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We have studied the dynamics of a plasma plume under a
destructive treatment. The main parameter determining the
process is pressure. In the technologically relevant approximation
when polytropic exponent is close to unity, the equation describing
the dynamics divides into two ones which describe, respectively,
the processes running during the destructive pulse action and after
the termination of a pulse. The dependences of pressure on both
the pulse duration and a parameter responsible for the radiation-
gas interaction are analyzed.

1. Introduction

The problems of the interaction of powerful pulses
of radiation with a surface are of great interest till
now [1]– [5]. In this case, the theoretical modeling of
appropriate physical processes [1] is of great importance,
because it allows one to clarify the nature of these
processes. One of the important consequences of the
action of a powerful pulse of radiation on a surface
is the formation of a gas plume that arises due to
a quick heating of the substance surface and, as a
consequence, the destruction of this surface owing
to phase transitions. In this article, we continue
the development of a model of the interaction of
pulses with a surface [6]. In particular, we study the
specific features of both the surface destruction of a
material and the space-temporal dynamics of a gas
phase.

2. Influence of Radiation Absorption on the
Dynamics of Pressure

During the action of radiation on a surface, there is
the coexistence of the two, solid and gas, media due to
local phase transitions. Using three boundary conditions,
namely [6],
— the mass flux balance
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s

(
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— the momentum flow balance
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— and the energy flow balance near the interface

(n · υs)
(

ρsHs + ρs
υ2

s

2

)
+ Ld (n · qs)−

−Lλs(n · grad T )s + (n · υs) ρsϕ0 = 0, (3)

has allowed us to formulate three equations which
are characterized, in the main, by gas parameters and
describe the dynamics of a crater formation, Eq. (1),
the dynamics of a gas flame formation, Eq. (2), and
the dynamics of the basic macroscopic quantities of the
process, Eq. (3).

In Eqs. (1)–(3), U , ρ, and υ are, respectively, the
intrinsic energy of the continuous medium per unit
mass, the density of this medium, and the convection
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velocity vector, P is the pressure acting on the system,(
P sol

ij

)
s
is the surface value of the stress tensor, Hs is

the heat Gibbs function (enthalpy) describing a state of
the macroscopic system in a thermodynamic equilibrium
when entropy and pressure are the main independent
variables, U sol

s is the intrinsic energy of the condensed
matter per unit mass; Q = qs +qT

s is the general energy
flow in the medium, where qs is the energy of a light
flow and qT

s ≡ −λs(gradT)s is the energy of a thermal
flow, and Ld and L are, respectively, the loss factors of
the light flow and the thermal flow under the transition
from the gas to the solid.

We have examined the dynamics of a plasma
plume under a destructive treatment. In this case, the
fundamental parameter determining the dynamics of
the process is pressure. In the general case, we have
obtained the differential equation describing the pressure
dynamics [8], namely

∂Π
∂θ

= (−1 + Λeqϑτ )Πβ+η −Πβ+1 +
1
N

eqϑτΠη, (4)

where β ≡ α/(2κ) ≡ (κ + 1)/(2κ), η ≡ 1/κ, Π is the
dimensionless surface pressure, and Λ is a dimensionless
parameter which is responsible for the gas-radiation
interaction and significantly influences the pressure,

Λ =
bLγ3qin

2καϕ0
h(ω). (5)

Here, b ≡ 2RΓm
2
a

/(
3π
√

πγµad2
akB

)
, ϕ0 is the specific

heat of the condensate—gas phase transition, RΓ is the
gas constant; µa is the molecular weight of a gas; da is
the effective diameter of a molecule; ma is the mass of
an atom of the evaporated matter, kB is the Boltzmann
constant, γ ≡ κ − 1, κ is the polytropic exponent, and
the quantity h(ω) determines the constant part of the
absorption factor which does not depend on pressure,
but essentially depends on the frequency characteristics
of the gas medium.

