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The stationary motion of an axisymmetric vortex ring in an
incompressible medium, where the velocity ~v and the density ρ
satisfy the equations div ~v = 0 and ~v∇ρ = 0, is considered. The
latter equation allows the motion of a vortex ring with the density
distributed in space to be analyzed. It has been shown that the
density of the incompressible medium can be inhomogeneous only
in the vortex motion region and is constant in the potential motion
one. Taking this fact into account, the velocity of the ring and
the shape of its atmosphere were found to depend not only on the
geometrical dimensions of the vortex core and the amplitude of
the external velocity vorticity, but also on the spatial distribution
of the density in the vortex core.

1. Introduction

The paper reports some results of the theoretical
research of the structure and the motion of axisymmetric
vortex rings. The latter were known for a rather
long time; they are easily produced and observed
experimentally [1, 2]. At the end of the nineteenth
century, this hydrodynamic phenomenon was intensively
studied in connection with the attempts to build the
vortex model of atoms [3]. Later on, the interest was
caused by the necessity of studying the dynamics of
characteristic mushroom-like clouds, which are formed
after the explosions of large charges and whose structure
is similar to that of the vortex ring [4, 5]. Recently,
the vortex formations [6, 7] were regarded as potential
generators of “magnetic clouds” or coronal mass ejections
from the Sun [8].

The name “vortex ring” is usually associated with a
vortical region, confined in space, which moves through
a surrounding potential current, so that the vorticity ~ω is

distinct from zero only inside some boundary. Since the
motion of the environment at infinity must be potential,
the vorticity has to vanish beyond the region, which
is bounded by a closed stream line, and the velocity
components have to be continuous on this line. In the
general case, there is a jump of the vorticity at the
vortex region boundary, while the continuity of the
pressure follows from the continuity of the velocity. As
a result, the problem of matching the potential and the
vortex flow arises [1, 2, 9, 10]. In such a formulation,
the problem has been studied only for some elementary
functions describing ~ω. As an example of the exact
solution of the problem, the Hill spherical vortex [11]
may be mentioned, which, however, is not observed in
reality. The Maxwell vortex [1, 10] is more similar to
what is observed; here, the vorticity region comprises a
torus, whose transverse cross-section radius a is much
less than the torus radius R.

A remarkable feature of all observable vortex rings
is their capability to move almost stationary for a
long time. The problem of describing such a motion
drew attention of a good many theoreticians. Among
a number of papers dealing with this subject, that of
Lord Kelvin [12] ranks as the most outstanding one: in
1867, in his remark to Tait’s translation of Helmholtz’s
article [13], he wrote down – without any proof – a valid
result for the velocity V of motion of a vortex ring with
a “uniform” vorticity in the core,

V =
Γ

4πR

[
ln

8R

a
− 1

4

]
,

where Γ is the circulation of the velocity in the external
flow about the ring. The applicability of Lord Kelvin’s
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result to a thin homogeneous ring was later confirmed
by Hicks [10, 14], who has also derived the formula for
the velocity of motion of a hollow vortex ring

V =
Γ

4πR

[
ln

8R

a
− 1

2

]
.

In 1970, three researchers independently published
their solutions for the velocity of motion of a vortex ring
with a small transverse cross-section and an arbitrary
distribution of vorticity in the vortex core. These were
Saffman [15], who, in order to find the solution, used the
theorems on the energy and momentum of the vortex,
as well as the transformation suggested by Lamb [10];
Fraenkel [16], who, by using the integral expression for
the stream function, found an asymptotic solution for
a nontwisted vortex ring; and Bliss [17], who obtained
the solution, by using the method of matching the
asymptotic expansions.

Fraenkel’s and Bliss’s solutions were derived in the
framework of asymptotic methods and can be extended
to include a higher order of the small parameter ε = a/R,
the ratio between the core and ring radii. Fraenkel [16]
showed that the error in the asymptotic formula for the
velocity of motion of an arbitrary ring turned out by
two orders higher in ε. Those two solutions give the
equivalent expressions for the ring velocity,

V =
Γ

4πR

[
ln

8R

a
+ A − 1

2

]
,

where the quantity A depends only on the vorticity
distribution shape in the vortex ring core. For a uniform
vorticity, A = 1/4, so that the final result for the ring
velocity coincides with that obtained by Lord Kelvin,
and the stream field in the vortex ring core can be
determined in the framework of either Fraenkel’s [16]
or Bliss’s [17] method.

