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Conditions of the existence of a three-fermion bound state are
investigated for the states with nonzero angular momentum L = 1
and a wide class of interaction potentials. It is shown that the
binding of three fermions with purely attractive potentials or
the standard attractive potentials at high distances and a short-
range repulsion is impossible if two of the fermions are unbound.
Moreover, this system is even farther from a bound state when
the parameters of potentials are in agreement with the low-energy
two-neutron data. The possibility for a bound state of a three-
fermion system with L = 1 without bound subsystems to exist is
demonstrated for the potentials with two attractive regimes. But
there exists no bound trineutron for the realistic neutron-neutron
interaction even with two regimes of attractions, in contrast to a
tetraneutron considered in [9].

1. Introduction

The problem of the existence of multineutrons is of a
great interest in nuclear physics from both the experi-
mental and theoretical points of view [1–3]. It remai-
ns relevant for a long time, and there is still no its
satisfactory solution. A great number of papers, both
theoretical and experimental ones, were devoted to the
investigation of this question.

The recent experiments [4, 5] and their interpretati-
on as the manifestation of a tetraneutron or a four-
neutron cluster induce the necessity of a deeper theoreti-
cal analysis of all possibilities of the formation of multi-
neutron systems from a few neutrons and/or resonances
in the systems containing many neutrons and the clari-
fication of structural peculiarities of such hypotheti-
cal formations [5–9]. Up to now, the full theoretical

analysis is possible for a hypothetical trineutron and a
tetraneutron. In [9], a new class of n − n interaction
potentials with two regimes of attraction was proposed.
With such potentials, it is possible to construct the
bound state of a hypothetical tetraneutron without
any contradiction with the low-energy neutron-neutron
scattering experimental data.

In this paper, we focus on the analysis of the bi-
nging conditions of three-fermion systems with angular
momentum L = 1 and investigate the possibilities for
the existence of a hypothetical trineutron. All calculati-
ons are performed with the use of high-precision variati-
onal schemes, and their comparison with other rougher
estimates is made.

2. Statement of the Problem

Consider a system of three fermions with central pai-
rwise interaction. In what follows, we use the obtained
results in the analysis of the binding conditions of three
neutrons. The Schrödinger equation for three fermions
with central pairwise interaction,
{

3∑

i=1

p̂2
i

2m
+

3∑

i<j=1

(V +
s (rij)P̂s(ij)+

+V −
t (rij)P̂t(ij))

}
Ψa = EΨa, (1)

contains the singlet V +
s (rij) and triplet V −

t (rij)
components of the interaction potential in the even
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and odd (with respect to the angular momentum)
states of two particles. P̂s(ij) and P̂t(ij) are the
projection operators on the singlet and triplet states
of two particles, respectively. If we consider the
spin functions of three particles as two-component
vectors

ξ′ →
(

ξ′

0

)
, ξ′′ →

(
0
ξ′′

)
,

then we can present the projection operators written in
terms of the Pauli matrices

P̂s(ij) =
1
4
(1− σiσj) P̂t(ij) =

1
4
(3 + σiσj),

as 2× 2 matrices:

P̂s(12) =
(

1 0
0 0

)
, P̂t(12) =

(
0 0
0 1

)
,

P̂s(13) =

(
1
4

√
3

4√
3

4
3
4

)
, P̂t(13) =

(
3
4 −

√
3

4

−
√

3
4

1
4

)
,

P̂s(23) =

(
1
4 −

√
3

4

−
√

3
4

3
4

)
, P̂t(23) =

(
3
4

√
3

4√
3

4
1
4

)
. (2)

In the lowest energy state, the spin of the three-
particle system is S = 1/2, and the full antisymmetric
wavefunction in a doublet spin state is

Ψa =
1√
2

(ξ′φ′′(r12, r13, r23)− ξ′′φ′(r12, r13, r23)) , (3)

where the spatial components φ′(r12, r13, r23) and
φ′′(r12, r13, r23) and the spin components ξ′, ξ′′ possess
the symmetry [2, 1]. The projection of Eq. (1) on di-
fferent spin states produces a system of two equations
for the spatial components:
(

