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The influence of an external uniform electric field on the electron
subsystem of a semi-bounded metal in the “jellium” model is
investigated. It is discovered that the applied field results in
a change of the effective interelectron interaction even in the
direction normal to the field. The influence of the intensity of the
external electric field on the electron density of a semi-bounded
metal is studied.

Due to the intensive experimental investigations of
surfaces by means of scanning tunneling microscopy,
scanning tunneling spectroscopy, field-ion microscopy,
and their modifications [1-4], the problem of
investigating the electron density of a metal under the
action of an external electric field takes on the special
actuality.

Solving these and many other problems of condensed
systems, one widely uses the density functional theory
(DFT). The DFT allows one to calculate, to a high
accuracy, the characteristics of the ground state of
a system which are determined by the behavior of
the electron density. Historically, the DFT was first
developed for the description of complex atoms and
molecules and afterwards adopted for the description of
electron liquids with strong nonuniformity. However, all
the approximations of exchange-correlation effects that
should be considered in order to construct an effective
one-particle potential generally use the local density
approximation (LDA) based on the results obtained for a
uniform electron liquid. Due to this fact, the DFT-LDA
doesn’t allow one to obtain the proper behavior of the
one-electron potential far from the metal surface [5] or
to correctly describe the phenomena conditioned by Van
der Waals forces [6]. These effects are many-particle and
can’t be taken into account in DFT.

The cycle of works [7-11] deals with the development
of a technique that takes into comnsideration many-
particle effects when investigating the electron structure
of a semi-bounded metal described in the framework
of the “jellium” model. In these papers, the dominant
problem lies in the choice of a one-particle surface
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potential that should, on the one hand, adequately
describe the real electric field acting on electrons and,
on the other, be simple enough for analytically solving
the corresponding Schrédinger equation. As a rule, one
chooses such a potential in the form of an infinitely high
potential wall, a rectangular barrier of finite height [12],
or a linear potential [13-16]. The given paper is devoted
to the investigation of the semi-bounded metal (“jellium”
model) subjected to an external uniform electric field
applied along the normal to the metal surface. As real
characteristic physical fields are not weak, they can’t be
considered small disturbances; instead, it is necessary
to take them into account along with the spatial
nonuniformity in the Hamiltonian of non-interacting
electrons.

In order to calculate the electron density distribution
in the presence of a uniform external electric field, let’s
use a linear potential as a model surface one. In this case,
after the external field is turned on, the electron appears
to be under the action of the potential

Vi(z) = ;—mkoz 0(z) + ;—mklz 0(z), (1)

where i = h/(27), h is the Planck constant, and m is
the electron mass. The first term represents the surface
potential without external electric field (the parameter
ko is chosen by using the condition of the minimal surface
energy of the semi-bounded “jellium” without external
field), while the second term is the potential of the
external electric field. Moreover, the coefficient k1 can be
both positive and negative depending on the direction of
the applied electric field with the intensity %kl, where
—e is the electron charge.

The solutions of the Schrédinger equation

n* d2
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are the following wave functions and energy values:

2
—sin(az +74), 2 <0,

VL

Palz)=
2 sin fya

\FAl( k2/3

h2a?
2m

Ail kY32 — a—Q z>0
) k2/3 ’

B, =

Here, o is the quantum number that satisfies the
equation
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Ai(x) is the Airy function,
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and the range of variation of the normal coordinate z
lies in the interval [—L/2, +00), moreover, L — oo.

In order to calculate the electron density, we use the
expression obtained in papers [7,8,10] for n(z) in the case
of low temperatures (Su > 1, where (3 is the reciprocal
thermodynamic temperature, p is the chemical potential
of the semi-bounded “jellium”):

(qlz, 2 }

no(z) exp { z 3

Here, S denotes the area of the metal surface, (S — 00),

q = (¢o: ), Quy = %m%y, Mg,y = 0,£1,£2,..,
9(qlz,z) stands for the effective potential of the
interelectron interaction g(g|z, z) with no regard for self-
action. The prime near the summation sign indicates the

absence of the term with q = 0,

n €N,

(5)

= ko + k1, (6)

Yo = arctg

(7)

no( =3 Z lpal2)[? 6 ( (p* +a?)) (8)
is the electron density in the ideal exchange
approximation, p denotes the two-dimensional

momentum of an electron in the division plane (the
motion of an electron in parallel to the division plane is
described by plane waves), pp = \/2my1/h? is the Fermi
momentum, and

foz) = 5, m0(2)- (9)

The effective potential of the interelectron
interaction g¢(g|z1,22) represents the solution of the
integral equation

9(qlz1, 22) = v(qlz1 — 22)+

400 +oo

v / dz / d2'v(gl — 2)M(al2, 2)glal#', 22), (10)

where

1kz+1k z

mek ke (d, — ik’ (11)

M(qlz,2")

My 1 (q, —q))o
stands for the two-particle correlation function “density-
density” in the ideal exchange approximation in the case
of low temperatures; k = Qfﬂn, n=0,2£1,£2 ..., px(q)
is the mixed Fourier transform of the local electron
density,

—q) = *(Tpr(a)pw( (12)

pr(@) = > (ale”™*|a')al,(p)a, (P — @), (13)
+oo
(a...|a) = /dz 05 (2) . pal2),

al (p), a,(p) denote the operators of creation and
annihilation of an electron in the (p,a) state,
correspondingly; moreover, the standard commutation
relations are satisfied:

{a’ozl (p1)7al¢2 (pQ)} = 6131713250417042' (14)

