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We present a model of the spatial distribution of electron
excitations which are generated during the deceleration of a high-
energy photoelectron created under the X-ray quantum absorption
in a medium. It is shown that the resultant distribution can be
presented in a form of the analytic dependence on the medium
parameters and the photoelectron energy. The obtained result
has the large importance for the kinetics of X-ray conduction and
X-ray luminescence, where the essential point is the consideration
of the spatial inhomogeneity of excitations, and for the calculation
of the spatial distribution of the X-ray fluorescence in a material
during the irradiation by high-energy electrons.

1. Introduction

The considerably inhomogeneous spatial generation of
electron excitations determines the specific differences
between XL and photoluminescence. During the
registration of an X-ray quantum with an energy of
1÷50 keV,the dominating process of its interaction with
the substance is the photoabsorption. As a result of
the absorption, the quantum energy (with regard for
the loss due to internal K- or L-shell ionization) is
transferred to a recoil electron, i.e. a photoelectron.
At the thermalization of the photoelectron, a part of
the kinetic energy is consumed to generate electron
excitations (free charge carriers, excitons), and the
remaining energy portion is transformed to heat
directly. In this case, the radial displacement of a
photoelectron is smaller by tens of times than its
entire traveled path (the straightened path length)
due to the scattering by ions of the substance. This
is the cause of a certain localization of excitations
generated by a photoelectron in space, which influences,
of course, their futher relaxation (recombination)
kinetics.

In the existing kinetic theory of XL [1—4], it is
assumed that, in the local area where the electron
excitations are generated in case of the absorption of
an X-ray quantum with an energy of 1—50 keV, the
total number of traps and recombination centers is
much less than the number of generated excitations.
This fact allows using the δ-function as the initial

distribution of generated excitations caused by the
high-energy (in comparison with the work function
or the forbidden bandwidth value) photoelectron
thermalization. The photoelectron thermalization time
period constitutes ∼ 10−13 s [5] that is much less
than the duration of scintillation and recombination
processes. Approximately one third of the energy of
a photoelectron is consumed in the generation of
electron excitations [5, 6] because of the inelastic
scattering by ions, and its major part is consumed to
generate the oscillations of ions (phonons) by the elastic
scattering.

The behavior of electrons after several collisions can
be considered on the base of the multiple scattering
theory. At the great number of collisions, their motion
directions are distributed, in fact, according to the
random law, when the diffusion standard equations
can be used [7, 8]. An increase in the frequency of
inelastic collisions with heavy elements (large Z) is
the reason for that the diffusion character of the
motion of electrons is installed significantly faster than
in the case of light elements. Experimental studies
of the inverse scattering of electrons in substances
with various Z also showed the significant influence
of the single scattering of electrons on their motion
trajectory. In work [9], it was even proposed the empiric
formula for the coefficient of inverse scattering of
electrons with energies of 10—30 keV which achieves,
e.g., 18 % for silicone. The numerical methods of
simulation of the trajectories of high-energy electrons
by the Monte-Carlo method [10—12] confirmed it as
well.

Thus, if the diffusion character of the
motion of a photoelectron under thermalization is
established and the parameters of this motion are
determined by using the Bethe—Bloch equation
for ionization losses, it is possible to determine
the average-statistical spatial distribution of the
generated electron excitations in a crystalline
phosphor, this distribution being initial for
XL.
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2. Trajectory of a High-Energy Electron under
Thermalization