3∑

i=1

p̂2
i

2m
+ V +

s (rij)− E

)
φ′′+

+
1
4

∑
(ij) 6=(12)

(
3V −

t (rij) + V +
s (rij)

)
φ′′+

+
√

3
4

∑
(ij) 6=(12)

(−1)i+j
(
V +

s (rij)− V −
t (rij)

)
φ′ = 0,

(
3∑

i=1

p̂2
i

2m
+ V −

t (rij)− E

)
φ′+

+
1
4

∑
(ij) 6=(12)

(
V −

t (rij) + 3V +
s (rij)

)
φ′+

+
√

3
4

∑
(ij) 6=(12)

(−1)i+j
(
V +

s (rij)− V −
t (rij)

)
φ′′ = 0. (4)

The spatial components φ′ and φ′′ correspond to an
irreducible representation of the permutation group wi-
th the Young table [1, 2] and are not independent. We
choose one spatial component φ′′ symmetric with respect
to the permutation of the coordinates r1 and r2 as an
independent one, and the other one can be related with
it in the next way:

φ′ =
1√
3
(2P̂23 + 1)φ′′, (5)

where P̂23 is the permutation operator for particles 2 and
3. Then we can rewrite the Schrödinger equation for only
one independent spatial component of the wavefunction
φ′′ (here and later on, we use the notation Φ ≡ φ′′)
which is symmetric with respect to the permutation of
particles 1 and 2:

{
3∑

i=1

p2
i

2m
+

1
2

3∑
i>j=1

(
V +

s (rij) + V −
t (rij)

)
+

+
1
2

∑
(ij) 6=(23)

(−1)i+j
(
V +

s (rij)− V −
t (rij)

)−

−1
2

∑
(ij) 6=(12)

(−1)i+j
(
V +

s (rij)− V −
t (rij)

)
P̂23

}
Φ = EΦ.

(6)

The equation for three fermions (6) in the doublet spin
state is already quite convenient to be used in numerical
calculations based on the Bubnov—Galerkin variational
method. We perform all our numerical calculations using
the Gaussian basis similar to that in [9].
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3. Matrix Elements of the Hamiltonian for
Angular Momentum L = 1

For the complete analysis of possibilities to bind three
fermions (and a trineutron) by using the wave equati-
on (6), we investigate the lowest energy states of three
particles with the total angular momenta L = 0 and
L = 1. The analysis of these states can be essential also
for the investigation of a hypothetical tetraneutron and
its 4n → 3n + n channel of dissociation.

The variational wavefunction corresponding to zero
angular momentum must depend only on the absolute
values of interparticle distances and, for the Gaussian
basis, is a properly antisymmetrized linear combination
of the basis functions:

ΦL=0(r12, r13, r23) = Ŝ

K∑

i=1

Ci exp

(
−

∑

k<l=1

3ai
klr

2
kl

)
≡

≡ Ŝ

K∑

i=1

Ciψi. (7)

Here, Ŝ is the operator of antisymmetrization with
respect to the permutation of particles 1 and 2: Ŝ =
1− P̂12. When we use the Bubnov—Galerkin scheme, all
matrix elements of Eq. (6) on functions (7) are standard
enough [9]. Somewhat more difficult is the situation wi-
th angular momentum L = 1, when the wavefunction
contains, in addition to the absolute values of interparti-
cle distances, spherical functions of the first order. We
can build the most general spatial wavefunction of the
system of three particles that describe odd states with
angular momentum L = 1 and its projection M = 0 in
the following form:

ΦL=1,
M=1

= q1zϕ1(r12, r13, r23) + q2zϕ2(r12, r13, r23). (8)

Here, q1z and q2z are the z-components of the relative
Jacobi coordinates,

q1 =
1√
2
(r1 − r2), q2 =

1√
6
(r1 + r2 − 2r3), (9)

ϕ1 and ϕ2 are symmetric and antisymmetric functi-
ons with respect to permutation of particles 1 and
2 (symmetrized to correspond to thye Young table
[2,1]). To perform variational calculations within the
Bubnov—Galerkin method, we choose variational tri-
al functions ϕ1 and ϕ2 in the form of an independent
properly symmetrized superposition of Gaussian functi-
ons.

