Ca (<6 )] = 50 (Ca (X 85p)) =

0
a8
= [ e c o), (34
L (x¢(x)=¢a(x). (35)

(In relation (34) and further, we assume the summation
by repeating indices A.) By multiplying (34) by (g (%),
calculating the trace, and performing some simple
transformation, we come to the expression

La (x,¢ (%)) = iSpo (€ (x)) [H.Ca ()] -

By substituting (18) and using formulas (3), (8), (35),
and (36), we come to the following evolution equation
for the additive motion integrals:

Ca (x) = iSper (¢ () [, 6 ()] —

(36)

~ 9 Spo (¢ () Eax ().

oz, (37)

In order to obtain an integral equation for the
coarse-grained statistical operator o (¢ (x’)), which can
be used in the perturbation theory method for a
small interaction, we consider the evolution of the
system without interaction V, i.e. when our system is
described by the Hamiltonian Hy. In this case, a spatially
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inhomogeneous state will be formed after some time. We
will describe this state by a coarse-grained statistical
operator o

eI T gy (¢ (X 7:0)). (38)
where (compare with (31))
(4 (x) = Spao ("<, 75)) a (). (39)

It is worth noting that any statistical operator p
which satisfies the principle of a weakening of spatial
correlations (23) satisfies (38). Consequently, to define
p in (38), we introduce an operator w(Y (x')),

w(Y (x')) = exp {Q(Y(x’)) — /dgm’YA(x’)éA (X’)} ,(40)

where Y4 (x') are arbitrary numeric functions, and
Q(Y(x')) is determined by the normalization relation
Spw(Y(x’)) = 1. The choice of the initial statistical
operator in the form (40) is explained by the following
reasons [2]. First, such an operator satisfies the principle
of a weakening of spatial correlations. Secondly, it
contains the arbitrary functions Y4 (x'), which allows
us to define the operator og (CO (x',T;p)). Moreover, if
Y4 (x) = Y4 = const, then w (Y (x')) = exp {Q — Yaya}
(see (25)), and, consequently, [Ho, w (Y4)] = 0. The last
fact allows us to apply the perturbation theory method
of small gradients of the reduced description parameters
Ca (x).
According to (38), we obtain, by using (30):

e (¢ (x)) T = 0y (¢ (x,7i0))

T w(Y ()M o (O (K 7w))

T—00

(41)

The choice of functions Y4 (x’) must satisfy the condition

Ca (¥, 0;0) = Ca (x, 0;w) . (42)
In this case, the following relation takes place:
e (0 (¢ (%) —w(Y (x))) eT — 0. (43)

T—00
By having in mind that

d —1 T 7 T

e (0 (C) —w(Y () 0T} =

= —ie” 0T [Ho, o (¢ (x')) — w(Y (x))] 707

and integrating the formula with respect to 7, we obtain

e~ (o (¢ (x)) — w(Y () €M7 = 0 (¢ () — p-
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70

—i / dre™ T [Hy, 0 (¢ (%)) — w(Y (x')] eTto7.

0

(44)

By turning 7 — oo and replacing the integration variable
7 by —7, we come up to the following relation, by taking
(43) into account:

0

o (¢ (X)) =wY(x')+1i / dr x

xe M7 {[Ho, o (¢ (x))] = [Ho, w(Y (x)]} e~ o7,

We have obtained the integral equation for o (¢ (x'))
in the case where the subsystems do not interact, i.e.
V = 0. However, according to (41), we can obtain
a similar equation for the interacting subsystems. By
substituting (34), (37), and (18) into (44), we obtain
an integral equation for the coarse-grained statistical
operator:

(45)

0

o (¢ () = w(Y(x) — i / dre™o™ {[Ho, w(Y (x')] -

[ as526 0.

+z/d3 C )Spa [V éa(x )}}em“’.

Spoar () + [V,0 (¢ ()] +
(46)

4. Perturbation Theory for a Coarse-Grained
Statistical Operator

The integral equation (46) and Eq. (37) formally define
the evolution of the system when ¢t > 735. We use
the perturbation theory method to solve this equation
and to obtain the equation of motion for the reduced
description parameters (4 (x). We suppose that the free
paths of particles of both subsystems are much less than
the specific inhomogeneity length [2]. Thats why the
perturbation theory method can be applied owing to
small gradients of the reduced description parameters
and the low inter-subsystem interaction V.