The high-energy photoelectron trajectory is determined
by its Coulomb interaction with the valence electrons,
electrons of internal filled shells, and nuclei of ions of
the matrix. The quadratic dependence of the Coulomb
field on the distance allows one to consider that
the interactions of an electron with ions close to its
trajectory are the actions independent of one another.
This assumption is confirmed by the fulfilment of the
following condition: the de Broglie wavelength of high-
energy electrons is by many times less than the average
distance between ions. Certainly, the laws of momentum
and energy conservation should be fulfiled during the
elastic and/or inelastic interaction at each act of the
scattering of an electron by an ion. Also it is necessary to
remember that, during the electron-ion scattering, there
occurs the bremsstrahlung radiation of electromagnetic
waves due to the deceleration of the electron (by the
bremsstrahlung radiation generation mechanism in an
X-ray tube) which can be absorbed by valence electrons.
Definitely, the bremsstrahlung radiation absorption
determines the inelastic scattering mechanism. The
numerical analysis of the elastic scattering of the electron
by ions of the matrix with the use of the Coulomb
interaction model shows that only if the electron energy
is tens of keV and the impact parameter is extremely
small, the electron can transfer an energy of several eV
to an ion, i.e. the energy sufficient for the generation of a
single electron excitation. Therefore, this mechanism of
losses of the electron kinetic energy under thermalization
can be hardly dominating, which is determined, in the
first turn, by the ratio of the electron mass to the ion
mass.

On the interaction of a high-energy electron with
the electrons of internal filled shells, it cannot transfer
the additional small energy and momentum to these
electrons as they are located on the discrete energy levels
of an ion. In fact in this case the additional energy
and momentum is consumed by the massive ion, and
the elastic scattering remains dominating. Although the
probability of the inelastic scattering is small but it
doesn’t equal zero, which is confirmed by the observation
of the characteristic radiation of X-ray tubes.

The minimum energy which can be obtained by the
valence electron on the interaction with a photoelectron
is equal to Eg (forbidden bandwidth). But if the elastic
scattering takes place, the recoil energy and momentum
is again obtained by the ion, and this additional energy
causes an increase in the amplitude of ion’s oscillations,

i.e. this energy is transformed directly to heat. Thus,
at the elastic scattering when the energy loss of a
high-energy electron is smaller than Eg, the scattering
occurs on the ion, and the scattering angle will be
small. On the contrary, at the inelastic scattering of
a high-energy electron, two free particles (electron and
hole) are generated, and the scattering angle of a
photoelectron will be virtually the same in all directions.
This statement rather satisfactorily correlates with
characteristics of the radiation in X-ray tubes, where the
total intensity of the radiation is directly proportional to
the number of a chemical element Z. Since the elastic
scattering will occur in the most cases, the motion
trajectory of a high-energy electron at thermalization
will have the form of rectilinear segments between
the inelastic scattering events and arbitrary changes of
directions between them.

Also we note that the total number of electron
excitations N0, which are generated at a single X-
ray quantum absorption (hνX), is expressed by the
phenomenological dependence [5,6]

N0 =
hνx

(2.5÷ 3)Eg
. (1)

It allows determining the total energy lost by the
photoelectron at elastic scatterings and a single inelastic
scattering W0 on the lattice ions:

W0 ≈ 3Eg, (2)

i.e. the energy lost on one segment of its trajectory.
Such special features of the interaction of a high-

energy electron with the substance ions testify that
the electron motion trajectory at thermalization can be
compared with the trajectories of atoms in gases, i.e.
with the diffusion in gases. The important confirmation
of the diffusion motion is the scattering uniformity in any
direction at the interaction. In this case (for example,
the diffusion of atoms in gases), there are no restrictions
on the energy of diffusing particles. Therefore, using
the model of photoelectron diffusion displacement at
thermlization is rightful.

3. High-Energy Electron Diffusive Motion
Parameters

The diffusive character of the motion of a high-energy
electron in the process of its themalization allows using
the diffusion equation to calculate the average-statistical
probability of the location of the electron in space at
each time instant and definitely at the time instants of
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non-elastic interactions when the electronic excitations
are generated. Thus, if we determine the probability
of the location of a high-energy electron in space at
time instants of the inelastic scattering, it is possible to
obtain the average-statistical spatial distribution during
the thermalization of a photoelectron by integrating over
the time.