In order to solve the integral equation (10), let’s use
the approach proposed in papers [7,9-11], which allows
one to find the analytical solution g(g|z1, z2) with regard
for the electron scattering in the division plane [17]. As
a result, we obtain
at z1, 29 <0,

9(qlz1, 22) = 2675762 |:e—Q1|21—zz\+%6Q1(z1+22)}, (15)

1

at 21, 22 = 07

(q|21722) |: _Qzlzl_zz‘—(21%826_@2(,214-22)}, (16)
at z1 <0, 22 >0,
g(q|z1,z2) = 47"6;2 tezl_QQZQ, (17)
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at z1 = 07 z2 < 07
(d] ) 4me?
g\qiz1,22) =
Q1+ Q2

where srp denotes the
screening radius;
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Thomas—Fermi reciprocal
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is the Lindhard function, pg is the Fermi momentum,
ap is the Bohr radius,

Q1 = \/q2 e (L(52) +A@).
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In Fig. 1, we present the results of calculations of the
effective potential of the interelectron interaction,

1 .
g(r7 21, Z2) = g Zelqrg(Q‘Zl, ZQ)a
q

as a function of the distance r between the electrons
in the division plane in the presence of an external
electric field (dashed curve) and without it (solid curve)
at rs = 2 (rg is the Wigner—Seitz radius in units of the
Bohr radius ap).

The given picture indicates that the electric field
normal to the division plane results in the strengthening
(Fig. 1,a,b) or weakening (Fig. 1,c) of the effective
repulsion between electrons even in the direction normal
to the field. The strengthening of repulsion takes place
for electrons being inside the region with a positive
charge and the weakening — for those being out of
it. This testifies to the fact that two-particle effects
are important and should be taken into account when
calculating the variation of the electron density n(z)
conditioned by the application of an external electric
field.

Knowing the electron density (7), one can find the
electrostatic potential ¢(z) that represents the solution
of the Poisson equation

0(2) = p(—00) + 4dme [ dZ' (2" — 2) (n(z') — n+(z’)), (19)
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Fig. 1. Effective potential of the interelectron interaction as a
function of the distance between electrons in the division plane for
the following coordinates of electrons normal to the division plane:
z1 = z2 = —10ap (a), z1 = 22 = —lap (b), and 21 = 220 = lap
(¢). The solid curve corresponds to the case of the absence of an
external field, the dashed curve — the external uniform electric

field with an intensity of 40 V/nm is applied
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Fig. 2. Electron density distributions in the absence of an external
electric field (solid curve) and in the presence of the external field
of various intensities Eg, V/nm: 10 (dashed curve), 20 (dots), 30
(dash dot), 40 (dash dot dot). The positive charge is located at
2 <0.16ap
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Fig. 3. The same as in Fig.2 for the distribution of the electric field

intensity

where n4 (2) = npukd(—d — 2), d > 0, npux = 3/(4mrd).
The parameter d can be found in the self-consistent way
from the electroneutrality condition

400
/dz(n(z) —n(z)) = 0.

The intensity of the electric field will have the form

d z

E(z) = - i(z) =dre /dz' (n(z’) - n+(z')). (20)
z

Figure 2 presents the result of numerical calculations

of the electron density for the surface potentials (1) at

rg = 2. As one can see from the figure, the switching-on

of the external uniform electric field results in a shift of
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Fig. 4. Distribution of the electric field intensity AE(z) =
E(z,Eo) — E(z, Eo = 0). The notations are the same as in Fig.3.
The solid curve with dots presents the data from papers [18-21]
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Fig. 5. The same as in Fig.3 for the electrostatic potential

distribution.

the electron density inside the metal and an increase of
the potential barrier, so that it becomes more difficult
for an electron to leave the metal. Figures 3 and 4 depict
the results of calculations of the electric field intensity
according to (20) and the distribution of the difference
of the electric field intensity AF(z) in the presence of
an external electric field and without it. Figure 5 shows
the distribution of the electrostatic potential near the
metal surface. In Fig. 4, we present our results together
with the data from papers [18-21] obtained by means of
DFT. The comparison of the results demonstrates that,
in our calculations, a more rapid increase of the electric
field intensity E(z) is observed, and its rise depends
on the applied external electric field Fy; in the region
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~ 0.5 A near the “jellium” surface, the intensity F(z)
increases by a factor of 1.5-4 depending on the applied
field.
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JOCJIAXKEHHA BILVIMBY 30BHIIIHBOI'O
EJIEKTPUYHOI'O I10JIS1 HA EJIEKTPOHHY
I'VCTHUHY HAIIIBOBMEXKEHOTI'O METAJTY

II.11. Kocmpobit, B.M. Mapkxosuy
Pezmowme

JHocmimKyeTbcsi BIUIUB 30BHIIIHBOIO OJTHOPIHOIO €JIEKTPUIHOIO
[IOJIsT Ha €JIEKTPOHHY IiJACHCTEMY HAIiBOOMEXKEHOI'O0 METAJLy B MO-
neni ‘“xkesie”. BusiBjieHo, 110 IPUKJIaJIEHE I10JI€ CIIPUYUHIOE 3MiHY
eEeKTUBHOI Mi*KeJIEKTPOHHOI B3a€MOZil HaBITh B IEPIEHAUKYJISIP-
HOMY JI0 IIOJIsi HaUPSAMKY. JlOC/Ii/[zKeHO BIJIMB HAIIPY?KEHOCTi 30B-
HIIITHBOTO €JIEKTPUYHOTO IOJIsl HA eJIEKTPOHHY I'YCTHUHY HaliBOOMe-
2KEHOTI'0 MeTaJly.
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