In Eq. (4), ϑ (τ − t) ≡ ϑτ is the Heaviside’s step
function. This factor will limit the light-gas interaction
time. The presence of partial derivatives is conditioned

by the factor 1/N ≡
(√

1 + (∂Σ/∂x)2 + (∂Σ/∂y)2
)−1

depending on the space variables. The nonlinearity of the
equation is characterized, besides the power function of
pressure, by the unknown parameter eq which can be
written in the dimensionless form as

eq = f (x, y) exp
(−ΛΠη+βΣ

)
. (6)

Fig. 1. Π(Λ) dependence for the effective dimensionless pulse
lengths θτ = 105 which corresponds to the real pulse length
τ ∼ 100fs (left side) and θτ = 1012 which corresponds to
τ ∼ 1µs = 10−6s (right side)

Here, f (x, y) is the amplitude function; Π, θ, and Σ
are, respectively, the dimensionless pressure, time, and
a function which determines the crater surface form.

As one can see from Eq. (6), the eq dependence
on Λ, Π, and Σ is enough complicated. Moreover, the
normal N , which enters into Eq. (4), also depends on
Σ. All this makes the analysis of this equation too
complicated. Therefore, we consider a particular case of
the process which is described by Eq. (4) introducing
some assumptions. First of all, we consider a situation,
when the incident beam width is much more than the
crater depth. This allows us to neglect the coordinate
dependence of the crater form S at least at distances
far from the crater edge and means that the term with
1/N will be absent in Eq. (4). In this case, due to the
absence of a transverse pulse structure, the parameter eq

loses the dependence on the amplitude function f (x, y)
(it is equal to unity) and can be determined in the case
κ → 1 as ēq = exp

(−ΛΠ̄2Σ̄
)
, where ēq, Π̄, Σ̄ are the

average values of the corresponding functions. In other
words, as κ → 1, Eq. (4) can be approximately written
in the form [8]

dΠ
dθ

= (−1 + Λēqϑτ )Π2 −Π2 + ēqϑτΠ. (7)

Due to the properties of the Heaviside function, Eq.
(7) breaks out into two separate equations, each of which
is responsible for a part of the process depending on time:

1) dΠ1/dθ = ((−2 + Λēq)Π1 + ēq)Π1 at θ ≤ θτ ≡
τ/to with the initial condition Π1 (0) = Πin.

2) dΠ2/dθ = −2Π2
2 at θ ≥ θτ .

The solution of the first equation for ēq = const in
view of the initial condition is as follows:

Π1 (θ) =
((

Π−1
in − 2ē−1

q + Λ
)
exp (−ēqθ)− Λ + 2ē−1

q

)−1
.

(8)

Further, we will analyze how the absorption of
radiation by plasma influences the pressure due to their
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Fig. 2. Dependence Π(θτ ) at Λ = 10−10

resonant interaction. Let us average Eq. (8) in the limits
0 ≤ θ ≤ θτ . As a result, we get

Π =
1

2eΛΠ 3θτ /2 − Λ
×

×
[
1 +

(
ln

{
e−θτ e−ΛΠ 3θτ /2 + Π0(2eΛΠ 3θτ /2 − Λ)×

×(1− e−θτ e−ΛΠ 3θτ /2
)
})

(e−ΛΠ 3θτ /2θτ )−1
]
, (9)

where the explicit view of ēq is taken into account, and
it is assumed that Σ ' θτ Π̄/2. Inasmuch as the radiation
absorption in plasma is characterized by the parameter
Λ (the more the Λ, the greater the absorption), we
will search the Π(Λ) dependence by using Eq. (2.). As
seen, this equation for Π̄ is transcendental, so it can be
analyzed only numerically.

As the area of the interaction of radiation with
a plasma plume extends in the course of time,
the dependence Π̄1 (Λ) (fig. 1) has correct behavior
practically. The numerical investigations demonstrate
that such a behavior Π(Λ) is not changed as θτ increases.
Thus, the pressure Π̄1 approximately depends on the
product Λθτ . That is, the product Λθτ is not changed
for any fixed value of Π̄1. The additional dependence
on θτ is essential for small pulses lengths (Fig. 2).
In dimensional units, this product takes the form
ακ3/2Ld

2ϕ2
0γ

h(ω)q2
inτ . Thus, under every specific conditions

of the experiment, the pressure depends on the product

q3
inτ ,

(
P̄ ∼ γL2

d

√
ακ

4ϕ
5/2
0

h(ω)q3
inτ

)
.