As the kinetic energy of a high-energy electron
gradually decreases, the diffusion coefficient D will
change during the thermalization as well. In general case,
it is determined as

D = 1/3L (t) υ (t) , (3)

where L(t) is the free path length (the spatial
distance between two events of the electron excitation
generation), and υ(t) is the photoelectron velocity
which gradually decreases during the thermalization.
The introduction of the dependence of the diffusion
coefficient on the free path length is based on the
fact that the kinetic parameters of a motion don’t
change practically on elastic collisions. This assumption
only increases the diffusion coefficient and consequently
increases the space volume, where the photoelectron is
thermalized and the electronic excitations are generated.
The introduction of the dependence of the diffusion
coefficient on the path length, where it creates a single
electron-hole pair, is based on the fact that, in this case,
the kinetic parameters of the motion of the electron
change, as distinct from the case of elastic collisions,
when only the propagation direction is changed.

Let’s consider how the quantities L(t) and υ(t)
depend on time. The photoelectron velocity is
determined by its kinetic energy, by assuming that the
electron is non-relativistic:

υ(t) =

√
2
m

E(t) =

√
2
m

E[x(t)]. (4)

The dependence of the electron energy on the passed
distance x(t) is described by the Bethe—Bloch equation
[8] for the non-relativistic electron ionization losses. This
equation in SI looks as follows::

−dE

dx
=

e4n

8πε2
0E

ln
(

4E

I

)
,

where n is the concentration of electrons in the substance
(n = Z ρ NA

A , Z is the atomic number and A is the atomic
mass, ρ is the density, NA is the Avogadro number);
I is the average ionization potential of the substance
which approximately equals 4Eg for the majority of
classical crystalline phosphors and semiconductors. So

the expression under the logarithm symbol will be
proportional to the number of events of the ionization or
the generation of electronic excitations which are created
by a high-energy electron with energy E. In our case, this
quantity will be equal to 3(N0−N) according to (1) and
(2). Substituting the numerical values of the electron
charge e and the dielectric permittivity ε0 and using the
units (nm, eV) more suitable for calculations, we have

dE

dx

(
eV
nm

)
= 13

n(cm−3)× 10−24

E(keV)
ln [3 (N0 −N)]. (5)

In the general case, the integration of (5) doesn’t
give a simple analytic expression. But, to obtain the
approximate dependence of the photoelectron energy
upon the straightened path length (x), it is possible
to use the fact that the logarithmic dependence of E
changes much slower than the power function of E.
Hence, using the theorem of mean from the calculus,
we have

x∫

0

dx =x = −

E(x)∫
E0

EdE

13 · 10−24nln 3 (N0 −N)
≈

≈ E2
0 − E2(x)

2A
, A =

e4 n ln N0

8πε2
0

, (6)

ln 3 (N0 −N) =
N0 ln 3 + ln N0!

N0
≈

≈ N0 ln 3 + N0 (ln N0 − 1)
N0

≈ ln N0.

The constant A can change only by several times
while changing E by orders. The obtained expression
allows determining the total straightened path length of
a high-energy electron on the thermalization as

x0 =
E2

0 −W 2
0

2 A
≈ E2

0

2 A
, (7)

that is the same as the known Thompson-Waddington
relation [13]. Using (7), it is possible to write the
approximate analytic dependence of the photoelectron
energy on the passed distance:

E(x) = E0

√
1− x/x0. (8)
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Using this expression and (4), we get the equation for
x(t) and υ(t) :

υ(x) = (2E0/m)1/2 (1− x/x0)
1/4 = υ0 (1− x/x0)

1/4
,

υ(t) = υ0 (1− t/t0)
1
3

(
υ0 =

√
2E0/m

)
; (9)

t(x) =

x∫

0

dx

υ(x)
=

4x0

3υ0

[
1− (1− x/x0)

3/4
]
,

x(t) = x0

[
1− (1− t/t0)

4/3
]
. (10)

The photoelectron thermalization total time (t0) is
determined from the condition x → x0 : t0 = 4x0

3υ0
. The

dependence L(x) or L(t) is obtained from the condition
that, at this distance, a photoelectron creates a single
electronic excitation, i.e. it loses the energy W0 ≈ 3Eg :

L(x) =
2 W0 x0

E0

√
1− x/x0,

L(t) =
2 W0 x0

E0
(1− t/t0)

2/3
,

L0 = 2 W0 x0/E0 = 2 x0/N0. (11)

Thus, for the diffusion coefficient of the
photoelectron, we have the analytic formula

D(x) = D0 (1− x/x0)
3/4

, D(t) = D0 (1− t/t0) , (12)

where

D0 =
√

2
3

W0E
3/2
0

Am3/2
.