We note that the following translation relations are
valid for the creation and the annihilation operators
of the medium ¢t (x,) ¢ (x) and those for particles

vt (x) v (x):

e—iPx(p (X/) 6i]E’x =g (X/ + X) ,

e—iPx(p—i- (X/) eiPx _ (,0+ (X/ + X) ,
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TPy (x) P =9 (' +x), (47)

em PRyt (x) ePX =t (%' 4+ x).

In relations (47), the total momentum operator P

P — [ dom )+ Ypafa, (48)
P

acts as a translation operator. The first term in (48)
represents the total momentum of medium (see (1), (2)),
and the second addend represents the total momentum
of particles. It is obvious that, according to definitions
(13) and (14), the relations similar to (47) take place

for the additive motion integrals 4 (x) and their flows
Cak (x):

PR () P =y (X 4 %)
e PX A (x) eFF = (g (X + %) (49)

We find consequently that the following equality is valid:

ePXw (Y (X)) e P =w (Y (x +%)). (50)
By using equalities (47) and (50), we find that

ePXo (¢ (x) e =0 (C(x+x)). (51)
Hence, the equality

Spo (¢ (x')) a (x) = Spo (¢ (x +x')) a (0) (52)

takes place for any translation invariant operator
a(x) (ie. the operator satisfying the relation
a (x
22~ 1P a o)
The right-hand side of (52) contains the operator
a (x) with zero argument x = 0. Owing to low gradients,
only ¢ (x+x') with the argument x’ ~ 0 makes a
significant contribution to the mean value of a(x) in
(52). The last fact allows us to use the series expansion

, 9¢ (%)
Oxy,

to build a theory of corrections to the coarse-grained
statistical operator o under small gradients of the
reduced description parameters (4 (x):

o(¢(x)) = o (x) + o (%) ...,

where

0-(0) (X) =0 (C (X/))|C(x'):C(x) ’

C(x+x')

= ((x) + 2 + . (53)

(54)
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;60 (€ (%))

M) () —
g (X) k 6<A (X/> ) () .

% (x) / &'z

8l‘k

According to (31), the condition Spo (¢ (x +x)) (4 (0) =
Ca (x) is held, so we find that

Spo®) (¢ (x +x)) {4 (0) =

In order to find the operators o (x), ¢ (x), we
expand the operator w (Y (x +x’)) into series in the
gradients of the functions Y, (x) (see (2), (51)):

Ca(x)dko, k=0,1. (55)

w(Y (x4 x)) =w® (x) + w® (x) + ... (56)

We use the following expansion of the operator
exp (/1 + B) in a polynomial series in a small operator

B (see [2]) in order to obtain the operators w(®) (x) and
w) (x) from expression (40):

1

exp (A + B) = 1+ /d)\e_’\ABe)‘A + (57)
0
Finally, we obtain
w!® (x) = exp {2 (x) — Ya (x)9a}, (58)
Y,

w® (x) = _55‘7561(;‘)“)(0) (x) x

1
x /dA/d?’x’m; (éA (x',\) — <§A>). (59)

0
Here, some new symbols have been introduced:
a(x, ) =wa(x)w®,  (a) = SpwVa (60)
which simplifies the expressions.
: aCAk (x',\)
The relations [Ho, Ca (¥, )\)} —— "= and
a:ck
[Ho,w® ()] =0 follow from Eqs. (25), (26), (3),
and (60). Hence, the first-order approximation
for[Ho, w(Y (x)] in Eq. (46) is equal to
Y,

[Ho,w(l) (x)} = —iaa'qxix)w(o) (x) x

1
X / d\ / &3z’
0
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0 - /
87;}‘% (%', A).

By integrating the right-hand side of this equality by
parts and taking the principle of a weakening of spatial
correlations into account, we get

.0Y 4 (x)
1) A\ (0)
(x)] ) 0, w

X /1d)\/d3x' (fAk (x',\) — <<AA]€>>-

0

Equations (54)—(61) allow us to construct the series
expansion for the coarse-grained statistical operator o
in small gradients of the reduced description parameters
(4 (x) and a small inter-subsystem interaction V:

o9 (x) + oY (x) + o0 (x) + ...

In what follows, we use the symbol D™ to label
the terms of the perturbation series in the variable
D. The term D™ is derived in the n-th order in
the gradients of (4 (x) and in the m-th order in the
interaction V. By taking Eqgs. (54)—(61) and (46) into
account, we get

o9 (x) = w® (x).