Prior to our numerical calculations, the important
step is the computation of the overlapping matrix
elements and the matrix elements of the potential and
kinetic energies on various basis functions. All these
matrix elements can be calculalted explicitly when we
use the Gaussian basis even for a very complex basis
function with nonzero angular momentum (8). In the
case of the angular momentum L = 1 and the variati-
onal function (8), we need to calculate matrix elements
on the basis functions of two types:

φ
(1)
i = q1z exp

(
−

∑

k<l=1

3a
i(1)
kl r2

kl

)
,

φ
(2)
i = q2z exp

(
−

∑

k<l=1

3a
i(2)
kl r2

kl

)
. (10)

To express all matrix elements in the universal form
for both types of basis functions (10), we introduce a
matrix that consists of the linear combinations of nonli-
near variational parameters:

B =




1
2
(4a12 + a13 + a23)

√
3

2
(a13 − a23)

√
3

2
(a13 − a23)

3
2
(a13 + a23)


 . (11)

Here, akl = ai
kl + aklj . The matrix B defines the transi-

tion to Jacobi coordinates in the exponent
3∑

k<l=1

aklr
2
kl =

3∑
n,m=1

Bnm(qnqm).

Also we introduce the matrix inverse to B,

C ≡ B−1 · det(B),

C =




3
2
(a13 + a23)

√
3

2
(a23 − a13)

√
3

2
(a23 − a13)

1
2
(4a12 + a13 + a23)


 . (12)

Using the matrices B and C, we can write the overlappi-
ng matrix element in a simple form
〈
φ

(n)
i

∣∣∣ φ
(m)
j

〉
=

π3

D5/2

Cnm

2
, n, m = 1, 2, (13)

and a matrix element of an arbitrary function depending
only on the absolute value of the interparticle distance
rkl in the form
〈
φ

(n)
i

∣∣∣ f(rkl)
∣∣∣φ(m)

j

〉
=

〈
φ

(n)
i

∣∣∣ φ
(m)
j

〉 8
3
√

π
×
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×
∞∫

0

f(t
√

Dkl/D)
[(

3
2
− t2

)
D

DklCnm

∂Cnm

∂akl
+ t2

]
×

×t2e−t2dt. (14)

Here, we introduce the notation

D = det(B) = 3(a12a13 + a12a23 + a13a23),

Dkl =
∂D

∂akl
. (15)

It is more useful to write down the matrix elements
of the kinetic energy K = −∑3

i=1 ∆i/2 (for simplicity,
we use the ~ = m = 1 unit system) separately for di-
fferent combinations of the basis functions, because the
universal expression is cumbersome and not informative:
〈
φ

(1)
i

∣∣∣ K
∣∣∣φ(1)

j

〉
=

=
π3

D5/2

[
−C2

12 +
(

3 +
5C2

12

D

)
Y22 +

5C2
11

D
Y11

]
,

〈
φ

(2)
i

∣∣∣ K
∣∣∣φ(2)

j

〉
=

=
π3

D5/2

[
−C2

12 +
(

3 +
5C2

12

D

)
Y22 +

5C2
11

D
Y11

]
,

〈
φ

(1)
i

∣∣∣ K
∣∣∣φ(2)

j

〉
=

〈
φ

(2)
i

∣∣∣ K
∣∣∣φ(1)

j

〉
=

=
π3

D5/2

[(
Bj

11 −Bi
22

)(
Bi

12 −Bj
12

)
+

+
5C2

12

3D
(Y12 + Y12)

]
. (16)

Here, we introduce the matrices Bi and Bj that are bui-
lt similarly to the matrix B with one difference: instead
of the parameters akl, ai

kl and aj
kl are used. The matrix

product Y = Bi · Bj is also used in these expressions.
“Diagonal” matrix elements on the functions φ(1) and
φ(2) can be also simply rewritten in terms of the matrix
C only:

〈φ(1)
i |K|φ(1)

j 〉 =
π3

D5/2

[
−C2

12 +
(

3 +
5C2

12

D

)
×

×(Ci
12C

j
12 + Ci

11C
j
11) +

5C2
11

D
(Ci

12C
j
12 + Ci

22C
j
22)

