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In the framework of the S-matrix approach, the influence of the
electric dipole polarizability of colliding particles upon the low-
energy nucleosynthesis cross-section is estimated. It is shown that
the relative contribution of the polarization effects to the reaction
cross-section does not exceed the quantity of the order of 0.1%.

1. Introduction

When considering the low-energy scattering of like-
charged structural particles, it is important to take
correctly into account the effects of the electric
dipole polarizability of the colliding particles. The
corresponding polarization potential falls off at large
distances as r−4, which results in a substantial distortion
of the scattering wave function at large distances and
also in the divergence [1,2] of the parameters of the
standard effective range theory [3,4]. To describe the
low-energy scattering of charged structural particles, it
is necessary to make use of the modified effective range
theory [1, 5—7] which defines the nuclear phase shift
with respect to the phase shift from the Coulomb and
polarization long-range potentials. The scattering length
and the effective range obtained in such an approach
[5—8] are very close to the relevant quantities of the
nuclear-Coulomb problem.

The account of the polarization effects in low-
energy nucleosynthesis reactions needs a particularly
accurate approach. In works [7,9—11], by means of the
calculation of the corresponding matrix elements, the
possibility to increase the astrophysical nucleosynthesis
reaction cross-sections due to the long-range dipole
polarization attraction was examined. It was established
that the relative contribution of the polarization
corrections to the nucleosynthesis reaction cross-section
is characterized by a magnitude of the polarization
potential at the boundary of the nuclear force
range and does not exceed a value of the order
of 10−3. The result is in excellent agreement with
the calculations [12,13] and with the estimation in

the framework of the quasiclassical approximation
approach [8].

On the other hand, the estimation [14] of the upper
bound to the polarization effects in the reactions of the
deuteron-nucleus synthesis gave the result ∼ 10−8 that
is 5 orders less than our conclusion [7,9—11].

We will show that the S-matrix approach with
a due account of all relevant contributions from the
polarization potential also leads to the result consistent
with the conclusions in [7—13].

2. Reaction cross-section

In the framework of the S-matrix formalism, the
integral cross-section (summed over all final states) of
the reaction involving two colliding particles can be
expressed in terms of the diagonal matrix element of
the scattering S-matrix which also determines the elastic
scattering cross-section.

For the S-wave collision dominating at low energies,
the corresponding formula takes the form [15]

σr =
π

k2
(1− |S|2). (1)

The diagonal matrix element in Eq. (1),

S = e2iδ, (2)

is expressed in terms of the scattering phase shift δ ≡
δ(k) which depends on the relative motion energy

E = ~2k2/(2µ), (3)

where k is the wave number, and µ is the reduced mass
of the two particles.

When the phase shift is real, only the elastic
scattering takes place. For the complex phase shift

δ = δ′ + iδ′′, (4)

we have |S| < 1, and the inelastic processes are present
in the system. In this case, the reaction cross-section (1)
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is expressed in terms of the imaginary part of the phase
shift:

σr =
π

k2
(1− e−4δ′′). (5)

For small values of the phase shift, Eq. (5) can be
approximated with a good accuracy by the expression

σr ' 4π

k2
δ′′, |δ′′| ¿ 1. (6)

Let us find the expression for the modulus of the
diagonal S-matrix element (2) in terms of the real and
imaginary parts of a tangent of the complex scattering
phase shift (4). Using the relation

e2iδ =
1 + itgδ

1− itgδ

and (4), we get

∣∣e2iδ
∣∣2 =

(
1− τ ′′

1 + τ ′′

)2
[
1 +

(
τ ′

1− τ ′′

)2
]
×

×
[
1 +

(
τ ′

1 + τ ′′

)2
]−1

, (7)

where we used the definition

τ ≡ τ(k) ≡ tgδ(k), τ = τ ′ + iτ ′′.

