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A model for the calculation of the frequency and temperature
dependences of the complex dielectric permittivity (DP) of
water within a wide frequency range f = 0.03 ÷ 3 THz
(λ = 0.1 ÷ 10.0 mm) has been proposed. It reproduces the
smooth transition from the Debye mechanism of polarization
to the resonance one and ensures a good agreement (with an
accuracy of not worse than 5%) between the experimental and
theoretical data.

1. Introduction

Water, being the most widespread compound on the
Earth and a universal solvent, plays an exclusive
role in natural processes, especially in biological ones.
The study of its properties, including dielectric ones,
was always preferential. But it happened historically
that, owing to various technical reasons, experimental
researches in the submillimeter (SubMM) wave range
were carried on with an appreciable delay, and this
circumstance constrained the development of theoretical
models. The state of affairs improved within last
decades, which assisted to a more intense application
of SubMM waves in dielectric spectroscopy, biology,
and other branches of science and technology [1]. As a
result, there emerged the interest in studying the simple,
convenient, and, at the same time, rather exact – with
respect to experimental data — models for calculating
the complex DP of water in a wide temperature interval
from −10 to +70 ◦C and for the frequency range from
0.03 to 3 THz (λ = 0.1 ÷ 10 mm). In this work, we
propose the model that makes allowance for the main
dispersion features of the water DP in the indicated
frequency range. It should be noted that the model is
iterational and empirical by its character; therefore, in

no case can it be substituted for the results obtained
in the framework of the fundamental approach, which
has been developed for last years (see, e.g., work [2]). At
the same time, our model, owing to its simplicity and,
at present time, a higher accuracy of calculations of the
complex DP of water in this frequency range, may serve
as a convenient supplement to more fundamental ones.

2. General Characterization of the Dispersion
of Water Dielectric Permittivity in the
Frequency Range of 0.03 ÷ 3 THz

The contemporary experimental data concerning the
spectral behavior of the water DP evidence for a
smooth dependence of its normal dispersion in the
SubMM frequency range without any features (note
that the appearance of a weak line near ν̃ ≈ 60 cm−1

in the dispersion spectrum of water was reported in
work [3]; nevertheless, this fact was not confirmed
by other researchers). At the same time, the spectral
peculiarities do exist outside the SubMM range, and
they influence the frequency dependence of dielectric
polarization in it. Thus, on its low-frequency side (in
the microwave range), the frequency interval borders
upon an intense band of Debye relaxation polarization,
with a characteristic maximum located at about ωmax =
1/τD, where τD is the temperature-dependent relaxation
time (for water, τD ≈ 10 ps, which corresponds
to λmax = 1.8 cm at 20 ◦C). The frequency and
temperature dependences of the water DP in the RF
and microwave ranges are known to be best described by
the Debye equations [4]. For polar substances with the
continuous spectrum of relaxation times, the modified
Debye equations — Cole—Cole [5] and Cole—Davidson
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[6] ones — can be used, depending on either a symmetric
or nonsymmetric distribution in time, respectively. But
at higher frequencies in the SubMM range, the Debye
equations become invalid [4], although the action of
the underlying mechanism of relaxation polarization
does not stop immediately. As the frequency increases
in the SubMM range from 0.3 to 0.6 ÷ 0.7 THz, the
contribution of the relaxation polarization gradually falls
down, introducing a substantial temperature dependence
of the water DP, which is characteristic of the Debye
mechanism. For the further frequency increase up to
3 THz (this value confines the SubMM frequency range
from above), one should expect that the temperature
dependence would inevitably become weaker, because
the energy of an electromagnetic (EM) field quantum
considerably exceeds here the energy of molecular
thermal motion. At frequencies ν > 3 THz (ν̃ =
ν/c = 1/λ > 100 cm−1) the general behavior of the
dielectric permittivity dispersion in the far infra-red
(IR) range is governed by a number of overlapping
bands of the enhanced dielectric polarization. They
are associated with another, distinct from Debye,
type of intermolecular (translational) vibrations [7],
which are considerably more dynamic than the former
(τres ≈ 10−2τD), are less dependent on temperature,
and interact with an external EM field in a resonance
manner. These bands of the resonance polarization
are so-called Poley lines [8] and possess characteristic
maxima at about 62, 17, and 6 µm. The first of them,
being nearest to the SubMM range, exerts the most
pronounced influence on the polarization in its upper
section. But, in its midst, the contribution of the 62-
µm line to final polarization decreases (because it is a
line of the resonance type), and only the distant wing of
this line adds together with the aforementioned Debye
component, thus forming the experimentally observable
dispersion of the water DP. The 17-µm Poley line
is caused by the so-called intermolecular librational
vibrations [7]; although being more powerful, it is located
farther from the SubMM range and, hence, does not
contribute markedly to the DP dispersion.