In accordance with (55), the thermodynamic potential
Q(x) =Q(Y (x)) and the thermodynamic forces Y4 (x)
follow from the relations

Spw® (x) =1, Spw® (x) (4 (0) = Ca (). (64)

We emphasize that, according to (58) and (63),
the expression for the statistical operator o9 (x)
coincides with the Gibbs equilibrium operator (25) where
the parameter Y, is replaced by the function Yj (x).
Therefore, the statistical operator defined by (58) is
called the locally equilibrium Gibbs distribution w(® (x).

For ¢(®1) (x), we easily obtain

=— /0 dre'tor {z [V,w(o) (x)] +
+i / &3z’ LSpw(o) (x) [V, éa (o)} } =0T (65)

By wusing (46) and (58) and making some
transformations, we derive (see [5] for details) the

expression for ¢(1:0) (x)
1
Y,
dT/d /d?’x/{af‘(x) %
8xk
0

0 (s (Car (o, ) = (Car)) e 07

[Ho,w( x) X

(61)

o (x) = (62)

(63)

oV (x)

o0 (x) = w® (x) +

é\o

z’Ho'r
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w® (x
e spu () (0). (66)

where

() = Spw® (x) (67)

The above-obtained expressions can be simplified if
we use the fact that the locally equilibrium statistical
operator w(®) (x) commutes with the additive motion

integrals 44 = [ d®zCa (x) (see (26), (58)),

[0 (x),7a] =0.

So, for example, the quantity Spw(® (x

(68)
) [V.éa0)]

appearing on the right-hand side of equality (65) can be
reduced to the expression

spu® (x) [, ¢a (0)] =
= %/d?’xSpw(O) (x") [V@A (x)} =

A:| =0,

and the further simplification of (65) becomes obvious:

-1 .
_ 0) (N A
=5 SpV [w (x'),4 (69)

0
AN (x) = —i / dre'TtoT [f/,w(o) (x)} e~ Mot

— 0o

(70)

Operations similar to (69) allow us to replace the
mean values of (4 (0) with more simple mean values of
4. Such a method is widely used below.

A further simplification of expression (66) is also
possible. Some terms in (66) are equal to zero owing
to their symmetry. According to the definitions of the
space-time reverse transformation operators (15)-(17), it
is obvious that TP44 (TP)~" = 4%. So, by using (58),
we obtain

TPw? (x) (TP) " = w® (x)*. (71)

In view of the equality <CA> = <éA> , we obtain

1
x) / dx / B’z x
0

TPu (x) (7P) " = - 24l
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sw® (X)(kx)* (éA (—x') — <CAA>) w® (X))\*
which leads finally to

TPwV (x) (TP) " = —w® (x)*.

It is obvious from expression (17) which defines the
space-time reverse transformations of additive integrals
densities and their flows that

Spw™® (x) ¢4 (0) =0, Spw™ (x) Cax (0) = 0.
By using the last two equations and the equality

(72)

(73)

Sw©® (x) Ow©® (x) ' ' .
((SC,;(X/) =94 (x’ _ X) m, we Slmphfy expression
66):

o0 (x) = w® (x) +

\o

dT/d)\/d3 /{a?xk
Moy () (x )(CAk (x',\) — <€Ak>> efmor}+

+ /O dT/ldAaw(O)a<éAj>,

8CA ij

(74)

—00 0

As the next step, we turn to formulas obtained in [2]:

o(ca)_olio) o(cu) (i)

(75)

dYs Yy oYy Ys
1
(0) . .
oy = [0 ] (o).
0

By using these two formulas, the following equality can
be easily proved:

ow® 9 (Ca;) B 3YA5 (Caj) w(© 3
8(,4 81‘]‘] B 61‘]' 8CBJ /d)\/d o
0 {(Caj) 2 < <<A]>>)
0)-2Y\SAj/ ox _
( Dl () u O = (G ) ) ()

In accordance with (77) after introducing a new variable

0 (Caj) .

aCB CB ) (78)

expression (74) is transformed into

Cay (') = Cay (x') =

(L0 (x) = w® (x) + Mw(o) (x)
(’hrk

1
dT/d)\x
0
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< [ dtar {emom (G ) = (Gu)) e ™) (7o)
In what follows, we use two new operators
wy? (x) = exp {Q (x) = Yp (%) 4},
wi) (%) = exp {Qu (%) = Yo (%) Ya} - (80)
We note that definition (58) and the expressions
Ca (%), fp (¥)| =0, [Fa:dp) =0
yield (see also (26))
Q(x) =Qp (x) + 2 (),
w® (x) = w? (x) wy) (x). (81)

