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A graphitic sheet (graphene), which is characterized in the
long-wave approximation by a linear spectrum of quasiparticle
excitations, represents a unique example of a really two-
dimensional “relativistic” electron system. This system can
manifest rather unusual properties in the presence of topological
defects. We have demonstrated that a disclination that rolls
up the graphitic sheet into a nanocone can be described by a
pseudomagnetic vortex, the flux of which is related to the deficit
angle of the cone. Analytic expressions for both the density of
states and a charge of the ground state of some graphitic nanocones
have been obtained.

1. Introduction

The experimental and theoretical researches of carbon
nanostructures become more and more urgent owing to
their possible implications in novel technologies. The
recent synthesis of rigorously two-dimensional atomic
crystals of carbon (a single-layered graphite film –
graphene) [1] promises a plenty of new interesting
effects. This discovery provides an opportunity to
replace silicon microcircuits by carbon nano-sized ones,
which allows graphite films to be regarded as a more
perspective material – in comparison with carbon
nanotubes – from the viewpoint of its applications in
electronics [2–5]. On the basis of graphene, the first
transistors not thicker than an atom and not longer than
50 atoms have already been fabricated.

Graphene is a complex crystal lattice consisting
of regular hexagons with carbon atoms in their
vertices. The rhombic elementary cell of such a
crystal contains two atoms. A characteristic feature of
electron quasiparticle excitations in graphene is a linear
isotropic dispersion relation between the energy and the
momentum in the vicinity of the Fermi points, where the
valence and conduction bands come in touch with each
other. As a result, the low-energy electron excitations are
described by the massless Dirac–Weyl equation, where
the role of the speed of light is played by the Fermi
velocity of about 106 m/s [6, 7]. The availability of four
components of the fermionic field in this approach stems

from the presence of two sublattices in the crystal and
two nonequivalent Fermi points.

Topological defects in graphene are various
disclinations which result in the convolution of the
graphite sheets into cones. Three-dimensional conical
spaces have been known for rather a long time, and the
first among physicists who paid attention to them and
pointed out their interesting properties was M. Fierz
(unpublished; see a footnote in work [8]). Detailed
researches of the physical properties of conical spaces
were carried out by L. Marder [9]. The interest in
such spaces became considerably enhanced when it
had been found that they are associated with cosmic
strings – linear topological defects that arise owing
to phase transitions with the spontaneous violation
of continuous symmetries at the early stages of the
Universe evolution [10, 11]. Cosmic strings can play a
certain role in the formation of a large-scale Universe
structure and serve as gravitational lenses which
generate the double images of astrophysical objects.
The scattering of classical and quantum-mechanical
particles in the field of a cosmic string was studied in
works [12–16] (see also work [17]). In the general case,
the cosmic string is characterized by two parameters,
namely, the flux of magnetic vortex, which corresponds
to the violated gauge symmetry, and the deficit angle,
which is connected with the linear mass of the string.
The possible values of the deficit angle for cosmic
strings are confined by a rather small value of the
order of (10−4 ÷ 10−3)◦. On the contrary, the deficit
angle for two-dimensional graphitic nanocones can
acquire both positive and negative values which are
multiples of 60◦. We shall demonstrate that the graphitic
nanocone, as well as the cosmic string, is characterized
by an additional parameter, which, however, is not
independent; it is the flux of pseudo-magnetic vortex,
which acquires discrete values related to the values of
deficit angle.

In this work, we use the theory of vacuum
polarization by singular external fields [18–21] in order to
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calculate the charge of the ground state of some graphitic
nanocones.

2. Continuous Model for Low-energy Electron
Excitations

The crystal lattice of a graphite sheet is made up of two
sublattices ΛA and ΛB . The elementary cell is rhombic
and contains two atoms of carbon, which are located
from each other at the distance d equal to one third of
the large diagonal of the elementary cell. Three of four
electrons of the external shell of carbon atom hybridize
to form three σ-orbitals directed along the atomic bonds
with three nearest atoms, while the fourth electron forms
a π-orbital, which is orthogonal to the lattice plane and
is responsible for the conductive properties of graphene.
Three radius-vectors, which are directed from an atom in
one sublattice towards three nearest neighbor ones that
belong to the other sublattice, are chosen in the form

ΛA → ΛB : u1 = (−d, 0), u2 =
(

1
2d,

√
3

2 d
)

,

u3 =
(

1
2d,−

√
3

2 d
)

,

ΛB → ΛA : v1 = (d, 0), v2 =
(
− 1

2d,−
√

3
2 d

)
,

v3 =
(
− 1

2d,
√

3
2 d

)
.