A change of the pressure at the beginning of the
destruction is shown in Fig. 2, where the dependence
Π̄1 (Λ) is considered.

As seen from Fig. 2, there is the region of practically
zero values of the average pressure (very close to zero,
but not smaller than Π̄in).

Fig. 3. Dependence Π(θτ ) on the logarithmic scale for various
possible (by estimations) values of Λ

It is essential that, with increase in qin, this region of
a curve Π̄1 (θτ ) is narrowed, i.e. the substance starts to
react to the external laser action at smaller destructive
lengths θτ . The experimental facts [9] also confirm such
restrictions on the radiation pulse duration. We note
that the region of almost zero Π̄1 (θτ ) exists for all values
of Λ.

Similar dependences Π(θτ ) for various Λ are shown
in Fig. 3.

The relation between the parameter Λ and the
absorption constant k of a gas medium [10] is k =
qinα3/2κ1/2

2bγ2ϕ
3/2
0

L

L2
d

ΛΠη+β ∼ 1012Λcm−1. It is clear that

Π(θτ ) probably traces the dependence Πmax (θ). On
the use of scale factors [10], it is possible to estimate
the thermodynamic quantities during the destruction
of a surface. For example, the pressure near the
surface of a sapphire crystal during its destruction
by pulses with the intensity q = 1014W/cm2 can

be expressed as P =
γ2Ldqin

2α1/2κ√ϕ0
Π ≈ 10 TPa.

Accordingly, the temperature of a plasma plume will

be T =
maγ2ϕ0

kBακ
P γ/κ ≈ 5 · 105K, and the expansion

velocity of the gas phase υ =

√
γ2ϕ0

ακ
P γ/κ = 1.1 ·

106cm/s in agreement with experimental
results [11]. In all curves in Fig. 3, the pressure grows
rapidly with time θ at the beginning and then starts
to decrease. The greater is Λ, the faster the pressure
decreases. This is caused by that the interaction region
created by the corrosive plume rises, and the radiation
pulse undergoes the more and more losses with time.
The obtained function Π1 (θ) (8) describes the process
of active ejection of the solid matter into the gas phase
until the action of the pulse falling onto the surface
stops.
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As seen in Fig. 3, the pressure acquires the maximum
value at some time θ1 (θ1 ≤ θτ ):

Πmax(θ) = Π1(θ1) = ((Π−1
in − 2/ēq + Λ)×

× exp(ēqθ1)− Λ + 2/ēq)−1. (10)

3. Influence of Resonant Absorption of
Radiation on the Dynamics of a Plume

Here, we investigate the dependence of pressure on the
radiation frequency ω . With this purpose, we examine
the absorption coefficient k for a one-dimensional task
in detail. As long as we speak about the resonance
absorption of electromagnetic radiation, this coefficient
is defined in the linear approximation [12] as

kl =
ω

c

πe2

2mema
ρ

∑

m(6=l)

fmlΓml

ωml (ωml − ω)2
. (11)

The index l means that the coefficient k is responsible
for the atom excitation from state l in one of the
states m, over which the summation is fulfiled, ω is
the electromagnetic radiation frequency; c is the velocity
of light in vacuum; e is the electron charge, me is
its mass; ωml is the atom radiation absorption proper
frequency for its transition from state l into state m (it
is resonance frequency); fml is the oscillator strength for
the transition l → m; and Γlm is the level width. For
gases, we have

Γml =
4πd2

a

ma
ρ

(
kBT

ma

)1/2

.

It is common knowledge that the temperature can be
determined from the equation of state of the ideal gas in
terms of pressure and density. Then we get

Γml =
4πd2

a

ma
(ρP )1/2

.