The dependence of the thermodynamic potentials
Q,, (x) and Q, (x) on Y, (x) and Y}, (x) can be clarified
by using the normalization requirements

Spw (x) =1, Spw” (x) = 1. (82)

The thermodynamic forces Y, (x) and Y, (x) are
functions of the reduced description parameters (, (x),
fp (x). The relevant functional dependence is defined by
the relations

Spw) (x) ¢a (0)
Spw” (x) fp (0) =

ZCa(X)v
fo (x).

Thus, we have separated the operator w(® (x) into
a product of two terms. One term contains only the
operators related to the medium, and the another
term accounts for the particles only. Consequently
in accordance with (81), the operators w (x) and
o9 (x) can be transformed into

w® () = 0l (x) wfl) () + wl (0 wld) (x)

(83)

Y, (x)
D) () — Yo (X) (o)
wfl) (x) = =) (x) ¢
1
x /dA/dSz’x; (wﬁ,?)**éa (x') w@ — <§a>m),
0
Y, (x)
ol ) = =S 2l 0

1
X /d)\/d?’m’x; (wéo)_’\ép (x") wO* — <ép>p>v
0
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o (x) = wlf) () o (30) + il (x) o1 ().
oY, 0 1

+ 83% / dr/d)\x

X /dgff/ {eiHOT (é;k (X/a A)— <§;k> ) eiiHOT} )

0 1

wl® ( dr [ dx
0 o for
< [ata e (Guodon = () )| (s5)

We have introduced the following new symbols for
traces:

x) = wy,) (%)

Yp (x)

oy (%) o

=wlM (x) + =2

_ 0 _ 0
(a), =SpwPa, (a), = Spw‘,l(j Ja (86)
It is important that the operator 01(,’ )(x) does

not contain operators relevant to the medium, and

(1,0

the operator o, )( ) does not contain the operators

related to particles. Moreover, Spa(1 0 (x) = 0 and
Spatt? (x) = 0. A
It is obvious from (9) that a§§:> = Opp' 2L, and,
hence, we get
Cpy (%) = 22 o (%) = Gy 22 for (') = 0. (s7)
m m

As a consequence, the integrand in expression (85) for
0,(,1’0) (x) is equal to zero, so that

ol (x) = wiM (x). (88)

Expressions (70), (84), (85), and (88) determine
the coarse-grained statistical operator in the first order
of perturbation theory in gradients and interactions.
Hence, we can consider the equations for the reduced
description parameters in the second-order of the
approximation:

Kl _ 149 () 4 L0 )+
+LY (0 + LYY () + LYY (),
L4 () = — 5 8pu® () Car 0),
LT (x) = —iSpU(l’O) (x) Car (0),

8xk
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L(X’l) (x) = iSpw® (x) {V’ Ca (0)} ’
L9? (x) = iSpe®V (x) [V’Q (0)] ’
I () = =5 5p0™) () (0) +

+iSpoe 19 (x) [V, éa (o)] . (89)

The derivation of L(Z’k) (x) is given in the next section.

5. Equations of Motion

In this section, expressions (89) are analyzed, and some
rearrangements are made, which result in obtaining the
coupled motion equations. The equations have structure
similar to that of the kinetic equation for particles and
the hydrodynamic equations for a medium.

It is important that the explicit dependence of
the Wigner’s distribution function f(p,x) on the
thermodynamic forces Y, (x) can be expressed as

1
- (0) tq = -
f(p,x) = Spw,” (x)aga, o) 11 (90)
We concentrate on calculating the functions

LX’k) (x) defined in (89). The transformations similar
to (69) lead to the expressions

Lf’l) (x) = iSpw® (x) |:V7 {a (0)} =0, (91)

L9 (x) = Lspo®D (x ) [V.34] (92)

1%
According to (70), we obtain
LS)’Q) (x) =
0

= / drSpe'TtoT [V,w(o) (x)} e~ iHoT [fﬂa;ap} .