An alternative method for the calculation of the
motion velocity of thin vortex rings is based on a
procedure proposed by Lamb [10]. Saffman [15] applied
Lamb’s method to describe vortex rings with an
inhomogeneous distribution of vorticity and a nonzero
twisting. In particular, he obtained the following formula
for the ring velocity:

V =
Γ

4πR

[
ln

8R

a
− 1

2
+ 2π2 a2υ2

ω

Γ2
− 4π2

a2υ2
ϕ

Γ2

]
.

Here, the bar above a quantity denotes the averaging
over the cross-section of the vortex thread core, and vω

and vϕ are the poloidal and twist velocities, respectively.
One can see that the twisting decelerates the motion of

the ring, and, if the former is large enough, the ring
motion direction can be changed.

Despite the availability of a plenty of articles devoted
to vortex rings, the interesting issue – from both
scientific and practical viewpoints – on their motion and
structure has not been studied till now. It concerns the
distribution of the density and the pressure in a moving
vortex ring and in its atmosphere. It should be noted
that all the results obtained for vortex rings by now are
based on the assumption that the medium density is
constant both in the ring and in its atmosphere. From
the mathematical point of view, such an assumption
substantially simplifies the vortex motion description,
but, at the same time, considerably restricts the class
of possible solutions. This work aims at studying the
existence and the motion of vortex rings, the density
and the pressure in which are spatially distributed.

2. Basic Equations

While considering a stationary motion in an
incompressible medium, the viscosity of which can be
neglected, the basic equations for the analysis are [1,10]

ρ (~υ ·∇) ~υ = −∇ p, (1)

div~υ = 0, (2)

~υ · ∇ρ = 0. (3)

It follows from these equations, that, among three
components of the velocity ~v that appear in the
equations of motion, only two are independent. The
third component can be obtained from Eq. (2). Equation
(3) determines the density of the medium. The pressure
in the medium is a passive function, determined by one of
the components of Eq. (1). The equation, which couples
the density and the pressure, can be omitted in this case,
because those quantities are determined independently
from Eqs. (1) and (3).

Let us rewrite Eqs. (1)—(3) in an arbitrary
orthogonal coordinate system

(
x1, x2, x3

)
, assuming

that the flow is axisymmetric, and the condition for the
axial symmetry of the motion looks like
∂

∂x3
= 0. (4)

From the condition of medium incompressibility (2),
it follows that the velocity field can be expressed in
terms of the stream function ψ

(
x1, x2

)
and the function

A
(
x1, x2

)
which describes the rate of twisting as

~υ =
[∇ψ × ~e 3

]
+

A
(
x1, x2

)
√

g
~e3, (5)
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where g = det gik is the determinant of the metric tensor.
For the further analysis, it is convenient to express

the Euler equation (1) as

ρ[~ω × ~υ] +∇ p∗ − ~υ2

2
∇ ρ = 0, (6)

where

~ω ≡ rot ~υ, p∗ ≡ p + ρ~υ2
/
2 (7)

The vorticity ~ω in Eq. (6) has the following components:

ω1 =
1√
g

∂υ3

∂x2
, ω2 = − 1√

g

∂υ3

∂x1
,

ω3 =
1√
g

∂υ2

∂x1
− 1√

g

∂υ1

∂x2
. (8)

As a consequence of Eqs. (3) and (6), we obtain

~υ · ∇p∗ = 0, (9)

It follows from Eqs. (3), (9), and the third covariant
component of Eq. (6) that the quantities p∗, ρ, and v3

have to be constant along the stream lines ψ = const,
i.e. to depend only on ψ:

p∗ = p∗ (ψ) , ρ = ρ (ψ) , υ3 = υ3 (ψ) . (10)

The first and second covariant projections of Eq. (6),
taking Eqs. (8) and (10) into account, yield the same
nonlinear equation

ρυ3 dυ3

dψ
+

ρ√
g

(
∂υ1

∂x2
− ∂υ2

∂x1

)
=

dp∗

dψ
− ~υ 2

2
dρ

dψ
, (11)

which, as is seen from Eq. (5), is the equation for finding
the function ψ.

Equations (3), (7), and (11) comprise the basis for the
further analysis of both the vortex and potential motions
of the medium.