If the radiation emission frequency ω is close to one
of the resonance frequencies ωml (a quasiresonance state
of the system), then only one dominant term can be
conserved in the expression for the absorption coefficient
kl. In this case, atoms prior to the excitation are in the
ground state l = 0. Then the absorption coefficient takes
the form

k = ρ (ρP )1/2 2πe2d2
a

2cme

ωfm0

ωm0 (ωm0 − ω)2
. (12)

Fig. 4. Qualitative dependence of the maximum pressure Πmax on
frequency ω for arbitrary values W and θ1

As seen, the frequency parameter hm (ω) in the one-
dimensional case can be defined as

hm (ω) ≡ 2π2e2d2
a

cmem2
a

fm0ω

ωm0 (ωm0 − ω)2
. (13)

The mentioned parameter enters into the term with
the multiplier Λ, which takes the interaction between
the evaporated gas and radiation into account and is
defined by Eq. (5).

In order to investigate the frequency dependence of
the pressure Πmax, we consider expression (5), which
demonstrates the dependence of Λ on the radiation
frequency, and (13). This allows us to determine Πmax

as a function of the difference of the radiation frequency
and the proper frequency of the gas absorption:

Πmax(ω) = (Π−1
in exp(−θ1 exp(−G))+

+(2 exp(G)−G)(1− exp(−θ1 exp(−G))))−1. (14)

Here, G ≡ W
ω

ωm0 (ωm0 − ω)2
and W ≡

bLγ3qin

καϕ0

π2e2d2
afm0

cmem2
a

, where ϕ0 is the specific heat of

the condensate—gas phase transition.
In Eq. (14), the frequency dependence of the

parameter ēq is also taken into account. The dependence
Πmax is shown in Fig. 4.

Thus, the qualitative character of the evaporation
intensity dependence on the incident radiation frequency
is represented by Eq. (14). In this case, as we can see
from Fig. 4, the pressure decreases, when the frequency
ω approaches ωm0, and formally becomes equal to zero
at ω ≡ ωm0, which is in qualitative accordance with
the earlier obtained results [7]. But the purely resonance
case, ω ≡ ωm0, needs a special investigation because, in
this case, the dependence of the coefficient of absorption
k on ρ and P acquires a somewhat different form than
that in Eq. (12).
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4. Conclusion

We have reported the dynamics of the superficial
pressure. It is shown that its magnitude is changed with
increase in the length of a plasma plume at the expense
of the interaction of radiation with a plume which is
determined by the parameter Λ (Fig. 1).

Our analysis of the dependence of pressure on
the pulse length shows that there exists, possibly, a
conservation law for the product of the pulse intensity
and its length (Fig. 2). It is also demonstrated (Fig. 3)
that pressure reaches its maximum during the action
of a pulse, but the time moment when this maximum
is attained does not necessarily coincide with the
termination time of a pulse.

The maximum pressure value Πmax dependence on
frequency characteristics (14) is presented in Fig. 4. It
is shown that it is essential over the range of resonant
frequencies (pressure falls near to zero).
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НЕЛIНIЙНА ДИНАМIКА ТИСКУ БIЛЯ ПОВЕРХНI
МАТЕРIАЛУ ПIД ДIЄЮ ЛАЗЕРНОГО IМПУЛЬСУ

Л.В. Шмельова, А.Д. Супрун, С.М. Єжов

Р е з ю м е

Розглянуто динамiку плазмового факела при руйнiвнiй оброб-
цi. Основним параметром, що визначає динамiку процесу, є
тиск. У технологiчно-актуальному наближеннi, коли показник
полiтропи близький до одиницi, рiвняння, що описує цю ди-
намiку, розпадається на два, одне з яких описує процес пiд
час дiї руйнiвного iмпульсу, а друге – пiсля закiнчення дiї цьо-
го iмпульсу. Проаналiзовано залежностi тиску вiд тривалостi
iмпульсу й вiд параметра, що визначає взаємодiю випромiню-
вання з газом.
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