]
,

〈φ(2)
i |K|φ(2)

j 〉 =
π3

D5/2

[
−C2

12 +
(

3 +
5C2

12

D

)
×

×(Ci
12C

j
12 + Ci

22C
j
22) +

5C2
11

D
(Ci

12C
j
12 + Ci

11C
j
11)

]
. (17)

Here, the matrices Ci and Ci are built using the same
rule as for Bi and Bi. Using the obtained expressions
together with special optimization schemes on nonlinear
parameters lets us to perform calculations with a very
high accuracy that can be controlled.

4. Analysis of Binding Conditions of Three
Fermions with Different Interaction
Potentials

First, we consider a simple problem with the interaction
in (6) which is independent of spin. If the triplet potenti-
al is equal to the singlet one, we obtain the amplification
of attraction in a three-fermion system, and this is the
most favorable case for the binding of three fermions
in the doublet spin state. Moreover, to compare with
the four-particle system, we choose the same potenti-
als for calculations of a trineutron as those for four
fermions in [9]: the simple attractive Gaussian potenti-
al V1(r) = −g exp(−r2), the Volkov potential with
variable strength V2(r) = −g(144.86 exp(−(r/0.82)2) −
83.34 exp(−(r/1.6)2)) as a typical nuclear potential with
short-range repulsion (all potentials are in dimensionless
units like in [9]), the optimal Volkov-type potential givi-
ng the best binding conditions V3(r) = −g(exp(−r2) −
1.5 exp(−(r/0.9)2)), and the potential with two regimes
of attraction,

V +
s (r) = g(0.43 exp(−(r/0.6)2)− exp(−r2)+

+1.085 exp(−(r/1.3)2)− 0.42 exp(−(r/1.5)2)), (18)

proposed in [9] (here the distance scale is r0 = 0.488519
fm). The results of calculations of the critical coupli-
ng constants, when a bound state of the three-fermion
system appears on the threshold with rise in the coupling
constant g, are presented in the first three rows of Table
1 for the simple potentials and in the fourth row for the
potential proposed in [9] with two regimes of attraction.

As expected, for all the considered potentials, the
energy level of three fermions with angular momentum
L = 1 is essentially lower than the level with L = 0.
For all potentials, it is seen that the critical coupli-
ng constant of three particles with angular momentum
L = 1 is very close to the critical constant of a four-
particle system (considerably closer, than the level with
L = 0).
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Fig. 1. Energy levels scheme for two, three, and four fermions with
simple short-range (nuclear) interaction potentials

Fig. 2. Dependence of the lowest state energies on the coupling
constant for two- and three-fermion systems (18)

Therefore, for the four-fermion system with symmetry
[2, 2], not only the threshold 4 → 2 + 2 is important,
but also 4 → 3L=1 + 1. As seen from Table 1, gcr(3) >
gcr(4) for some potentials, while gcr(3) < gcr(4) for
others. We emphasize that, for all the considered si-
mple potentials, the four-particle level disappears on the
2 + 2 threshold with decrease in the coupling constant,
rather than on the threshold EL=1(3). We also note
that there is no possibility with simple potentials to
obtain a bound state in the three-fermion system wi-
th two unbound particles (always gcr(2) < gcr(3)). This
result is mostly the same as obtained in [9] for the
system of four neutrons. Figure 1 schematically shows
the dependence of binding energies of the considered
systems on the coupling constant; this energy level
scheme remains almost the same for all simple potenti-
als.

More interesting, of course, is the analysis of binding
conditions of the system of three fermions with potential
(18) with two regimes of attraction that gives rise to the
binding of a tetraneutron [9]. The results of our calculati-
ons of the critical coupling constants for this potential in
the “spinless” case is presented in the last row of Table

1. We emphasize that it is possible with this interaction
potential to obtain bound states of four fermions with
zero angular momentum [9] and those of three fermi-
ons with angular momentum L + 1 with the unbound
two-fermion subsystem. Moreover, both these systems
are also bound with the coupling constant gexp = 322.4,
which allows one to reproduce the low-energy neutron-
neutron data (the scattering length as(nn) = −18.9,
and the effective interaction radius r0s(nn) = 2.75 fm).