In this Section, we will also obtain two results which
will be used below. In what follows, we will need the
stream function ψ̄ for a circular vortex thread with the
circulation Γ. Let this tread lie, in cylindrical coordinates
(x1 = R, x2 = z, x3 = ϕ), in the plane z = 0, so that its
center is located on the axis R = 0, and the radius of the
ring is equal to R0. In this case, the azimuthal vorticity
ωϕ is distinct from zero,

ωϕ (R, z) = Γδ (R−R0) δ (z) (12)

and satisfies the equation (see the third of Eqs. (8))

∆∗ψ̄ = −Rωϕ, ∆∗ψ̄ =
∂2ψ̄

∂R2
− 1

R

∂ψ̄

∂R2
+

∂2ψ̄

∂z2
. (13)

This equation can be integrated, and its solution, which
vanishes at infinity, looks like [2]

ψ̄ (R, z) =
1
4π

∫
Rωϕ (R′, z′)R′dR′dz′×

×
2π∫

0

cos θdθ
[
(z − z′)2 + R2 + R′2 − 2RR′ cos θ

]1/2
=

=
ΓRR0

4π

2π∫

0

cos θdθ

[R2 + z2 + R2
0 − 2RR0 cos θ]

1
2
. (14)

The integral obtained can be expressed in terms of
complete elliptic integrals of the first and second kinds.
Simple transformations of Eq. (14) (for more details, see,
e.g., works [2, 10]) lead to

ψ̄ =
Γ (RR0)

1/2

2π

[(
2
k
− k

)
K (k)− 2

k
E (k)

]
, (15)

where K (k) and E (k) are complete elliptic integrals of
the first and the second kind, respectively, and

k2 =
4RR0[

z2 + (R + R0)
2
] .

As the second result, we now demonstrate that the
density of the incompressible medium is constant in the
region of its potential flow (rot ~v = 0). In this case, the
pressure and the density are coupled, as follows from
Eq. (6), by the equation

∇p∗ =
υ2

2
∇ρ. (16)

Since dependences (10) remain valid in the region of
potential motion, Eq. (16) can be rewritten in the form

dp∗

dψ
=

υ2

2
dρ

dψ
.

The latter equation can be presented qualitatively as

F (ψ) = g
(
ψ, xi

)
f (ψ) ,

where F , f , and g are some arbitrary functions. Since the
functions F and f depend only on ψ, there is a unique
opportunity to satisfy this equation, namely, by putting

F (ψ) = 0, f (ψ) = 0,
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Fig. 1. Maxwell vortex

which, in physical variables, leads to the Cauchy—
Lagrange integral [1, 2, 10] with a constant density of
the medium

p + ρ
υ2

2
= const, ρ = const. (17)

Note that, in the region of the medium vortex flow,
Eq. (6) can be expressed in the form

F (ψ) + G
(
ψ, xi

)
= g

(
ψ, xi

)
f (ψ) ,

which obviously has solutions with the nonzero F and f
functions.

Thus, our problem concerning the motion of a vortex
torus is reduced to the study of the spatial distribution
of density in the vortex core and the spatial distributions
of velocity and pressure both in the vortex core and in
the potential flow region.

3. Interior Problem

Following Maxwell [1, 10], we assume that the vortex
ring looks like a torus (see Fig. 1). Consider that the
torus moves in an infinite surrounding incompressible
medium with velocity V which is governed by the
characteristic parameters of the torus (by its geometrical
dimensions and vorticity). Let us change over to a
quasicylindrical orthogonal coordinate system (x1 = r,
x2 = ω, x3 = ϕ) (see Fig. 2) which moves together
with the torus and is connected with the cylindrical
coordinates (R, z, ϕ) by the relations

R = R0 (1− kr cos ω) , z = r sin ω, ϕ = ϕ, k = 1/R0,

g11 = 1, g22 = r2, g33 = R2,
√

g = rR. (18)

Fig. 2. Quasicylindrical coordinates

In expressions (18), the torus radius, i.e. the distance
reckoned from the coordinate origin to the geometrical
center of the torus transverse cross-section, is denoted
as R0. In the limit r/R0 → 0, the torus transforms into
a vortex thread.