— 00
We introduce a new operator
V(1) = eMomyemHoT, (94)

After a cyclic rearrangement of the operators in (93)

in accordance to the relations [Hg,94] = 0 and
[Ho, wo (x)] = 0, we obtain

0
L2 (0 = [ drsput® () [V (=) ajay ] V] 99)

By using the Jacobi identity and the relation

s 0 [[7(-r.055] 7] -

= Spw® (x) HV (), a;a;} ,‘7} ,

we expand the integration limits in (95) towards —oo
and oo:

0,2
LO? (x) =

_ ! / arspu® () [V, [V (1) afag]] . (96)

It is more convenient to introduce a new operator

J (17 2; 7) similarly to (94) as

:Z (1,2;7) af a, eiler—ea)7
1,2

—iHmT
)

J(1,2;7) =T 7 (1,2) € (97)

where the indices 717, ”2” label the momentum vectors
p1 and p-. Let us return to commutators in the collision
integral (96). Owing to the anticommutation of the
fermion operators @ and a™, we find that

[V,apap} = Zj(l,Q) [afay,afay] =
1,2

= Z (1,2) a1 ay (d2p — O1p)- (98)
1,2

The operator J (1,2) does not contain operators relevant
to particles, hence, we have

/ dr Z 52p 51p

1,2,17,2/

IR ]

2)>m <a1+,a2,afa2>p -

- <j (1,2)j(1',2’;7’)>m <afa2a;§a2,>p}.

L(O 2)

(g 2maa,
(99)

After calculating the mean values in (99), we obtain

LY (x) =Y (B1p — b2p) fo (%) (1 = f1 (%)) x
1,2
+oo
x / dr <j(2, L) J (1,2)> eiler—ea)m, (100)
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Here, we use a shortened labeling for the distribution

function f; (x) = f (ps, x).
Then we define the correlation function

Iio(1,%) = <j(2, 1;r)j(1,2)> , (101)
and the spectral function
17 .
1172 (w,x) = ? / dTILQ (7’7 X) e“’T, (102)
T

which is the Fourier transform of the correlation
function.

By substituting relation (102) into the collision
integral (100), we obtain finally

LO?) (x) = 21y 0o {f1 (%) (1= fo (%)) L1 (e1—€2,%) —
1,2

—fa(x) (1= f1(x)) [12 (62 —€1,%x)} .

Let us return back to the commuting operators 4, (see
(2)), where 99 = H,, is the total energy operator of

the medium, 4; = Pi(m) is the momentum operator

(103)

of the medium, 44 = M(™) is the mass operator of
the medium. The eigenvalues of these operators can

be labeled as (v), = E{™ (i), = (Pl.(m)> . (), =
M™. According to expressions (101) and (102), we
obtain

<j(2,1;7)j(1,2)>m =
5 1 e (1 )

1172 (w, X) =

T (1.2)] (™ (9) 104

n

=Y §(w+E,—Ep)

It is seen that I o (w,x) > 0. It is important that

the interaction operator V' commutes with the total
momentum operator

(105)

vV, P 4 Zpa;ap] =0.
P

Consequently, the coefficient functions jm,n (1,2) are
not equal to zero only if the equality P, +p1—P,,—p2 =
0 takes place. Hence, according to (20) and (104), we
obtain a symmetry relation for I; 5 (w,x) in the form

1271 (—w, X) =

ISSN 0503-1265. Ukr. J. Phys. 2007. V. 52, N 3

=I5 (w,x)exp (=Y (x)w —Y; (x) (p2 — p1);)  (106)

Substituting (106) in (103), we find that the collision
integral looks as

LY (x) =21 ) dapliz (g2 — €1,%) {(1 — f2 (%)) X
1,2

X f1 (%) exp (=Yo (x) (€2 — 1) = Yi (%) (P2 = P1);) —
—fa(x) (1= f1(%)}-

The equilibrium condition for the medium and
particles can be easily derived by using (107). The

(107)

collision integral Lg)o,z) (x) vanishes, Lgm) (x) = 0,
when the above-mentioned distribution function in the
collision integral is determined by equality (90), where
the function Y}, (x) is given by the expression

Yo (x) =Yy (x)ep + Vi (%) p; + (%) . (108)

Here, c¢(x) is an arbitrary numerical function
independent of p. Relation (108) claims that particles
are in equilibrium with medium when their temperature
and mean velocity are equal to those of the medium. By
using (107), we can also find that the following equality
takes place for an arbitrary distribution function fp, (x):

> L =o.
P

The last fact represents the conservation law for the
number of particles.