Figure 2 gives a clear evidence that a bound state
appears in the three-fermion system with potential (18)
with two regimes of attraction in the L = 1 case. But the
binding is absent for zero angular momentum in the area,
where a two-particle system is unbound. This behavior
takes place, because the different parts of the attracti-
ve potential dominate in the two- and three-fermion
systems in the region, where a two-particle bound state
appears. In the three-particle system, the short-range
attraction is significant, while longer ranges and the
second attractive well play the crucial role for two parti-
cles. We consider this class of potentials with two regi-
mes of attraction (18) to be useful in investiga-

T a b l e 1. Critical coupling constants of three- and four-fermion systems

Potential gcr(3L=1) gcr(3L=1)/gcr(2) gcr(3L=0)/gcr(2) gcr(4)/gcr(2) [9]
−g exp(−r2) 3.84 1.43 3.3 1.46
Volkov potential 0.0265 1.39 3.45 1.44
−g(exp(−r2)− 1.5 exp(−(r/0.9)2)) 170 1.278 2.18 1.27
Potential (18) 319.6 0.967 1.008 0.954
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ting the binding conditions of three neutrons under the
real conditions with spin-dependent potential.

Consider now a spin-dependent potential, being the
same as that in [9]. Namely, we choose the singlet
potential as (18) and the triplet potential as

V −
t (r) = g(2.212 exp(−(r/2)2)−

−2.334 exp(−(r/3)2) + exp(−(r/4)2)). (19)

The results of calculations based on the Schrödinger
equation (6) using optimized schemes of the variati-
onal method with a Gaussian basis showed that there
is no bound states in the system of three neutrons when
two neutrons are unbound. Notice that the system of
four neutrons remains bound at the point gexp with
this potential. For three neutrons, the considered triplet
potential acts as a strong repulsion. This may be caused
by a somewhat different action of the Pauli principle
in three- and four-neutron systems. Using the presented
spin-dependent potential leads to very high values of
the critical coupling constants: gcr(3L=1) = 4.27gcr(2),
and gcr(3L=0) = 8.88gcr(2). This is much worse than
all the spinless results presented above. Therefore, the
bound states in the three-neutron system cannot exist if
two neutrons remains unbound even for potentials (18
and 19). Our attempts to modify the triplet potential to
obtain the trineutron binding turned out unsuccessful.

5. Shell Oscillatory Estimates for
Multineutron Systems

The high-precision calculations based on many-particle
equations like (6) meet considerable difficulties, when
one tries to analyze the systems of more than four parti-
cles. Realizable now are only the rough estimates of
multineutron systems with higher number of neutrons.
To investigate the binding conditions of different multi-
neutron systems from one point of view, we consider the
oscillatory approximation for the trial wavefunctions of
simple systems of 2, 3, and 4 neutrons and closed-shell
systems of 8, 20, and 40 neutrons. The energy functionals
for such N -neutron systems can be calculated relatively
simply in standard way. These functionals depend only
on the neutron mass M and the variational parameter a
as follows:

N = 2, (L = 0) : E = min
a

{
1

Ma2

3
2

+ 〈0|V +
s (ra)|0〉

}
,

N = 2, (L = 1) : E = min
a

{
1

Ma2

5
2
+

+
2
3
〈0|r2V −

t (ra)|0〉
}

,

N = 3, (L = 0) : E = min
a

{
5

Ma2
+

1
3
〈0|

(
r4 − 3r2+

+
15
4

)
V +

s (ra)|0〉+ 〈0|r2V −
t (ra)|0〉

}
,

N = 3, (L = 1) : E = min
a

{
4

Ma2
+

+
3
2
〈0|V +

s (ra)|0〉+ 〈0|r2V −
t (ra)|0〉

}
,

N = 4, (L = 0) : E = min
a

{
1

Ma2

13
2

+ 〈0|
(1

3
r4−

−r2 +
13
4

)
V +

s (ra)|0〉+ 2〈0|r2V −
t (ra)|0〉

}
,

N = 8, (L = 0) : E = min
a

{
1

Ma2

33
2

+ 〈0|
(
r4−

−r2 +
31
4

)
V +

s (ra)|0〉+ 12〈0|r2V −
t (ra)|0〉

}
,

N = 20, (L = 0) : E = min
a

{
1

Ma2

117
2

+
1
64
〈0|(16r8−

−96r6 + 776r4 − 680r2 + 1945)V +
s (ra)|0〉+

+
3
2
〈0|r2(4r4 − 12r2 + 55)V −

t (ra)|0〉
}

,

N = 40, (L = 0) : E = min
a

{
1

Ma2

297
2

+
1

256
〈0|(64

9
r12−

−320
3

r10 +
3632

3
r8 − 15392

3
r6 + 17884r4−

−13180r2 + 21935)V +
s (ra)|0〉+

1
512

〈0|r2(512r8−

−5120r6 − 35072r4 − 74496r2 + 164640)V −
t (ra)|0〉

}
.

(20)
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Here, N is the number of particles, and L is the total
angular momentum of a system. The kinetic energy term
in these equations properly accounts for the center-of-
mass motion. The matrix elements of even singlet and
odd triplet potentials are defined with “oscillator” weight
as

〈0|f(r)|0〉 =
1

π3/2

∫
dr exp(−r2)f(r). (21)

Of course, we must mention that the oscillatory approxi-
mation can describe well only strongly bound systems.
But, for such loosely bound systems as multineutrons,
the oscillatory approximation can be only a rough vari-
ational estimate by the order of magnitude. In the osci-
llatory approximation, we considered the

T a b l e 2. Critical coupling constants for different
Fermi-systems with different numbers of particles in
the oscillatory approximation with the spin-independent
potential V (r) = −g exp(−r2) (for the three-particle
system, values for different angular momenta are
presented)

Number of particles N gcr(N) gcr(N)/gcr(2)

2 (L = 0) 3.897 1.000
3 (L = 0) 10.408 2.671
3 (L = 1) 5.649 1.45

4 4.283 1.099
8 2.748 0.705
20 1.853 0.475
40 0.565 0.145

T a b l e 3. Critical coupling constants for different
Fermi-systems with different numbers of particles in
the oscillatory approximation with the spin-independent
potential (18) (for the three-particle system, values for
different angular momenta are presented)

Number of particles N gcr(N) gcr(N)/gcr(2)

2 (L = 0) 941.84 1.000
3 (L = 0) 5453.9 5.791
3 (L = 1) 712.05 0.756

4 832.15 0.884
8 274.39 0.291
20 203.22 0.216
40 26.32 0.0279

T a b l e 4. Critical coupling constants for different multi-
neutron systems with the spin-dependent potential (18),
(19) (for the three-particle system, values for different
angular momenta are presented)

Number of particles N gcr(N) gcr(N)/gcr(2)

2 941.84 1.000
3 (L = 0) – –
3 (L = 1) 10190.28 10.82

4 — —
8 24221.73 25.72
20 15170.02 16.11
40 45514.18 48.32

systems with potentials independent of spin: the
attractive Gaussian potential, double-well potential
(18), and the spin-dependent potential (18)–(19). The
results of calculations are presented in Tables 2–4.

It is clear from Tables 2 and 3 that, for both spin-
independent potentials, the critical coupling constants,
at which a bound N -particle state appears below
the two-particle threshold, decrease monotonically wi-
th increase in the number of particles starting from 3
ones. We note that both the considered potentials do
not satisfy the saturation condition and must lead for
large numbers of particles to a collapse. We see that
the critical coupling constant is lower than the two-
particle one (only with such a requirement, we can
talk about a bound multineutron system) already for
a system of 8 particles even in the simple Gaussian
potential. The further decrease of the critical coupli-
ng constants for 20- and 40-particle systems indicates
a trend of the tighter binding of heavy multineutron
systems, what is a consequence of the simple non-
saturating interaction. Nevertheless, as the oscillatory
approximation gives the upper bound for the energy,
we may expect that the octaneutron system 8n will be
stable in precise calculations. When we consider the spin-
independent potential (18) in the oscillatory approxi-
mation, a system of particles with angular mommentum
L = 1 is already bound with two unbound parti-
cles. This result is in agreement with high-precision
three-particle calculations (Fig. 2). As for four fermi-
ons, the high-precision results [9] agree qualitatively
with those in Table 3, because gcr(4) < gcr(2). For
heavier multineutrons, the tendency of stronger bindi-
ng remains, since gcr(N) decreases monotonically with
rise of N .