In the chosen coordinates, Eq. (11) reads

r
∂

∂r

(
r
∂ψ

∂r

)
+

∂2ψ

∂ω2
= kr sin ω

∂ψ

∂ω
− kr2 cos ω

∂ψ

∂r
+

+
r2

ρ

{
R2

(
dp∗

dψ
− ~υ2

⊥
2

dρ

dψ

)
− d

dψ

[
ρ
ν2

2

]}
(19)

and describes the motion of the vortex core. Here, the
following notations are used:

ν =
υϕ

R
= ν (ψ) , υ2

⊥ = υ2
r + υ2

ω,

υr =
1

rR

∂ψ

∂ω
, υω = − 1

R

∂ψ

∂r
, υϕ =

A (r)
r

. (20)

As the first approximation with respect to the small ratio
r/R0, the solution in the vortex is tried in the form

ψ = ψ0 (r) + f (r) cos ω, ~υ = ~υ0 + ~υ1 cos ω,

p = p0 (r) + p1 (r) cos ω, ρ = ρ0 (r) + ρ1 (r) cos ω. (21)

Substituting Eq. (21) into Eq. (19), we obtain the
zero-order approximation for the equation of dynamic
equilibrium of the liquid in the vortex core:

∂p0

∂r
= ρ0

υ2
ω0

r
, (22)

where

υω0 = − 1
R0

∂ψ0

∂r
.
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Equation (22) reflects the fact that a radial variation
in the pressure generates a force necessary for preserving
the motion of liquid elements along circular trajectories.
It also demonstrates that the pressure at the vortex
center is lower than that at some distance from the
center. This result is in agreement with experimental
data which testify that the vortices are characterized by
the appearance of rarefactions near their centers [2].

From Eq. (19), we find, as the first approximation,
that

υω0

r

∂

∂r

(
ρ0r

∂f

∂r

)
− f

r

∂

∂r

(
ρ0r

∂υω0

∂r

)
=

= 3ρ0 (υω0)
2 +

r∂

∂r

(
ρ0υω0

2
)

+
r∂

∂r

(
ρ0υ

2
ϕ0

)
. (23)

Noticing that the function f = vω0 (r) is a solution of
the homogeneous equation (23), we try the solution of
the inhomogeneous equation in the form

f = υω0g. (24)

From Eqs. (23) and (24), it follows that the function g
satisfies the equation

1
r

∂

∂r

[
rρ0υ

2
ω0

∂g

∂r

]
= 3ρ0 (υω0)

2 +

+r
∂

∂r

(
ρ0υ

2
ω0

)
+ r

∂

∂r

(
ρ0υ

2
ϕ0

)
.

The solution of this equation looks like

g (r) =

(
r2 − a2

)

2
+

r∫

a

dr′

r′ρ0υ2
ω0

r′∫

0

r′′ρ0υ
2
ω0dr′′+

+

r∫

a

dr′

r′ρ0υ2
ω0

r′∫

0

r′′2
d

dr′′
(
ρ0υ

2
ϕ0

)
dr′′. (25)

Hence, in the approximation concerned (r/R0 < 1), the
stream function ψ is determined for arbitrary spatial
distributions of the pressure and density in the vortex
region.

With the help of the function ψ, we find the following
quantities that describe a stationary flow of the liquid
in the vortex ring:

υr =
1

R0
(1 + kr cos ω)

∂ψ

∂ω
,

υω = υ0
ω0

(r) +
[
υ0

ω0
(r) kr − 1

R0

∂

∂r

(
υ0

ω0
· g)]

cosω,

υϕ =
A (r)

r
,

p = p0(r)−
[
ρ0υ

02
ω0

R0

(
r +

g

r
− ∂g

∂r

)
+ ρ0υ

02
ϕ0

r

R0

]
cosω,

ρ = ρ0 (r)− g

R0

∂ρ0

∂r
cosω. (26)

Here, the function g(r) is determined by expression (25).
To describe the internal structure of the vortex,

it is convenient to change from the variable r, which
describes a family of circles r = const, to the variable
l, which describes a family of stream lines ψ = const.
Expanding the stream function (21) into a series

ψ = ψ0 (l) +
∂ψ0

∂r

∣∣∣∣
r=l

(r − l) + f (l) cos ω

and setting ψ = ψ0 (l) = const, we obtain

r − l = −f (l) cos ω

∂ψ0
∂r

∣∣∣
r=l

=
g (l)
R0

cos ω = ξ cos ω. (27)

Equation (27) coincides with the equation of a circle of
radius l, the center of which is shifted by ξ = g/R0 (in
Fig. 2, the positive displacements are directed towards
the symmetry axis, i.e. to the left of the point R = R0).
Hence, Eq. (27) describes a family of nested circular
stream lines, and the displacement is absent at the end
of the pinch, i.e. ξ (l = a) = 0.