(1)

The motions of a conduction electron over the
crystal lattice, which occur by electron hopping with
the amplitude t onto the next atoms, are described by
a Hamiltonian in the approximation of tightly bound
electrons

H = −t
∑

i∈ΛA

3∑

j=1

a†(ri)b(ri + uj)−

−t
∑

i∈ΛB

3∑

j=1

b†(ri)a(ri + vj), (2)

where the operators of creation a†(ri) (b†(ri)) and
annihilation a(ri) (b(ri)), which are relevant to
the sublattice ΛA(ΛB), satisfy the anticommutation
relations

[a(ri), a†(ri′)]+ = [b(ri), b†(ri′)]+ = δii′ .

Using the notation

|Ψ〉 = CA

∑

i′∈ΛA

eikri′a†(ri′)|0〉+ CB

∑

i′∈ΛB

eikri′ b†(ri′)|0〉

for the eigenstate of Hamiltonian (2) and taking the
relation

H|Ψ〉 = −t

3∑

j=1

eikuj CB

∑

i′∈ΛA

eikri′a†(ri′)|0〉 −

−t

3∑

j=1

eikvj CA

∑

i′∈ΛB

eikri′ b†(ri′)|0〉

into account, the equation for eigenvalues, H|Ψ〉 =
E|Ψ〉, can be reduced to the form




0 −t
3∑

j=1

eikuj

−t
3∑

j=1

eikvj 0




(
CA

CB

)
=

= E

(
CA

CB

)
, (3)

the corresponding eigenvalues are

E = ±t

√√√√
3∑

j=1

eikuj

3∑

j′=1

eikvj′ =

=±t

√√√√1+4 cos

(√
3

2
kyd

)[
cos

(
3
2
kxd

)
+cos

(√
3

2
kyd

)]
.

(4)

As is evident from expression (4), the one-particle energy
spectrum of the graphite sheet in the approximation
of tightly bound electrons consists of two surfaces
(corresponding to Ek > 0 and Ek < 0), which touch
at six conical points

kx = 0, ky = ±4π(3
√

3d)−1,

kx = ±2π(3d)−1, ky = ±2π(3
√

3d)−1;
(5)

so that the Fermi level becomes degenerate into six
points. The first Brillouin zone in the momentum space
is a regular hexagon, the vertices of which coincide
with the corresponding Fermi points, only two of which
are nonequivalent; in particular, two mutually opposite
points can be chosen as such.

Near the Fermi level, the one-electron spectrum of
the graphite sheet is linear. Therefore, it is convenient to
consider long-wave – or low-energy – electron excitations
by passing to the continuous limit (d → 0) in the
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vicinity of nonequivalent Fermi points. Choosing the
pair of nonequivalent points K± =

(
0,±4π

(
3
√

3d
)−1

)
,

we obtain – in the continuous limit – the one-particle
Hamiltonian in the linear approximation with respect to
k−K±:

H± = lim
d→0

d−1

( 0 −t
3∑

j=1

eikuj

−t
3∑

j=1

eikvj 0

)∣∣∣∣∣
k=K±+κ

=

=
3
2
t

(
0 iκx ± κy

−iκx ± κy 0

)
=

= ~v(−σ2κx ± σ1κy), (6)

where v = 3
2 t~−1 is the Fermi velocity, and σ1 and

σ2 are the off-diagonal Pauli matrices. Combining the
contributions from K+ and K− and carrying out the
Fourier transformation κ → −i∂, we obtain

H = −i~v(α1∂x + α2∂y), (7)

where

α1 = −
(

σ2 0
0 σ2

)
, α2 =

(
σ1 0
0 −σ1

)
. (8)

Hamiltonian (7) acts on the four-component wave
function

ψ = (ψA+, ψB+, ψA−, ψB−)T
, (9)

where the subscripts A and B correspond to two
sublattices, while the subscripts + and − to two
nonequivalent Fermi points. Hence, the electronic
processes in graphene are effectively described in
the low-energy approximation in the framework of
the continuous model which is based on the Dirac–
Weyl equation for zero-mass electrons in the (2 + 1)-
dimensional space-time, where the speed of light c is
replaced by a corresponding Fermi velocity v ≈ c/300
[6, 7].