Such ideas concerning the features and sources of
the total polarization in the SubMM frequency range
allowed us to develop a model for the calculation of
the frequency and temperature dependences of the water
DP. But before we begin its description, let us analyze
the analytical dependences, which are most suitable
for the description of the resonance line shape. One
variant can be found in the works of adherents of the
biexponential model (the so-called Double Debye Model
[9, 10]). These researchers suggest to apply the Debye

expression twice, i.e. not only for the description of
the proper Debye component in the expression for the
total polarization with the relevant value of τD in the
second term, which is natural, but also for the resonance
component in the third term (with a much shorter value
of τres, of course):

ε∗Σ = ε∞ +
εst − ε2

1 + jωτD
+

ε2 − ε∞
1 + jωτres

.

Really, proper values of the constants in the third
term, which are determined from experimental data,
make it possible to reproduce the general trend of the
dispersion in this frequency range rather successively
[10]. Nevertheless, we believe that, from the physical
point of view, it is absolutely inexpedient to extend the
validity region of the Debye expression, which earlier
was always regarded as belonging to the strictly non-
resonance type, onto the resonance range. In this case,
eligible may be the application of the Fröhlich’s [4]
or Lorentz’s [11, 12] analytical expressions which were
specially designed for using in resonance ranges, in the
latter term. In both those cases, as was shown in work
[12] and will be shown below (on the basis of work
[4]), the application of the resonance line shape factors
also helps to reproduce the dispersion dependence in
this range well enough, with this procedure being more
substantiated. Concerning biexponential models, as well
as n-exponential ones, we consider them pertinent too
in the range of orientational (Debye) polarization and
necessary in relevant cases (polar substances with several
relaxation times or their mixtures). Such an example,
where the analytical expression with five exponents was
used to describe the frequency dependence of the DP of
biological tissues, can be found in work [13].

Taking the aforesaid into account, we made our
choice in favor of the results of the Fröhlich’s
careful studies of resonance polarization [4], and,
correspondingly, his equations (13.10) and (13.11) from
work [4] for ε′res and ε′′res, respectively (below, these
dependences are quoted in formulas (2)—(4)).

3. Description of the Calculation Model

In the SubMM frequency range, as was pointed out
above, a transition from the Debye to resonance
polarization takes place, so it is these components that
must be taken into account by the calculation model. It
will be enough for the adequate reproduction of the total
polarization (ε′Σ and ε′′Σ). A variant of the equations,
which sum the specified components up, was proposed
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earlier in work [14] and looks like

ε′Σ = ε′res +
εst − ε′res

1 + (λS/λ)2
,

ε′′Σ = ε′′res +
εst − ε′′res

1 + (λS/λ)2
(λS/λ). (1)

In this case, the classical Debye equations remain
valid, but the constant ε∞ in them acquires now, in
the SubMM frequency range, a specific physical sense,
being coupled with the resonance polarization which is
described mathematically by the Fröhlich’s equations

ε′res = 1, 7 +
∆ε

2

[1 + ω0(ω + ω0)τ2
res

1 + (ω + ω0)2τ2
res

+

+
1− ω0(ω − ω0)τ2

res

1 + (ω − ω0)2τ2
res

]
, (2)

ε′′res =
∆ε

2

[ ωτres

1 + (ω + ω0)2τ2
res

+
ωτres

1 + (ω − ω0)2τ2
res

]
.

Formulas (1)—(2) contain both the usual constants of
the known Debye equations (εst is the static DP; ε∞
is the DP value at the upper frequency limit of the
Debye equation validity range (as a rule, at 300 GHz,
where ε∞ = 4.8); and λS = 2πcτD is the relaxation
wavelength) and the parameters associated with the
resonance mechanism of polarization (ω0 is the resonance
frequency; τres is the relaxation time of resonance
vibrations, which is coupled with λres by the relation
λres = 2πcτres; εopt = 1.7 is the DP value at the optical
range edge; and ∆ε = ε∞ − εopt = 4.8 − 1.7 = 3.1 is
the interval of the DP variation within the resonance
frequency range). The frequency ω0 is connected with
the frequency ωmax and the amplitude ε′′max of the
maximum in the absorption spectrum by the following
relations established by Fröhlich [4],

ε′′max =
∆ε

2
ωmaxτres,

ωmax =
1

τres

√
1 + (ω0τres)2, (3)

which supplement Eqs. (2).
Equations (1) must satisfy the following boundary

conditions:
— at frequencies lower than the middle of the millimeter
(MM) range, εres comes closer to the standard values

ε∞ = 4.9÷ 5.5, and Eqs. (1) transform into the classical
Debye ones which are to be used in the microwave range;
— in the high-frequency region of the SubMM range, i.e.
at the boundary with the far IR range, where the Debye
polarization mechanism is impertinent, the second terms
in Eqs. (1) disappear, and Eqs. (1) transform into
Eqs. (2).