The straightforward calculations easily demonstrate
that, in coordinates (l, ω, ϕ), the physical quantities in
the toroidal pinch look like

υl = 0, υω = υω0 (l)
[
1 +

(
kl − ∂ξ

∂l

)
cosω

]
,

υϕ = υϕ0 (l) (1 + kl cos ω) , ρ = ρ (l) ,

p = p0 (l)+
[
ρ (l) υ2

ω0

(
∂ξ

∂l
− kl

)
− ρ (l) υ2

ϕ0kl

]
cos ω(28)

and completely describe the internal configuration of the
vortex torus. The displacement ξ in Eq. (28) is expressed
as (see Eqs. (25) and (27))

ξ (l) =

(
l2 − a2

)

2R0
+

l∫

a

dr′

r′R0ρυ2
ω0

r′∫

0

r′′ρυ2
ω0dr′′+

+

l∫

a

dr′

r′R0ρυ2
ω0

r′∫

0

r′′2
d

dr′′
(
ρυ2

ϕ0

)
dr′′. (29)
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From the last equation, it is evident that ξ (l) < 0,
i.e. the surfaces of constant velocity move to the right
(outwards) of the geometrical center of the vortex.

In particular, if a “homogeneous” vortex without
twisting is analyzed (vω0 = Γl/(2πa2), vϕ0 = 0, and
ρ = const), Eq. (29) transform into Fraenkel’s result [16]

ξ (l) =
5
8

(
l2 − a2

)

R0
. (30)

From Eq. (30), it follows that the surfaces of constant
velocity (stream lines) possess the internal structure,
which is exhibited in Fig. 3. In this case, the maximal
displacement of the centers of the surfaces of constant
velocity

ξ (0) = −5
8

a2

R0

is expectedly shifted to the right from the center of the
geometrical transverse cross-section of the torus.

4. Exterior Problem

In this section, we consider the potential flow of
the medium around the vortex torus, which moves
oppositely to the z-axis direction with velocity V .
The examined problem is completely equivalent to the
problem on the flow of a stream about an immovable
torus, provided that the velocity of the stream equals
V at infinity and the circulation velocity equals Γ at
the torus surface. It is this flow in the medium that is
observed in a coordinate system that moves together
with the torus. Therefore, in order to describe the
external potential flow, we also use the quasicylindrical
coordinate system (18) linked with the torus, as it was
done in the previous Section.

Asn it was shown in Section 2, the potential flow
outside the vortex ring is described by the equations

rot~υ = 0 (31)

and

p +
ρυ2

2
= const, ρ = const. (32)

Equations (8) and (31) make it possible to obtain the
following equation for the stream function:

r
∂

∂r

(
r
∂ψ

∂r

)
+

∂2ψ

∂ω2
= kr sin ω

∂ψ

∂ω
− kr2 cosω

∂ψ

∂r
. (33)

Fig. 3. Flow lines inside the vortex ring

Using the smallness of the quantity r/R0, it is easy to
verify that the general expression for the solution of
Eq. (33) reads

ψ = A +
(

Br +
C

r

)
cos ω + D

(
ln r − r

2R0
ln r cos ω

)
+

+
1

R0

(
Er +

F

r

)
cosω, (34)

where A, B, C, D, E, and F are unknown arbitrary
constants. Their values are found on the basis of the
following considerations, often used in hydrodynamics.
We try the required stream function as a sum of three
functions: a homogeneous straight flow ψ1, a vortical
circular thread ψ2, and the unknown flow function ψ3:

ψ = ψ1 + ψ2 + ψ3. (35)

In the absence of the vortex ring, Eq. (33) would
describe a stationary homogeneous liquid flow with
velocity V along the z-axis direction. The function ψ1,
which describes such a flow, can be written down in
cylindrical coordinates in form

ψ1 = −1
2
V R2.

Taking relation (18) between the cylindrical and
quasicylindrical coordinates into account, the function
ψ1 in the vicinity of the torus can be rewritten in
quasicylindrical coordinates as follows:

ψ1 = −1
2
V R2

0 (1− 2kr cosω) . (36)

It is obvious from Eq. (34) that, to within the accuracy
of the terms proportional to (kr)2, function (36) is the
solution of Eq. (33).