The substitution of relation (7) into Eq. (1) gives
a more complex expression for the cross-section as
compared with Eq. (5). But, at small values of the
tangent of the phase shift, the right-hand side of Eq.
(7) is simplified to the form

∣∣e2iδ
∣∣2 ' 1− 4τ ′′ + O(|τ |2), |τ | ¿ 1, (8)

which allows us to express cross-section (1) in terms of
the imaginary part of the tangent of the phase shift τ ′′:

σr ' 4π

k2
τ ′′ + O(|τ |2), |τ | ¿ 1. (9)

Since, at small values of the phase shift, the
approximation

tgδ ' δ, |δ| ¿ 1,

holds, the obtained relation (9) coincides, in this case,
with (6) expressing the cross-section in terms of the
imaginary part of the phase shift.

3. Nuclear-Coulomb Problem

Let us consider the S-wave collision of two like-charged
structural particlesZ1e and Z2e with the relative motion
energy (3) and an effective interaction in the form of a
sum of the nuclear VN and Coulomb VC potentials,

VNC = VN + VC.

In this case, the nuclear phase shift δN,C(k) modified
(renormalized) by the Coulomb field is normally used
[3,4] in order to describe the effects of interactions
in the system. This phase shift is defined as the
difference between the total phase shift δNC(k)due to
the scattering by the nuclear+Coulomb potential and
the true Coulomb phase shift δC(k):

δN,C(k) = δNC(k)− δC(k). (10)

The low-energy behavior of the phase shift δN,C(k)
is defined by the well-known expansion in the effective
range theory [3,4] which looks as

− 1
aN,C(k)

+
2
aB

h(η) = − 1
AN,C

+
rN,C

2
k2 + O(k4). (11)

The function

aN,C(k) ≡ − tgδN,C(k)
C2k

(12)

in (11) is the generalized (energy-dependent) Fermi
scattering length [16] which transforms at the threshold
energies into the constant, the scattering length AN,C.
The denominator of relation (12) contains the Coulomb
barrier penetration factor

C2 ≡ C2(η) = 2πη(e2πη − 1)−1 (13)

which depends on the Sommerfeld parameter

η =
1

kaB
. (14)

Here, the quantity

aB =
~2

µe2Z1Z2
(15)

is the Bohr radius of the system. At low energies, k ¿ 1
(η À 1 due to (14)), and the Coulomb penetration factor
(13) decreases exponentially as

C2(η) ' 2πηe−2πη, η À 1. (16)

The function h(η) on the left-hand side of Eq. (11)
is defined in terms of the digamma function ψ(z) [17],

h(η) = Reψ(iη)− ln η,
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and decreases at small energies ( k ¿ 1, η = (kaB)−1 À
1 ) as the inverse power of η:

h(η) ' 1
12η2

(
1 +

1
10η4

)
, η À 1. (17)

For the short-range nuclear potentials, the left-hand
side of Eq. (11) is a meromorphic function of the energy
and can be expanded in terms of the energy with
the parameters AN,C (the modified nuclear scattering
length) and rN,C (the modified effective range).

Employing Eqs. (11) and (17), it is easy to establish
the low-energy behavior of the modified generalized
nuclear scattering length,

aN,C(k) = AN,C

[
1−AN,C

(aB

6
− rN,C

2

)
k2 + O(k4)

]
,

(18)

that gives at the threshold energy

aN,C(k = 0) = AN,C.

According to Eq. (12), the tangent of the modified
nuclear phase shift can be expressed in terms of the
corresponding generalized scattering length as

tgδN,C(k) = −C2kaN,C(k). (19)

As a result of relations (16) and (18), the tangent of the
modified nuclear phase shift at low energies is a very
small exponentially decreasing quantity:

tgδN,C(k) ' −2π

aB
e−2πηAN,C, η À 1. (20)

4. Allowance for the Polarization Interaction

Let us now consider the S-wave collision of the two
charged particles with the effective interaction