The results of Tables 2 and 3 for the spinless case
give a clear evidence that gcr(3L=1) < gcr(3L=0), and
the energy level for the angular momentum L = 1 is
always deeper than that for L = 0 for three-fermion
system. Moreover, the critical constant for three parti-
cles with L = 1 is relatively close to the critical constant
of four particles for all spin-independent interacti-
ons (we see the same situation in precise calculati-
ons).

The less simple situation is for realistic spin-
dependent interaction potentials (Table 4). First, the
oscillatory approximation cannot lead to the binding
of any multineutron system, Second, the anomalous
irregularity in the behavior of gcr(N) is obtained for
relatively large numbers of particles, N ∼ 40. At last, the
three-fermion system with L = 0 and the four-fermion
system cannot be bound for arbitrarily great coupling
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constants. Nevertheless, the precise calculations showed
that a tetraneutron with this potential is bound [9]. This
is the obvious drawback of the oscillatory approximati-
on.

6. Conclusion

Our investigation shows that the binding conditions for
a trineutron are much better in the state with angular
momentum L = 1 than those with L = 0 for all the
considered interaction potentials. The spin-independent
potential (18), which binds a system of four fermions
with zero total spin [9] with two unbound particles, bi-
nds also a system of three fermions in the doublet state
with spin S = 1/2 and angular momentum L = 1. Of
course, we have to pay a high price for the binding of
the system, namely to violate the charge independence of
nuclear forces. In the realistic case with spin-dependent
potentials and with the triplet potential in the form (19),
the binding of a trineutron disappears. The studies with
other potentials showed that there is no possibility to
build a potential of the same type as (18, 19) that can
bind a trineutron and does not contadict the other requi-
rements: first of all, it is the absence of the bound state of
a dineutron. We demanded also a negative two-neutron
scattering phase in the triplet state (effective repulsi-
on) and the absence of resonances in the two-neutron
system.

Thus, we showed that the binding conditions of a tri-
neutron are unsatisfactory for a wide variety of interacti-
on potentials in the states with L = 0 and L = 1 and
mostly worse than those for a tetraneutron [9]. We can
expect that the binding conditions will be better for
heavier multineutron systems, first of all, an octaneutron
8n. This tendence is mostly confirmed by rough osci-
llatory estimates.
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ВIДНОСНО УМОВ ЗВ’ЯЗУВАННЯ ТРЬОХ ФЕРМIОНIВ
I НЕМОЖЛИВОСТI IСНУВАННЯ ТРИНЕЙТРОНА

Ю.М. Бiдасюк, И.В. Сименог

Р е з ю м е

Дослiджено умови iснування зв’язаного стану трьох фермiонiв
в станi з ненульовим орбiтальним моментом L = 1 для ши-
рокого класу потенцiалiв взаємодiї. Отримано, що для чисто
притягувальних потенцiалiв взаємодiї та стандартних потенцi-
алiв з притягуванням на бiльших вiдстанях i короткодiйним
вiдштовхуванням вiдсутнє зв’язування трьох фермiонiв, якщо
два з них не зв’язанi. Тим бiльше вiдсутнiй зв’язок трьох ней-
тронiв в цьому випадку, якщо параметри потенцiалiв узгодженi
з низькоенергетичними даними двох нейтронiв. Для потенцiа-
лiв взаємодiї з двома режимами притягування отримано мо-
жливiсть зв’язування трьох фермiонiв з L = 1 у вiдсутностi
зв’язку мiж двома. В реалiстичних умовах мiжнейтронної вза-
ємодiї навiть з двома режимами притягування зв’язаний стан
трьох нейтронiв вiдсутнiй, на вiдмiну вiд отриманого ранiше
зв’язку тетранейтрона.
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