The function ψ2 (r, ω) for a circular vortex thread is
given in Section 2 (see Eq. (15)). In the vicinity of the
vortex ring, where R ≈ R0, z ≈ 0, k ≈

√
1− ε2/4, and
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k′ =
√

1− k2 ≈ ε/2 (ε = r/R0), and the asymptotic
expressions for elliptic integrals look like

K = ln
4
k′

+
1
4

(
ln

4
k′
− 1

)
k′2 + ...,

E = 1 +
1
2

(
ln

4
k′
− 1

)
k′2 + ...,

Equation (15) yields

ψ2 =
ΓR0

2π

[
ln

8R0

r
− 2− 1

2

(
ln

8R0

r
− 1

)
r

R0
cosω

]
.

(37)

It is evident that function (37), within the accuracy
considered, is also the solution of Eq. (28).

At last, while solving the boundary-value problem
concerning the flow about a thin vortex ring, the flow
function is to be completed with a dipole-induced term
ψ3 proportional to cos ω and becoming zero at infinity:

ψ3 =
C

R0r
cos ω. (38)

Since this term is absent from Eqs. (36) and (37),
the constant C is therefore to be determined from the
matching condition at the torus surface.

From Eqs. (34)—(38), we obtain that the solution of
Eq. (33) looks like

ψ = −1
2
V R2

0

(
1− 2r

R0
cos ω

)
+

ΓR0

2π

[
ln

8R0

r
− 2−

−1
2

(
ln

8R0

r
− 1

)
r

R0
cos ω

]
+

C

R0r
cosω. (39)

With the help of Eq. (39), we find that

υr = −
[
V +

C

R2
0
r2
− Γ

4πR0

(
ln

8R0

r
− 1

)]
sin ω,

υω =
Γ

2πr

[
1 +

r

2R
0

(
1− ln

r

a

)
cosω+

+
2πrC

ΓR2
0

(
1
a2

+
1
r2

)
cosω

]
. (40)

From the condition that the flow function is constant
at the torus surface, i.e. ψ (a) = const, we find the
expression for the vortex motion velocity:

V =
Γ

4πR0

(
ln

8R0

a
− 1

)
− C

R2
0
a2

. (41)

As stems from Eqs. (40) and (41), the radial component
of the velocity becomes zero at the torus surface.

The condition that the poloidal components (26) and
(40) of the velocity are continuous at the torus surface
gives rise to the equalities

Γ = 2πaυω0 (a) ,

C =
Γa2R0

4π

(
1
2
− 1

a

∂g

∂r

∣∣∣∣
r=a

)
. (42)

Substituting the expression for g into Eq. (42), we obtain

C = − Γa2R0

4π

[
1
2

+ ∆
]

, (43)

where

∆ =
1

ρ (a) υ2
ω0 (a) a2

×

×



a∫

0

r′ρυ2
ω0dr′ +

a∫

0

r′2
d

dr′
(
ρυ2

ϕ0

)
dr′


 . (44)

Making use of Eqs. (41) and (43), we find the final
expression for the velocity of the vortex ring V ,

V =
Γ

4πR0

[
ln

8R0

a
− 1

2
+ ∆

]
, (45)

which can be also expressed in the form

V = υω0 (a)
a

2R0

[
ln

8R0

a
− 1

2
+ ∆

]
.

As follows from the last expression, the ring velocity
tends to zero in the limiting case R0 À a.

In the case of a “hollow vortex” (vω0 = vϕ0 = 0,
ωϕ0 = 0, and ∆ = 0), Eq. (45) gives the result of
Hicks [10,14]

V =
Γ

4πR0

[
ln

8R0

a
− 1

2

]
.

But if the vortex is “homogeneous” (vω0 = Γr/(2πa2),
vϕ0 = 0, ωϕ0 = Γ/(πa2), ρ = const, and ∆ = 1/4), we
get Lord Kelvin’s result [12]

V =
Γ

4πR0

[
ln

8R0

a
− 1

4

]
.