In the graphite sheet plane, the rotation by an angle
ϑ is carried out by the operator exp(iϑΣ), where

Σ =
1
2i

α1α2 =
1
2

(
σ3 0
0 −σ3

)
(10)

is the pseudo-spin, which plays the role of the operator
of the spin component that is orthogonal to the sheet
plane. The crystal lattice of graphene is invariant with
respect to a rotation by 360◦, i.e.

exp(i2πΣ)ψ = −ψ, (11)

but non-invariant with respect to a rotation by 180◦,
exp(iπΣ)ψ = 2iΣψ, i.e. at the replacement (x →
−x, y → −y). The symmetry of graphite sheet
allows the rotation by 180◦ to be appended by a
simultaneous mutual exchange of two sublattices and
two nonequivalent Fermi points. Such a combined
transformation,

(
ψA+(x, y), ψB+(x, y), ψA−(x, y), ψB−(x, y)

)T

→ i

(
ψB−(−x,−y), ψA−(−x,−y), ψB+(−x,−y), ψA+(−x,−y)

)T

leaves the lattice unchanged and can be considered as
a parity transformation for graphene. Let us choose a
representation of the Clifford algebra, where the γ5-
matrix is diagonal:

γ0 =
(

0 σ1

σ1 0

)
, γ3 = −i

(
0 σ2

σ2 0

)
,

γ5 =
( −I 0

0 I

)
, (12)

where γ5 = iα1α2α3 and γk = γ0αk. Then, the parity
transformation for graphene is carried out by means of
the operator iγ0:

iγ0 (ψA+, ψB+, ψA−, ψB−)T =

= i (ψB−, ψA−, ψB+, ψA+)T
. (13)

3. Graphitic Nanocones

Topological defects in graphene are disclinations in
its hexagonal lattice, when some of hexagons become
substituted by pentagons or heptagons; with the
graphite film surface becoming deformed at that. In the
general case, a hexagon is replaced by a polygon with
6 − Nd vertices, where Nd is an integer less than 6.
Polygons with Nd > 0 (Nd < 0) induce a film curvature,
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Fig. 1. Creation of a conical surface: one, two, or three 60◦-sectors
are removed from the graphite lattice

Fig. 2. Creation of a graphitic nanocone by removal of a 60◦-sector:
atoms belonging to different sublattices are identified (a with a′,
b with b′, c with c′, etc.)

which is locally positive (negative), while the graphite
film remains flat far from the defect – in the same
manner as a conical surface is flat far from its vertex.
In the case of nanocones with positive Nd, the value
of the latter represents the number of 60◦-sectors that
were removed from the graphite sheet (see Fig. 1) and is
connected with the value of the apex angle of the conical
surface δ by the relation

sin
δ

2
= 1− Nd

6
. (14)

If Nd < 0, the value of −Nd corresponds to the
number of sectors additionally inserted into the graphite
sheet. Certainly, polygonal defects with Nd > 1 and
Nd < −1 are mathematical abstraction, as well as cones
with point-like vertices. Actually, defects are smoothed
out, and the value of Nd > 1 corresponds to the
number of pentagonal defects, which are crowded in the
smoothed vertex of the cone; graphitic cones about a
micron in linear dimensions and with the apex angles
δ = 112.9, 83.6, 60.0, 38.9, and 19.2◦ – which correspond
to the values Nd = 1, 2, 3, 4, and 5 – were observed
experimentally [22].

The theory also predicts the existence of saddle-
shaped cones, for which the value of −Nd is the
number of heptagonal defects which are crowded in their
central regions. We should emphasize that, as numerical
simulations of molecular dynamics demonstrated [23],
in the case Nd ≤ −4, the surface with a polygonal
defect turns out more stable than the surface having the
same profile but with a smoothed defect in the form of
corresponding number of heptagons.