The obtained parameters of the diffusion motion of a
high-energy electron during the thermalization process
allow determining the spatial kinetics of generation of
the electronic excitations.

4. Kinetics of Generation of Electronic
Excitations

To describe the diffusion motion of various particles in
a substance, the notion of their concentration N(r, t)

is used. The equation describing their diffusion is the
following:

dN(r, t)
dt

= ∇[D∇N(r, t)]. (13)

It is obtained while considering the probability of the
transition of particles through a unit cross section per
unit time. Solving the diffusion equation gives the values
of the concentration of particles in space at a certain
time instant. The necessary condition for a solution of
the diffusion equation (13) to be obtained is the initial
condition: the spatial distribution of the concentration
at the initial time instant t=0: N(r, 0) = N0ϕ(r) ).
The diffusion equation is used, as a rule, for the great
number of similar particles that allows obtaining the
average-statistical kinetics of a spatial distribution of
their concentration. But the diffusion equation itself
determines only the probability of the presence of
diffusing particles in a volume element at the given
time instant. The solution of the diffusion equation for a
single particle determines the probability of its location
at the given place at each time instant. The expression
N(r, t)/N0 = p(r, t) is the probability density which
specifies the corresponding concentration distribution in
space at a certain time instant. While integrating p(r, t)
over the entire spatial co-ordinates at any time instant,
we should get unity. Actually, p(r, t) doesn’t depend
on the concentration of particles and determines their
spatial distribution only. It is easy to obtain the diffusion
equation for the spatial distribution probability density
if we divide both the sides of (13) by N0 :

dp (r, t)
dt

= ∇[D (t)∇p (r, t)]. (14)

To thermalize the photoelectrons, it is necessary
to take into account the dependence of the
diffusion coefficient on the thermalization time. Its
parametrization by the passed distance rather than
by time will be incorrect, because, at the diffusion
displacement, the electron velocity υ(t) and the path
value L(t) (with respect to non-elastic interactions)
are of the essential significance, rather than the place
where the electron is located in space. Furthermore, each
trajectory is individual, and the location in space is the
statistical process, whereas only the average-statistical
quantities are considered in the diffusion equation.
During the thermalization of the photoelectrons with the
same energy, there is no difference if one considers the
simultaneous motion of some number of photoelectrons
or the individual motion of each electron, because their
motion is always independent. Therefore, the main

258 ISSN 0503-1265. Ukr. J. Phys. 2007. V. 52, N 3



SPATIAL GENERATION OF ELECTRON EXCITATIONS

information on their location in space at a certain time
instant from the beginning of the motion will be provided
by just the probability density p(r, t). Therefore, by
assuming that their some number at the initial time
instant is described by the spatial distribution in the
form of the δ-function, we get the solution of the
diffusion equation that will be also true in the case
of the motion of a single particle. The experimental
registration of X-ray photons and the thermalization
of photoelectrons have the individual character in each
individual interaction event. But, because there occurs
the significant number of events per unit time, we will
consider the statistical averaging over the registration
results for the totality of particles as the result of the
thermalization of a single particle.