If ρ = const and vϕ0 = 0, Eq. (45) leads to Fraenkel’s
result [16], while, if ρ = const, to Saffman’s one [15].
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Fig. 4. Density distribution inside and near the vortex ring Fig. 5. Pressure distribution inside and near the vortex ring

Hence, solution (45) is a generalization of Saffman’s [15]
and Fraenkel’s [16] solutions to the case of arbitrary
dependences ρ = ρ (r), p0 = p0 (r), v0

ω0 = v0
ω0 (r), and

v0
ϕ0 = v0

ϕ0 (r).
Combining Eqs. (40), (42), and (45), we obtain that

the field of velocities around the torus is described by
the expressions

υr =
Γ

4πR0

{
ln

a

r
−

(
1
2

+ ∆
)(

1− a2

r2

)}
sin ω,

υω =
Γ

2πr

{
1 +

r

2R0

[
1− ln

r

a
−

−
(

1
2

+ ∆
)(

1 +
a2

r2

)]
cosω

}
,

υϕ = 0. (46)

From Eq. (32), it follows that the density of and the
pressure in the external flow of the medium can be
expressed in the form

ρ = ρ(a) = const,

p = p0(r) + p1(r) cos ω = p0(r)−

−ρ (a) υ2
ω0 (r)

2
r

R0

[
1− ln

r

a
−

(
1
2

+ ∆
)(

1 +
a2

r2

)]
cosω,

(47)

where

p0 (r) = p0 (a) +
ρ (a) υ2

ω0 (a)
2

(
1− a2

r2

)
,

υω0 (r) = υω0 (a)
a

r
.

Taking into account that (see Eqs. (29) and (44))

∂ξ

∂l

∣∣∣∣
l=a

= ka + ∆

and

υϕ0 (l = a) = 0,

we obtain from Eqs. (28), (46), and (47) that all physical
quantities are continuous at r = a, so that the vortex
under consideration is “smooth” [1]. The distributions of
the density and the pressure in and near the vortex ring
are shown in Figs. 4 and 5, respectively.

5. Vortex Atmosphere

The region of potential flow of the liquid, which is
entrained by the vortex ring and is called the “vortex
atmosphere”, presents some interest for the vortex ring
dynamics [1, 2]. In the reference frame which moves
together with the torus, the non-whirling portion of the
liquid entrained by the vortex ring is concentrated in
a volume which is bounded by the stream surface that
contains the external stagnant points located outside the
ring’s “body”. It is known [1, 2] that, depending on the
ring characteristics, there exists one or two such points.
In the latter case, the points are located on the ring axis,
where the liquid flow velocity exceeds that of the ring
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a b

Fig. 6. Sketches of stream lines in the cases of thin (a) and thick (b) vortex rings

motion, and the transverse cross-section of the captured
region of the non-whirling liquid has the shape of a closed
oval. In the former case, the single stagnant point is
located between the ring’s “body” and its axis, and the
region of the non-whirling liquid entrained by the ring
has the shape of a ring. Qualitatively, the atmosphere of
the vortex is depicted in Fig. 6. The vortex ring region in
the figure is more shadowed than the vortex atmosphere.
It is known [1] that vortices are not realized in the form
of toroidal rings; therefore, only the vortex ring exhibited
in Fig. 6,b is of practical interest.

The reconstruction of the flow structure occurs at
a certain radius of the transverse cross-section of the
ring, which can be estimated by substituting a circular
vortex thread for the vortex ring and applying formula
(15). Using the relations

dK

dk
=

E

k(1− k2)
− K

k
,

dE

dk
=

E

k
− K

k

between the elliptic integrals, we obtain from Eq. (15)
that

υr =
Γ

2πR

z
[
(R + R0)

2 + z2
]1/2

×

×
[
−K (k) +

R2 + R2
0 + z2

(R−R0)
2 + z2

E (k)

]
,

υz =
Γ

2πR

z
[
(R + R0)

2 + z2
]1/2

×

×
[
K (k) +

R2
0 −R2 − z2

(R−R0)
2 + z2

E (k)

]
, υϕ = 0. (48)

On the symmetry axis, the flow velocities are

υr = 0, υz = ΓR2
0/2

(
z2 + R2

0

) 3
2 . (49)

Then, the coordinates ±z0 of the stagnant points in the
coordinate system, which moves together with the ring,
are determined from the equation

ΓR2
0

2 (z2
0 + R2

0)
3
2

=
Γ

4πR0

(
ln

8R0

a
− 1

2
+ ∆

)
(50)

and depend on the distributions of density and pressure
in the vortex core.