In this work, a particular condition is imposed on
Eqs. (2) which can be used, strictly speaking, only in
a rather narrow resonance interval. For formulas (1)
to be eligible, the scope of the validity of Eqs. (2) is
extended to the middle of the SubMM range, i.e. up
to its matching with the Debye polarization range. For
this purpose, we artificially introduce the frequency-
dependent factors q′ and q′′. In order to simplify the
calculations, we passed to the relative quantities – the
frequency β = ν̃/ν̃0 = ω/ω0 and the relaxation time
M = ω0τres — in Eqs. (2). We recall that the calculation
was carried out making use of Eqs. (3) for λmax = 62 µm
and ε′′max = 1.76. Therefore, Eqs. (2) read

ε′res = 1, 7 +
∆ε

2

[ 1 + (1 + β)M2

1 + (1 + β)2M2
+

+
1 + (1− β)M2

1 + (1− β)2M2

]
q′, (4)

ε′′res =
∆ε

2

[ βM

1 + (1 + β)2M2
+

βM

1 + (1− β)2M2

]
q′′,

where

q′ = 0.5371β +
0.8853

2.0346β + 0.6210

and

q′′ =
M(1 + β)

β

[
0.3773 + 0.4036(0.4036β + 1)×

×
(β − 0.6934

β + 0.6934

)2]
.

The advantage of the chosen variant of the summation of
the aforementioned components in the framework of the
model developed consists in that the form of Eqs. (1)
can be preserved untouched in a very wide frequency
range: almost from RF range up to IR one (practically,
to frequencies where the next Poley line becomes active).
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Fig. 1. Experimental data for the complex dielectric permittivity
of water in the frequency range 0.03 ÷ 3 THz at 25 ◦C and the
corresponding averaged curves

Fig. 2. Temperature dependences of ε′ and ε′′ for water at a
wavelength of 337 µm; the data were taken from works [15] (solid
circles) and [40] (hollow circles)

Such an approach to the development of a calculation
model, but in a more simplified form, was proposed
earlier in work [14]. The sufficient accuracy was not
achieved at that time, mainly owing to the fact that
the then available experimental data for the SubMM
frequency range (see, e.g., works [15, 16]) had lower
accuracy in comparison with that already achieved in
the MM range [17–23]. Nevertheless, for the lack of
other calculation opportunities, the equation given in
work [14] came into use while predicting the influence
of rain droplets on the SubMM radiation propagating
through the rain [24], while studying clouds [25], and in
other works. That variant of the calculation model was
presented most completely in [25,26].

Since then, new experimental data have been
accumulated in both the MM [27—39] and SubMM
[10, 40—50] frequency ranges; in the latter case, to
a large extent, owing to the implementation of the
Fourier-spectroscopy method and the application of
femtosecond laser pulses. The results of measurements
from all cited experimental works are summarized in
Fig. 1. The careful analysis and the generalization of
those data evidence for their good coincidence, although
they have been obtained by various authors working in
various countries and at various laboratories. It allows
one to talk about the validity and reliability of the
averaged empirical dependences plotted in this figure
and about the eligibility of their application as the
reference ones while developing the calculation model.

For this purpose, at the first stage, the constants
in Eq. (3) were determined more accurately; at the
second stage, the accuracy of the reproduction of the
averaged frequency dependences shown in Fig. 1 was
increased by introducing the factors q′ and q′′. The
optimal values of those quantities were found using a
computer code which selected them iteratively following
the criterion of minimal root-mean-square deviation
(RMSD) of calculated values from experimental ones
in the whole SubMM range; the theoretical formulas
of Fröhlich (2) were subjected to a minimal correction
also.