VNPC = VN + VC + VP ,

which includes the polarization potential

VP (r) = −β2

r4
Θ(r −R), β2 =

αE

aB
(21)

in addition to the nuclear VN and Coulomb VC

potentials. Potential (21) describes the additional long-
range attraction in the system caused by the electric
dipole polarizability of the structural particles. In Eq.
(21), Θ(x) is the step function, and R is the radius
which separates the nuclear VN (r)Θ(R − r) and dipole

polarization VP (r) parts in the effective two-particle
interaction. The strength of potential (21) is defined by
the ratio of the effective polarizability of the system,

αE ≡ α(1)
Z2

Z1
+ α(2)

Z1

Z2
,

to its Bohr radius aB (15), α(i), i = 1, 2, are the electric
dipole polarizabilities of the particles. For the nuclear
systems, the estimation

β2 . 10−2 Fm2

holds [1]. Therefore, the polarization potential VP (21)
by its intensity is a small correction to the repulsive
Coulomb potential

VC(r) =
2

aBr
.

It has been shown in [1] that the modified polarization
phase shift δP,C decreases at low energies by the power
law:

tgδP,C(k) ∼ k5, k ¿ 1. (22)

Let us represent the Coulomb-modified nuclear-
polarization phase shift δNP,C as a sum of the modified
nuclear phase shift δN,C and the polarization phase shift
δP,NC reckoned from the total phase shift of the nuclear-
Coulomb problem, δNC (10):

δNP,C = δN,C + δP,NC. (23)

Employing Eq. (23) and calculating the phase shift
δP,NC in the Born approximation for the potential VP

1,
we get an explicit expression for the tangent of the
modified nuclear-polarization phase shift:

τB
NP,C =

τB
P,C +

[
1 + ε(k) + τ2

N,C

]
τN,C

1−
[
τB
P,C − (1− ε(k))τN,C

]
τN,C

. (24)

In Eq. (24), τB
NP,C and τB

P,C are the Born approximations
for the corresponding functions, and the quantity

ε(k) = 2b(k)− d(k)aN,C(k) (25)

is expressed in terms of the modified generalized nuclear
scattering length aN,C(k) and the matrix elements
of the polarization potential VP between the regular

1According to [18, 19], the phase shift δP,C in the energy range 1÷ 103 keV is reproduced by the Born approximation for VP with
the accuracy ∼ 0.01%.
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F (k, r) and irregular G(k, r) solutions of the Schrödinger
equations for the Coulomb scattering as

b(k) = −1
k

∞∫

R

FVP Gdr, d(k) = −
∞∫

R

VP (CG)2dr. (26)

Deriving Eq. (24), we used the following Born
approximation for the tangent of the phase shift δP,NC:

(tgδP,NC(k))B ' −cos2 δN,C(k)
k

∞∫

R

VP (r)u2
NC(k, r)dr.

Here, the regular solution of the Schrödinger equation
for the nuclear-Coulomb problem uNC(k, r) in the
integration region is expressed directly in terms of the
Coulomb functions F (k, r) and G(k, r):

uN,C(k, r) =
r≥R

F (k, r) + tgδN,CG(k, r).

It has been shown in [9—11] that the function b(k) is
bounded uniformly in k as

|b(k)| .
√

π

2
M, (27)

where the parameter M takes on small values

M ≡ R2|VP (R)| = β2

R2
∼ 10−3. (28)

In addition, the function d(k) (26) at low energies (E .
100 keV) is also bounded by a small value,

d(k) . 11
aB

M. (29)

Using Eq. (25) and taking bounds (27)—(29) and the
low-energy behavior of the modified generalized nuclear
scattering length aN,C(k) (18) into account, we obtain a
bound to the function ε(k) in the form

|ε(k)| . O(10−3). (30)

Relation (24) allows us to find the energy dependence
of the modified nuclear-polarization phase shift of the
S-wave scattering of charged particles. The right-hand
side of Eq. (24) contains separately the tangents of the
modified nuclear and polarization phase shifts τN,C and
τP,C. At low energies, they decrease according to Eqs.
(20) and (22) and are very small values. Therefore, we
can restrict ourselves by keeping only the terms linear
in τN,C and τB