Taking into account the material homogeneity and
the symmetry relatively to a direction, we will determine
the radial displacement only. In this case, we have the
diffusion equation and the initial condition:
{

dp(r,t)
dt = D0

(
1− t

t0

)
∆p(r, t)

p(r, 0) = δ(r),
(15)

where r is a distance from the initial point of the motion,
i.e. from the place of the X-ray quantum absorption.
Equation (15) can be solved by separating the variables
r and t [14], which splits the diffusion equation into
two individual equations: one for the time variables
and the second for the spatial variables. The general
solution of the diffusion equation looks, after some easy
calculations, as follows:

p(r, t) =
exp

{
− r2

2D0t0[1−(1−t/t0)2]

}

{
2πD0t0

[
1−

(
1− t

t0

)2
]}3/2

. (16)

Thus, we get the analytic equation to determine the
probability of the location of a high-energy electron in
space as a function of time during the thermalization
process.

5. Calculation of the Spatial Distribution of
Electronic Excitations

The calculation of the spatial distribution of electronic
excitations can be carried out by using the obtained
relation (16). The probability of the event that, at
a certain time instant (ti), the electron-hole pair will
be generated is proportional to the probability of
the location of a photoelectron there. The complete
distribution of pairs generated by a photoelectron can

be found as the additive sum over i from 1 to N0 of the
probability densities:

N0(r) =
Nmax∑

i=1

p(r, ti). (17)

We note that though the electronic excitations are
generated by a high-energy electron discretely in
space, the condition N0 À 1 is satisfied for all
luminophores on the X-ray excitation, which yields the
practically identical spatial distributions of electronic
excitations. This is confirmed by the calculation results
of the deceleration of high-energy electrons used in
the electron-probe microanalysis in metals, by using
the Monte-Carlo method [15]. Therefore, using the
probability density of the generation of electron-
hole pairs provides their average-statistical spatial
distribution in a material. The instants of electronic
excitations (ti) can be found from the condition that,
in each time interval from ti to ti+1, the photoelectron
loses the energy W0:

E (ti) = E0 − iW0.

Using expressions (8) and (10), we get

ti = t0

[
1− (1− iW0/E0)

3/2
]
. (18)

Thus, the spatial distribution of electronic
excitations N0(r) has the form

N0(r) =
N0∑

i=1

exp
{
− r2

2D0t0[1−(1−iW0/E0)
3]

}

{
2πD0t0

[
1− (1− iW0/E0)

3
]}3/2

. (19)

Because this formula includes the sum of N0 terms,
it is possible to return to the Bethe—Bloch equation and
try to obtain a more accurate result for relations (6)—
(8), but not in the analytic form. If we divide the integral
in (6) into a sum of N0 integrals over E(x) because we
have the uniform step ∆E = W0, then the conducted
analysis testifies that the E(x) determination accuracy
is beyond the 2abandon the obtained analytic relations
for E(x) and x(t) and, respectively, for υ(t) and D(t).

Hence, for the generation stage of the kinetic theory
of X-ray luminescence and X-ray conduction, we have
the calculation system of the initial spatial distribution
of the density N0(r) of electron excitations which are
generated in a substance at the absorption of a single
X-ray quantum.
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Fig. 1. Spatial distributions of the concentration N0(r) of
excitations in the material (n = 1.0×1024 cm−3 and Eg = 3.0
eV) for different initial energies E0: 2 (1), 5 (2), 10 (3), 20 (4),
and 50 keV (5)

Fig. 2. Spatial distributions of the concentration of excitations
N0(r) for the initial energy E0 = 15 keV in materials with different
electron concentrations n, ×1024 cm−3: 0.5 (1), 1.0 (2), and 2.0
(3) (Eg = 3.0 eV)

6. Influence of the Ionization Losses
Parameters in a Substance on N0(r)

The ionization losses of the energy of photoelectrons
are determined, according to the Bethe—Bloch formula,
by the initial energy of a high-energy electron E0,
the electron concentration in a substance n, and the
forbidden bandwidth Eg. These ionization losses of