For a homogeneous vortex, Eq. (50) is solvable in
the intervals of the parameters 1 < R0/a ≤ 86 and
−14 < z/a ≤ 14; the corresponding solutions are shown
in Fig. 7. Provided such values of the ratio R0/a, the
medium at the center of the ring and the ring itself
move together. The figure illustrates that the vortex
atmosphere is confined in space, being close by its
shape to an ellipse. In the case R0/a > 86, the vortex
atmosphere has the shape of a torus and is exhibited in
Fig. 6,a.
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Fig. 7. Positions of stagnant points for a thick vortex as a function
of the ratio R/a value

6. Conclusions

In this work, the following results have been obtained:
— The velocity of a vortex ring was shown to depend on
the distribution of density in the vortex core.
— Expression (45) for the velocity of the vortex ring in
an incompressible medium was obtained. This expression
generalizes the solutions which have been obtained
earlier [15–17] to the case of distributed density and
pressure.
— Expressions for the velocity, density, and pressure
were derived, for both the flow of the medium inside the
ring (expressions (28) and (29)) and the external flow
near the ring (expressions (46) and (47)).
— Equation (50), which describes the vortex atmosphere,
was obtained and used to analyze its shape. The
atmosphere shape was demonstrated to depend on the
density distribution in the vortex core.

1. M.A. Lavrent’ev and B.V. Shabat, Problems in
Hydrodynamics and Their Mathematical Models (Nauka,
Moscow, 1973) [in Russian].

2. G.K. Batchelor, An Introduction to Fluid Dynamics
(Cambridge Univ. Press, Cambridge, 1967).

3. W. Thomson (Lord Kelvin), Philos. Mag. 34, 15 (1867).

4. A.T. Onufriev, Prikladn. Matem. Teor. Fiz. N 2, 3 (1967).

5. E. Teller and A.L. Latter, Our Nuclear Future: Facts,
Dangers, and Opportunities (Criterion Books, New York,
1958).

6. E.I. Mogilevskii, Fractals on the Sun (Fizmatgiz, Moscow,
2001) [in Russian].

7. Yu.P. Ladikov-Roev, A.A. Linnik, N.N. Salnikov, and
O.K. Cheremnykh, Kosmich. Nauka Tekhnol. 10, 131 (2004).

8. M.-B. Kallenrode, Space Physics: An Introduction to Plasmas
and Particles in the Heliosphere and Magnetospheres
(Springer, Berlin, 2004).

9. P.G. Saffman, Vortex Dynamics (Cambridge Univ. Press,
Cambridge, 1992).

10. H. Lamb, Hydrodynamics (Cambridge Univ. Press,
Cambridge, 1932).

11. M.J.M. Hill, Phil. Trans. R. Soc. A 185, 213 (1894).

12. W. Thomson (Lord Kelvin), Philos. Mag. 33, 511 (1867).

13. H. Helmholtz, Philos. Mag. 33, 485 (1867).

14. W.M. Hicks, Phil. Trans. Roy. Soc. London A 176, 725 (1885).

15. P.G. Saffman, Stud. Appl. Math. 49, 371 (1970).

16. L.E. Fraenkel, Proc. Roy. Soc. A 316, 29 (1970).

17. D.B. Bliss, MS thesis (Massachusetts Inst. Technol,
Cambridge, 1970).

Received 13.04.06.
Translated from Russian by O.I. Voitenko

ПРО РУХ ВИХРОВИХ КIЛЕЦЬ У НЕСТИСЛИВОМУ
СЕРЕДОВИЩI

О.К. Черемних

Р е з ю м е

Розглянуто стацiонарний рух осесиметричного вихрового кiль-
ця у нестисливому середовищi, в якому швидкiсть ~υ i густина
ρ задовольняють рiвняння div~υ = 0, ~υ · ∇ρ = 0. Друге рiвнян-
ня дозволяє розглядати рух вихрового кiльця з розподiленою
в просторi густиною. Показано, що густина нестисливого се-
редовища може бути неоднорiдною тiльки в областi вихрового
руху i є постiйною величиною в областi потенцiального руху. З
урахуванням цiєї обставини встановлено, що швидкiсть кiльця
i форма його атмосфери визначаються не тiльки геометрични-
ми розмiрами вихрового ядра i величиною циркуляцiї швидко-
стi але й просторовим розподiлом густини у ядрi вихора.
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