P,C in Eq. (24), which leads to

τB
NP,C ' τB

P,C + [1 + ε(k)]τN,C. (31)

Considering Eq. (31) and taking constraint (30) to ε(k)
into account, we can conclude that the tangent of the
modified nuclear-polarization phase shift τNP,C is also
a small value. In this case, the use of approximation
(8) is justified and, because of Eq. (9), the effect of the
dipole polarization upon the low-energy reaction cross-
section can be evaluated by a deviation of the ratio of
the imaginary parts of the tangents of the corresponding
phase shifts (4)

σr
NP,C

σr
N,C

' τ ′′NP,C

τ ′′N,C

(32)

from 1. Representing the complex quantities aN,C, τN,C,
and τB

NP,C in Eqs. (31) and (25) as

z = z′ + iz′′,

we find the following expression for the imaginary part
of the function τB

NP,C:

τ ′′BNP,C '
{
1 + 2

[
b(k)− d(k)a′N,C(k)

]}
τ ′′N,C. (33)

Substituting expression (33) in the right-hand side of
Eq. (32), we obtain the required estimation for the
polarization effects:
σr

NP,C

σr
N,C

' 1 + 2
[
b(k)− d(k)a′N,C(k)

]
. (34)

The second term in Eq. (34) is just the quantity
that determines a relative contribution of the dipole
polarization of the particles to the reaction cross-section.
With regard for Eq. (18) and the bounds to the functions
b(k) (27), (28) and d(k) (29), (28), this contribution does
not exceed a value of the order of 10−3:
σr

NP,C

σr
N,C

= 1 + O(10−3). (35)

The obtained result (35) is in agreement with the
conclusions of works [7, 9—11] and is also supported
by the numerical calculations of the pp→ de+ν [12]
and 7Be(p,γ)8B [13] reactions, as well as by the
quasiclassical estimation in [8]. Alternatively in [14],
the upper bound to the polarization contribution to
the reaction cross-section ∼ 10−8, which is 5 orders
smaller as compared with Eq. (35), has been obtained.
Our analysis reveals that such large underestimation of
the polarization effects in [14] is a consequence of using
the insufficiently correct approximation for the modified
nuclear-polarization phase shift δNP,C (Eq. (4) in [14]).
It differs substantially from our expression for τB

NP,C

(24) mainly by the absence of the term ε(k)τN,C in a
numerator, which gives finally just the main polarization
contribution to the reaction cross-section.
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5. Conclusion

We have shown that the application of the S-matrix
formalism to the evaluation of the effect of the electric
dipole polarizability of colliding particles on the low-
energy nucleosynthesis reaction cross-section leads to
result (35) that agrees with those in works [7—13] based
on the other approaches. It is established that the large
underestimation of the polarization contribution in [14]
is a consequence of using the incorrect approximation
for the modified nuclear-polarization phase shift δNP,C.

In general, the polarization effects in the low-energy
nucleosynthesis play a very insignificant role and do
not exceed a value of the order of 0.1%. The physical
reason for this is that the reactions concerned are
realized in a small region of the configuration space,
where the polarization potential (21) represents a small
correction to the nuclear and Coulomb interactions. The
value of the polarization potential at the boundary of
the nuclear force range just determines the parameter
M ∼ 10−3 (28) which characterizes the magnitude
of the polarization contributions to the low-energy
nucleosynthesis.
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РОЗРАХУНОК ПОЛЯРИЗАЦIЙНОГО ВНЕСКУ В ПЕРЕРIЗ
РЕАКЦIЇ СИНТЕЗУ ЯДЕР В РАМКАХ S-МАТРИЧНОГО
ФОРМАЛIЗМУ

В.П. Левашев

Р е з ю м е

В рамках S-матричного формалiзму проведено оцiнку впливу
електричної дiпольної поляризовностi частинок, що стикають-
ся, на перерiз реакцiй синтезу ядер за низьких енергiй. Пока-
зано, що вiдносний внесок поляризацiйних ефектiв в перерiз
реакцiй за порядком величини не перевищує 0,1%.
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