Fig. 3. Spatial distributions of the concentration of excitations
N0(r) for the initial energy E0 = 15 keV in materials with different
forbidden bandwidths Eg , eV: 1.0 (1), 3.0 (2), 6.0 (3), and 10.0
(4) (n = 1.0×1024 cm−3)

energy, in their turn, determine the spatial distribution
of generated electronic excitations. The calculated
spatial distribution of the concentration N0(r)
of excitations for different initial energies of a
photoelectron are shown in Fig. 1. It is clear that
the maximum concentration of electron excitations
will be at the center, and it increases when the
initial energy E0 decreases. This is caused by
the fact that the photoelectron energy loss is
inversely proportional to the electron energy itself.
Note that the concentrations of electron excitations
considerably exceed, by the order of magnitude, the
concentrations of non-controlled defects in crystals.
Furthermore, these concentrations even exceed the
concentrations of excitations at the irradiation by
picosecond lasers. The significant influence on the space
distribution N0(r) is rendered by the concentration
of electrons in a substance (Fig. 2). The increase in
the concentration of electrons by several times causes
the increase by orders in the maximum concentration
of electronic excitations and significantly reduces the
generation volume. The influence of the forbidden
bandwidth Eg on N0(r) is specified by two factors:
the total number of excitations N0 and the increase of
the average-statistical path length of a photoelectron
between two ionization events (Fig. 3). To evaluate the
volume where the electronic excitations are generated,
the spatial distribution can be characterized by the
dependence of the relative number of excitations which
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Fig. 4. Dependences S(r) for spatial distributions (19) (continuous
curves) and (21)(dotted curves) for the initial energy E0, keV: 5
(1, 4), 15 (2, 5), and 45 (3, 6) in materials with n = 1.5×1024

cm−3 (1, 2, 3) and n = 0.7×1024 cm−3 (4, 5, 6), at Eg = 3.0 eV

are generated in a sphere of radius r:

S(r) =

r∫
0

N0(r) 4π r2 dr

N0
. (20)

These calculated dependences are shown in Fig. 4.
Generally, the region where electronic excitations appear
at the single X-ray quantum absorption can be evaluated
by the volume where 90 % of the generated excitations
occur (S(r0.9) = 0.9). Such dependences shown in
Fig. 5 confirm that the excitation region increases with
the initial energy of a photoelectron. In this case, the
larger the forbidden bandwidth of materials, the larger
the excitation region. But in all cases, this region
remains considerably smaller than the relaxation region
of electronic excitations.

The resultant spatial distribution of the generated
excitations is rather satisfactorily approximated by the
function

N0 (r) =
N0

(2π)3/2
r3
g

exp
(
− r2

2r2
g

)
(21)

which is characterized by only one parameter. This
parameter rg is determined by the relationship

rg =
6π ε2

0

√
Eg E3

0

e4 n ln(E0/(3Eg))
⇒ rg (nm) =

= 1.5

√
Eg (eV) E3

0 (keV)
[n (cm−3)× 10−24] ln (E0/(3Eg))

. (22)

Fig. 5. Radius r0.9 of the generation region of electronic excitations
versus the X-ray quantum energy at different values of the
forbidden bandwidth Eg , eV: 1.0 (1), 3.0 (2), 6.0 (3), and 10.0
(4) in materials with n = 1.0×1024 cm−3

Such Gaussians are presented in Fig. 4 (dotted curves).
The deviation of Gaussians (21) from the calculated
function N0(r) is expected only in the small central
region of generation and in the case of large values r,
where a small part of the electronic excitations occurs.
Note that the calculated spatial distributions N0(r)
are approximated better by the dependence with the
exponent of r in (21) to be slightly smaller than 2.
But if we take into account the further diffusion heat
motion of the generated electrons and holes which is
described by a Gaussian for the spatial distribution
of charge carriers, there is no reason to use a more
complicated function for their average-statistical initial
distribution.

The results of calculations of the parameters,
which determine the thermalization region of a high-
energy electron for some real materials and different
initial energies of electrons, are presented in the
Table.