The metric of the conical surface is determined by
the relationship

ds2 = dr2 + (1− η)2r2dϕ, (15)

where the polar coordinates r and ϕ are reckoned from
the cone’s vertex, and −∞ < η < 1. In terms of the
angular variable ϕ′ = (1− η)ϕ, the metric in the (r, ϕ′)-
coordinates coincides with the metric of a plane; but, in
this case, 0 < ϕ′ < 2π(1 − η). Therefore, the quantity
2πη at 0 < η < 1 is a deficit angle which measures
the magnitude of the sector removed. In the case of
a negative deficit angle, the value of −2πη measures
the magnitude of the added sector. The Dirac–Weyl
Hamiltonian on the conical surface (15) reads

H = −i~v
{
α1∂r + α2r−1

[
(1− η)−1∂ϕ − iΣ

]}
. (16)

For graphitic nanocones, the parameter η is discrete:
η = Nd/6.

Consider a nanocone with a pentagonal defect in
its vertex, i.e. the cone which can be obtained from a
graphite sheet by cutting-off a 60◦-sector and identifying
the atoms lying on two borders of the remaining sector
(see Fig. 2). While going around the vertex of this
nanocone, the sublattices, as well as the nonequivalent
Fermi points, exchange. A double path tracing around
the pentagonal defect is analogous to a single path
tracing around a hexagon in a plane graphene. Hence,
in the case of a nanocone with one pentagonal defect,
the electron wave function has to satisfy a boundary
condition of the Möbius-strip type, which demands for a
double path tracing to be done to come back to the initial
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point. Note that the parity transformation for graphene
includes, besides the rotation by 180◦, the exchange of
both the sublattices and the Fermi points. Taking into
account the relation

iγ0 = −2iΣγ3γ5 (17)

and the fact that the rotation by 180◦ is carried out
by the operator 2iΣ, we find that the exchange of
the sublattices and the Fermi points is fulfilled by the
operator −γ3γ5. Hence, the boundary condition for the
electron wave function on a graphitic nanocone with a
pentagonal defect can be selected in the form

ψ(r, ϕ + 2π) = −iγ3γ5ψ(r, ϕ). (18)

Then, for a double path tracing around the vertex, we
have

ψ(r, ϕ + 4π) = −ψ(r, ϕ), (19)

because (γ3γ5)2 = I. It is easy to prove that the
sublattices (and the Fermi points) become entangled in
the case of odd Nd and do not become entangled in the
case of even Nd. Therefore, the boundary condition for
an arbitrary graphitic nanocone looks like

ψ(r, ϕ + 2π) = −exp
(
i
π

2
Ndγ

3γ5
)

ψ(r, ϕ). (20)

Carrying out the singular gauge transformation

ψ′ = eiΩψ, Ω = −ϕ

4
Ndγ

3γ5, (21)

we pass to the wave function that satisfies the condition

ψ′(r, ϕ + 2π) = −ψ′(r, ϕ). (22)

At the same time, Hamiltonian (16) is transformed in
the following way:

H ′ = eiΩHe−iΩ =

= −i~v
[
α1∂r + α2r−1

(
∂ϕ + i 3

2ηγ3γ5

1− η
− iΣ

)]
, (23)

where the relation between η and Nd for graphitic
nanocones has been taken into account. Thus, the
topological defect, which corresponds to the convolution
of the graphite sheet into a cone, is represented by a
pseudo-magnetic vortex with the flux πNd/2 through
the vertex of the cone with the deficit angle πNd/3.

Let us fulfill the unitary transformation

ψ′′ = Uψ′, H ′′ = UH ′U−1, (24)

where

U = U−1 =
1√
2

(
I iσ2

−iσ2 −I

)
. (25)

Then

Uγ3γ5U−1 =
( −I 0

0 I

)
(26)

and the Hamiltonian acquires a block-diagonal form,

H ′′ =
(

H1 0
0 H−1

)
, (27)

where

Hs = ~v
[
iσ2∂r − σ1r−1

(
is∂ϕ + 3

2η

1− η
+

1
2
σ3

)]
,

s = ±1. (28)

It is worth noting that the definite sublattice (A
or B) and Fermi-point (+ or −) subscripts are
attributed to the components of ψ-function (9), whereas
transformations (21) and (24) bring about the ψ′′-
function, the components of which contain both
entangled sublattices and entangled Fermi points.

4. Ground State Charge

The density of states is determined as follows:

τ(E) =
1
π

ImTr(H −E − i0)−1, (29)

where the notation Tr means the trace of the integro-
differential operator in the functional space,

Tr O =
∫

d2r tr〈r|O|r〉,

and tr means the trace operator with respect to spinor
indices only.