Further, we find the relation for the collision
integral Lg),z) (x) and the functions L% (x) defined
by expression (92), where A = «a. As long as the

interaction V' does not affect the mass of our system,

(109)

the equality [V,%} = 0 takes place. Hence, by using

(92) and assuming a = 4, we obtain

L% (x) = 0. (110)
According to (105), we have [V,%] = —> piafa,.
P

Substituting this expression into (92) and assuming o =
1, we find

Lo (x) = = 3" p L0 (x). (111)
P

It is easy to prove that the following equality takes
place:

Spw® (x) [V (1), [V,Hm + HpH =
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= Spw® (x) |V, [V (1), Ho] | =

= —iSpw® (x) |V,

ov (T)]

or

By using this equality together with (105) and (92) and
by assuming a = 0, we obtain

L2 Zs LY (x (112)
The introduction of the new functions
2
Xo(p) = o’ Xi (P) =pi, xa(p)=m (113)

allows us to combine equalities (110)-(112) in a single

formula
Z Xa

Next, we will calculate L(1 2 (x). By using (85), we
split (89) into three terms:

L2 p) LY (x). (114)

LG (0 = L5 00 + Lyi” 00 + L53V (). (115)
Here,

(1,1) 9 S
L, (x) = ——Spa ( ) Cak (0),

(r“)l'k

LY () = +iSputy) () wll) (x) |V,Ca 0)]

It is easy to find that Lﬁ)’l) (x) = 0. Indeed,

0

(1 1) i 0 Pk 5 (0) N
L (0= g5, [ drirsp [V,w (x)} 4o = 0.(116)
The equality [crni’o) (x),‘yp] = 0 is valid since

the operator 0‘%’0

relevant to the particles.
equality is satisfied:

) (x) does not contain any operators
Therefore, the following

LY (x) = stpaﬂ D)V [, 0 (0] =0 (117)
The operator V has the symmetry properties
TPV (TP) ' =V", (118)
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which is seen from the definitions of the translation
operators (15)—(17). By using the last relation, we
obtain

LY (x) = 0. (119)

Thus, we have found that LI(;M) (x) = 0. However,

the function LY (x) = 0 can be nonzero now. The
equalities
L(l 1) Z Yo ( (x) =0,

(11) ):0

Z Xa (
are obtained in the same way as equalities (110)—(112).
Although the equality L(lla’l) (x) = 0 takes place only if
the operator J (1,2) depends exclusively on the density
operator of the medium. In the present work, we do
not consider the structure Lgla’l) (x). Nevertheless, in the
equations of motion, we neglect the function qul’l) (x)
[see (89) and (115)].

Next, we introduce the rest of the functions defined

n (89). We have the following expressions related to the
particles:

0

Ly (x) = =5 -Spw'® (x) Cax (0) =
_ P 0
=~ 9mn (p,x), (120)
L™ (x) = _aik ™ (spwl? () ol () Go (0) +
+ Spwz(,l) ( )w,(}j) (x) (Ap (O)> =
5 .
= om ];’; (Sp(m)oﬁ,i’o’ (3) Sp®wf® (x) G (0) +

The functions L{? (x) and L&Y (x) determine the
hydrodynamic equations. Obviously,

L (x) =

0
- 787:1681)

w® () Eak (0) = — 2 ¢ (x).

S o (122)

o (x)

In view of the relation Spo = 0 and (84), we

obtain

L (x) =
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0
= —— (m
8$k Sp

0
8$k

9 (x) Car (0) = W (x). (123)

Expressions (122) and (123) include no operators
related to the subsystem of particles. However, the
direct calculation of traces (122) and (123) is rather
complicated. Moreover, the calculation of (123) requires
to know the interaction of particles of the medium
introduced into the Hamiltonian H,,. The structure of
the hydrodynamic equations can be obtained by using
the symmetry of the operators éa (x) and fak (x) in
respect to the Galilei transformations (see [2]). By using
the symmetry properties, we find the expressions for the

flows of the hydrodynamic parameters ¢ SL) (x):

w00 =53 (9 = p () (),

(0) 1O () — 1 (x) 5, .
G (%) =ty (%) = p (%) 0k + p (%) wi (%) ur (%),
Gon (%) = " (x) = p (%) i (x) + €0 (x) ke (x) +

1
+§p (x) u? (x) up, (x). (124)
Here, f(x) = Yo(x) = 1/T(x) is the inverse
temperature 7' (x), and 7 (x) = };’gg;p( ), so that
ug (x) = —f,’ggg = 7;)’“(53) is the local velocity of the

medium; ¢y (x) = Sp™ Y (x) £€(0) is the density of
internal energy of the medium, and p (x) is the medium
pressure defined by the formula

p (x) = Spwl) (x) iy (0).