At the last stage, one more normalization to modern
experimental data was made in Eqs. (1) and (2) for the
temperature dependence of water DP in the SubMM
range, which confirmed that here the dependence is
really weaker than that in the MM range. For this
purpose, using the results of measurements in the
temperature interval from 0 to +70 ◦C and at the
wavelength of 337 µm [15, 40], in the temperature
interval from −2 to +94 ◦C and in the frequency
range 0.1 ÷ 2 THz [10], and in the temperature
interval from −5.6 to +81.4 ◦C [46], the theoretical
temperature dependences were fitted to experimental
ones by choosing iteratively the parameter M =
ω0τres(t), which enters into Eqs. (4); the fitting was
carried out first for a wavelength of 337 µm (see Fig. 2)
and then in the whole SubMM range.
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a b

Fig. 3. Final calculated dependences of the complex DP ε∗ (a) and the complex refractive index m∗ =
√

ε∗ = n+ik (b) of water on the
frequency at various temperatures 0, 10, 25, and 40 ◦C (from bottom to top)

The resulting optimal temperature dependence
τres(t), where t is measured in centigrade degrees, looks
like

τres(t, ◦C) = 6.4423 · 10−14 + 2.9144 · 10−18t.

In the course of calculations, the temperature
dependence of the conventional Debye parameters εst

and λS was calculated by the formulas [52]

εst(t, ◦C) = 0.00081t2 − 0.40885t + 88.2;

λS(t, ◦C) = 1.4662e−0.0634t + 0.000136t2−

−0.027296t + 1.8735116.

In a wider temperature interval, the frequency
dependences of the water DP and its refractive index
m∗ = (ε∗)1/2 = n+ik in the MM and SubMM frequency
ranges are given in Figs. 3,a and b which can be
recommended for practical use.

As was said above, the temperature dependence of
the real part of the complex DP of water in the SubMM
range is weak (for example, at a wavelength of 337 µm,
the tangent of its slope angle falls within the interval
0.002 ÷ 0.003 [10, 15, 40]) and close to linear; it is also

true for the nearest section of the MM range. This
gives a convenient practical opportunity to calculate the
required quantities at one temperature using their values
at another one, with the help of equations of the type

ε′Σ(t2) = ε′Σ(t1) + k′t(t2 − t1),

ε′′Σ(t2) = ε′′Σ(t1) + k′′t (t2 − t1). (5)

The plots of the frequency dependences of the
temperature factors k′ and k′′ in the MM and SubMM
ranges, useful for practical application, are depicted in
Fig. 4. In the MM range, they transform into the well-
approbated Debye dependences. On the right-hand side
of the frequency interval, two features should be pointed
out in their behavior. First, according to the results
of qualitative measurements [10, 46], these factors are
minimal in the frequency interval 110 ÷ 180 cm−1, i.e.
just where ε′′ is maximal, and the value of k′ changes
its sign (eventually, it becomes negative, as it is in
optics). Secondly, the coefficients k′ and k′′ also become
close to the optical ones by magnitude. These agree
with the results of measurements [52] carried out at a
wavelength of 25 µm (400 cm−1), i.e. near the optical
range, k′ = 0.0018 and k′′ = 0.0022.

Figure 4 was used to recalculate the numerous
experimental data of the aforementioned authors to a
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Fig. 4. Calculated frequency dependences of the temperature
coefficients k′ and k′′ in Eqs. (5). For comparison, the
approximations of the experimental data from works [10] (dotted)
and [46] (dashed curves), as well as the results of measurements
from works [15,40] (asterisks), are plotted

unified temperature. It can be recommended for the
application in all similar cases.

4. Conclusions

A model for the calculation of the complex dielectric
permittivity of water in the frequency range 0.03÷3 THz
and a wide temperature interval from −10 to +70 ◦C
has been proposed. It is based on the idea that the
frequency dependence of the dielectric permittivity of
water in this range is affected by the bands of the
enhanced dielectric polarization which are located near
to this range, namely, the known Debye relaxation
band on the microwave-range side and a number of
resonance polarization bands (primarily, by the 62-µm
Poley line, which is nearest to the SubMM range) on
the far-IR-range side; the phenomenon of resonance
polarization was considered by Fröhlich in the general

case. The model proposed provides the coincidence
between the calculated frequency and temperature
dependences of the water dielectric permittivity and the
corresponding experimental data to be not worse than
4–5%.
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МОДЕЛЬ ДIЕЛЕКТРИЧНОЇ ПРОНИКНОСТI ВОДИ
У МIКРОХВИЛЬОВОМУ ТА ТЕРАГЕРЦОВОМУ
ДIАПАЗОНАХ ХВИЛЬ

Ю.I. Малишенко, В.Л. Костiна, О.М. Роєнко

Р е з ю м е

Запропоновано розрахункову модель для обчислення частот-
ної та температурної залежностей дiелектричної проникностi
води у широкому частотному дiапазонi f = 0, 03 ÷ 3 TГц
(λ = 10, 0 ÷ 0, 1 мм), яка вiдтворює плавний перехiд вiд де-
баївського механiзму поляризацiї до резонансного та забезпе-
чує збiг з експериментальними даними з похибкою в межах 5%.
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