In the case of a plane graphene, where electron
excitations are described by the Dirac–Weyl equation
with Hamiltonian (7), we have

τ(E) =
S|E|
π~2v2

, (30)
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where S is the area of the graphite sheet. The charge of
the ground state,

Q = −e

2

∞∫

−∞
dE τ(E) sgn(E), (31)

vanishes in this case, because dependence (30) is the even
function of the energy.

In order to determine the density of states in the
case of a graphitic nanocone, it is necessary to find
the complete system of solutions for the Dirac–Weyl
equation Hψ = Eψ, where H is given by relation
(16) and ψ satisfies condition (20). Since the result of
calculations of the functional trace in Eq. (29) does
not depend on the representation used, it is convenient,
after carrying out transformations (21) and (24), to
pass to a representation, where the Hamiltonian is
block-diagonal (Eq. (27)) and the wave function looks
like

ψ′′(r, ϕ) =
∑

n∈Z




fn,1(r) ei(n+ 1
2 )ϕ

gn,1(r) ei(n+ 1
2 )ϕ

fn,−1(r) ei(n− 1
2 )ϕ

gn,−1(r) ei(n− 1
2 )ϕ


 , (32)

where Z is the set of integer numbers. Taking
Eqs. (27) and (28) into account, we reduce the Dirac–
Weyl equation to the system of equations for radial
functions,
(

0 D†
n,s

Dn,s 0

)(
fn,s(r)
gn,s(r)

)
= E

(
fn,s(r)
gn,s(r)

)
, (33)

where

Dn,s = ~v
[−∂r + r−1(1− η)−1(sn− η)

]
,

D†
n,s = ~v

[
∂r + r−1(1− η)−1(sn + 1− 2η)

]
. (34)

Two linearly independent solutions of Eq. (33) are
expressed through cylindrical functions. In the cases
Nd = 3, 4, and 5, the condition of function regularity
at r = 0 is equivalent to the condition of its square-
integrability at this point; and it is this condition that
defines a physically comprehensible solution. It can be
demonstrated that the density of states is an even
function of the energy; moreover, in the case Nd = 3, it

coincides with Eq. (30), and, in the cases Nd = 4 and 5,
differs from Eq. (30) by an insignificant summand which
does not include the area factor. Thus, in all those cases,
as well as in the case of plane graphene (Nd = 0), the
charge of the ground state is equal to zero.

In all other cases of nanocones, there emerge the
modes, for which the condition of regularity is not
equivalent to the condition of square-integrability: both
linearly independent solutions for these modes are
simultaneously irregular and square-integrable at r = 0.
We confine ourselves to the consideration of those cases,
where there is only one such mode: n = nc.

In the cases Nd = 2, 1, −1, −2, and −3, we have
nc = s[sgn(Nd) − 1]/2, and, in the case Nd = −6,
nc = −2s. The partial Hamiltonian, which corresponds
to this mode, is not essentially self-adjoint, so that there
arises a problem of its self-adjoint extension. Making
use of the Weyl–von Neumann theory of self-adjoint
operators (see, e.g., [24]) allows one to solve this problem
and find a condition which must be satisfied by the
irregular mode:

lim
r→0

(rMv/~)F fnc,s(r)

lim
r→0

(rMv/~)1−F gnc,s(r)
=

= −22F−1 Γ(F )
Γ(1− F )

tan
(

Θ
2

+
π

4

)
, (35)

where Θ is the parameter of self-adjoint extension, M is
the parameter with a mass dimension, Γ(u) is the Euler
gamma-function, and

F =





3−3sgn(Nd)+Nd

6−Nd
, Nd = 2, 1, −1, −2, −3,

1/2, Nd = −6.

(36)

The density of states in a plane graphene and the
density of states in a graphitic nanocone differ from
each other by a contribution made by an irregular mode
which arises owing to the circumstance that the flux of a
pseudo-magnetic vortex is fractional. Using the theory of
vacuum polarization by singular external fields [18–21],
it can be shown that the irregular mode is responsible for
the appearance of a term in the density of states, which
is odd with respect to the energy:

τ(E) =
2(2F − 1) sin(Fπ)

[(
|E|

Mv2

)2F−1

tan
(

Θ
2 + π

4

)
+

(
|E|

Mv2

)1−2F

cot
(

Θ
2 + π

4

)]

πE

[(
|E|

Mv2

)2(2F−1)

tan2
(

Θ
2 + π

4

)−2 cos(2Fπ)+
(
|E|

Mv2

)2(1−2F )

cot2
(

Θ
2 + π

4

)] . (37)
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Substituting the latter relation into Eq. (31) and
fulfilling the integration, we obtain the charge of a
graphitic nanocone in the ground state:

Q = e sgn0[(1− 2F ) cos Θ], (38)

where

sgn0(u) =
{

sgn(u), u 6= 0
0, u = 0

}
.