The functions (C(Ylk) (x) are given by the following
expressions (see [2]| for details):

W x) =4 (x) =0,

ou

(P ) =1 () = o L)

T

Ou; (x)  Oup (x) 2. Oy (x)

—7)( ox, + oz; _36“C ox; ’
D () = oD (5) — oo (x) + D) F0B(x)
G 00 = 00 = w GOY () + 7 7 (129
Here, 1, ( are the first and second viscosity factors,

respectively, and & = 3%k is the thermal conductivity
factor. These factors are defined in terms of the
correlation function (ab), ; as

1 -
77155 / dT/dBHU (tiati2),
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1 T PN

(= 56 / dT/dgl‘ <tiktik>xﬁ,
2 oo

Rl / dT/d% (@il

— 00

where

0 (i) »
TG

Finally, we obtain the system of equations of motion
for our system:

G (x) = @ (x) -

of (p,x)  prOf(P,X) (02
ot m  dxp Ly (),
o (x) | 0 (0 9 )

—_ JE— — (072)
ot + axk Cak (X) + axk Cock (X> La (X) ’

LéO’Q) (x) = 27‘(2521) {12,1 (e1 — €2,%) f1 (x) x

1,2
X (1= fo(x)) —1i2(e2 —€1,x%) f2 (x) (1 = f1(x))},
LO? (x ZX )L (x). (126)

Here, the variables Q((BC) (x), (Sk) (x) are defined by
formulas (124) and (125). This system of coupled
equations of motion describes the kinetics of spatially
inhomogeneous states of particles that weakly interact
with the hydrodynamic medium. The obtained equations
describe, for example, neutrons propagating in a medium
without multiplication and capture.
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10 KIHETUKU [IPOCTOPOBO HEOJHOPLIHIX
CTAHIB YACTUHOK, IIIO B3AEMO/IIOTH
I3 TIIPOIMHAMIYHUM CEPEJIOBUIIEM

C.0O. Hixoaaenro, C.B. Ileaemmuncorut, I0.B. Carocaperko
Pesmowme

Tlo6ynoBano KiHETHYHY TEOPitO MPOCTOPOBO HEOJHOPITHUX CTAHIB
YaCTUHOK, 10 C€jab0 B3AEMOIIIOTH i3 TIiJpPOAUHAMIYHUM CEPEIO-

pumeM. [l mobymoBu MiKpPOCKOIIYHOI Teopil TaKol CHCTeMU BU-
KOPHUCTAHO METOJ CKOPOYEHOro Omnucy. PO3IJIsiHyTO BUIIAIOK, KO-

294

JIA TMificHCTeMa YaCTUHOK, IO B3a€MOJIIOTH i3 CepemoBHUINEM, IIe-
pebyBae Ha KiHETHUYIHOMY e€Talli €BOJIIOIl il ONMHCYETHCsSI OJHOYA-
CTHHKOBOIO (DYHKIEIO PO3HOAiay. Y paMKax METOLy CKOpPOte-
HOTO OIIMCY OJEpKaHO 3B’s3aHi PIBHAHHSA PyXy JJIs [apaMeT-
pPiB CKOPOYEHOro OIHUCY: OJHOYACTUHKOBOI (YHKIIT PO3HOIiLy
ISl JACTHHOK, IO B3a€MOJIIOTH i3 CEpefoBHINEM, Ta Iigpoan-
HaAMIYHHUX XapaKTEPUCTUK cepenoBuina (HOro ryCTHHH, TeMIepa-
TypU Ta CepeIHbOI IIBUIKOCTI 9acTMHOK cepejosumia). [Ipukia-
oM bismyHOro 06’€KTa, €BOJIIOIIsA SKOTO OIMKUCYETHCS OTPUMAHU-
MU PIBHSIHHSIMH, MOXKYTh CJLy?>KUTH HEHATPOHM, SIKi MOIIHUPIOIOTHCS
Yy NigpoauHAMIYHOMY CEPEeIOBHINI 6€3 IMOrJIMHAHHS Ta PO3MHOXKEH-
Hsl.
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