To disadvantages of the X-ray generation model,
we should refer the consideration of only monoenergy
photoelectrons in the calculation of the spatial
distribution of electronic excitations. In fact, due to
the photoelectric effect, there occurs the characteristic
additional radiation from various ion shells in addition
to the generation of photoelectrons with respective
energies. This radiation is effectively absorbed in the
environment. This causes the asymmetry of the final
spatial distribution of generated electron-hole pairs.
Their account significantly complicates the total
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Thermalization parameters of a high-energy electron for various real materials

Material Eγ , keV x0, nm t0, ps ( dE
dx

)0, eV/nm N0 rg , nm
14Si 5 161 0.005 15.5 1667 3.3

ne = 0.7× 1024 cm−3 15 1286 0.025 5.8 5000 14.8
Eg = 1.1 еV 30 4797 0.065 3.1 10000 38.6

50 12696 0.134 2.0 16667 78.8

ZnSe 5 100 0.003 25.1 625 3.4
ne = 1.43× 1024 cm−3 15 783 0.015 9.6 1875 14.9

Eg = 2.8 еV 30 2899 0.039 5.2 3750 38.6
50 7635 0.08 3.3 6250 78.3

Diamond 5 138 0.005 18.0 312 6.7
ne = 1.06× 1024 cm−3 15 1068 0.021 7.0 938 29.1

Eg = 5.4 еV 30 3930 0.053 3.8 1875 74.9
50 10307 0.109 2.4 3125 151

calculation algorithm. But it is necessary to note
that the photoelectric effect probability on all shells,
except for the K-shell, doesn’t exceed 1/5, which
determines the final error of calculations, while using
the diffusion model. It is also necessary to remember
that the presented model allows one to calculate
the average-statistical spatial distribution N0(r), and
each generation region will differ from the average
distribution because of the chaotic motion of a
photoelectron. The preliminary estimations show that
the fluctuations from the average value don’t exceed
10%.

7. Conclusions

The evaluation of the probability of the location of
a photoelectron in space, if we apply the formal
approach of diffusion theory, allows one to significantly
simplify the calculations of the initial distribution of
electronic excitations and to specify the dimensions
of the region of their generation. The dimensions of
the generation region of electronic excitations at the
thermalization of X-ray photoelectrons are considerably
less (approximately by 30 times) than the straightened
path length which is calculated by the Bethe—Bloch
formula. The same estimate was given in the papers
concerning the statistical simulation of low-energy
electrons in a medium, which confirms the relevancy
of the proposed model of their diffusion movement on
the deceleration. But the main point here is that the
generation region of electronic excitations in the X-ray
luminescence is much less than the spatial region of the
relaxation of these excitations during the scintillation
and phosphorescent stages.

Note that the spatial density and the generation
time of electronic excitations on the single act of X-
ray quantum absorption are beyond the abilities of

picosecond lasers. If we take into account that it is
easy to realize the absorption up to 1010 quanta per
second in the samples at the X-ray excitation, it becomes
clear that the X-ray excitation abilities in the studies
greatly exceed the abilities of picosecond lasers at the
luminescence excitation.
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SPATIAL GENERATION OF ELECTRON EXCITATIONS

ПРОСТОРОВА ГЕНЕРАЦIЯ ЕЛЕКТРОННИХ
ЗБУДЖЕНЬ ПРИ ПОГЛИНАННI
РЕНТГЕНIВСЬКОГО КВАНТА

В.Я. Дегода, А.О. Софiєнко

Р е з ю м е

Запропоновано модель розрахунку просторового розподiлу
електронних збуджень, якi генеруються пiд час гальмування

високоенергетичного фотоелектрона, що виникає як наслiдок
поглинання рентгенiвського кванта в середовищi. Показано, що
кiнцевий розподiл електронних збуджень можна представити
у виглядi аналiтичної функцiї вiд параметрiв середовища та
енергiї фотоелектрона. Отриманий результат є важливим як
для дослiдження кiнетики рентгенолюмiнесценцiї та рентгено-
провiдностi, де важливим моментом є врахування просторової
неоднорiдностi збуджень, так i для розрахунку просторового
розподiлу генерацiї рентгенiвської флуоресценцiї у матерiалi
при опромiненнi високоенергетичними електронами.
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