5. Conclusions

Hence, the charge of the ground state in graphene with a
disclination is equal to zero in the cases Nd = 2,−2, and
−6, because F = 1/2 at that. Taking into account that
F = 1/5 at Nd = 1, F = 5/7 at Nd = −1, and F = 1/3
at Nd = −3, we attain the conclusion that

Q|Nd=1 = −Q|Nd=−1 = Q|Nd=−3 = e sgn0(cosΘ). (39)

Thus, the theory predicts the dependence of the
charge in the ground state on the parameter of self-
adjoint extension Θ in the case of a graphite film with
a defect in the form of a pentagon, a heptagon, or
three heptagons. The task for future experiments can
be to elucidate whether the quantity cosΘ gets values
different from zero. In the case of the positive answer,
it would mean that there occurs the induction of the
charge in the ground state of graphitic nanocones.

The authors are grateful to V.P. Gusynin for
the fruitful discussion of the results obtained and
his interesting remarks. The research was supported
by the National Academy of Sciences of Ukraine in
the framework of program “Nanostructure systems,
nanomaterials, nanotechnologies” (No. 10/07-N). N.D.V
was also supported by the INTAS grant for young
scientists (No. 05-109-5333), and Yu.A.S by the Swiss
National Scientific Fund in the framework of the
SCOPES program (No. IB7320-110848) and the INTAS
grant No. 05-1000008-7865.

1. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth,
V.V. Khotkevich, S.V. Morozov, and A.K. Geim, Proc. Nat.
Acad. Sci. USA 102, 10451 (2005).

2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang,
M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and
A.A. Firsov, Nature 438, 197 (2005).

3. Y. Zhang, Y.-W. Tan, H.L. Stormer, and P. Kim, Nature 438,
201 (2005).

4. A.C. Neto, F. Guinea, and N.M. Peres, Physics World 19,
N 11, 33 (2006).

5. A.K. Geim and K.S. Novoselov, Nature Mater. 6, 183 (2007).

6. D.P. DiVincenzo and E.J. Mele, Phys. Rev. B 29, 1685 (1984).

7. G.W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).

8. J. Weber and J.A. Wheeler, Rev. Mod. Phys. 29, 509 (1957).

9. L. Marder, Proc. Roy. Soc. London A 244, 524 (1958); 252,
45 (1959).

10. T.W.B. Kibble, J. Phys. A 9, 1387 (1976); Phys. Rep. 67, 183
(1980).

11. A. Vilenkin, Phys. Rev. D 23, 852 (1981); 24, 2082 (1981).

12. G.’t Hooft, Commun. Math. Phys. 117, 685 (1988).

13. S. Deser and R. Jackiw, Commun. Math. Phys. 118, 495
(1988).

14. P. de Sousa Gerbert and R. Jackiw, Commun. Math. Phys.
124, 229 (1989).

15. Yu.A. Sitenko, Nucl. Phys. B 372, 622 (1992).

16. Yu.A. Sitenko and A.V. Mishchenko, Zh. Èksp. Teor. Fiz.
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ЕЛЕКТРОННI ВЛАСТИВОСТI ГРАФIТОВИХ
НАНОКОНУСIВ

Н.Д. Власiй, Ю.О. Ситенко

Р е з ю м е

Графiтовий лист (графен), що в довгохвильовому наближен-
нi характеризується лiнiйним спектром квазiчастинкових збуд-
жень, є унiкальним прикладом справдi двовимiрної “реля-
тивiстської” електронної системи, котра за наявностi тополо-
гiчних дефектiв може мати досить незвичнi властивостi. Пока-
зано, що дисклiнацiя, яка приводить до скручування графiто-
вого листа у наноконус, описується псевдомагнiтним вихором
з потоком, що пов’язаний з дефiцитом кута конуса. Отрима-
но аналiтичнi вирази для щiльностi станiв та заряду основного
стану деяких графiтових наноконусiв.
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