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The Bohm criterion is one of the basic points in the treatment
of the formation of a near-electrode plasma sheath. This criterion
was formulated under the assumption that the plasma ions have
zero temperature and electrons are described by the Boltzmann
distribution. In the present paper, we study the influence of the
ionic temperature on the screening of a plane electrode under the
floating or fixed potential. It is shown that the thermal motion of
ions leads to a decrease of the critical value of the ion velocity.

1. Introduction

The study of the formation of a near-electrode plasma
sheath remains to be one of the important problems
of physics for many years. The description of the
modern state of this problem can be found, for
example, in [1–3] and references therein. One of the
general properties of the distributions of the density
of particles and the potential near the surface is
the presence of a near-wall sheath, in which the
screening of the potential of the electrode occurs. The
size of the sheath is usually significantly less than
other characteristic spatial scales, in particular, than
the free path of ions. In this case, the condition of
screening is determined by the Bohm criterion [4],
according to which the velocity of ion motion to
the electrode must exceed the critical velocity Ucr =
(Te/mi)1/2. If this criterion is satisfied, one can calculate
the distributions of electrons, ions, and the electric
potential from the Poisson equation and develop the
asymptotic theory of a near-wall layer [1, 2, 5]. Such
a theory is necessary for the construction of the
solutions consistent with a distribution in the presheath
region [1].

It is worth noting, however, that the Bohm
criterion and the corresponding calculations of the
potential of a screened electrode were obtained in the
approximation of cold ions. It is obvious that such
an assumption is valid not always. In particular, it
is not true in the case of thermal plasma. In this
connection, the question arises about how the thermal
motion of ions can affect the Bohm criterion. The
present work concerns an attempt to clear up this
question.

The statement of the problem is formulated in
Section 2. The distribution functions of electrons
and ions are determined on the basis of the Vlasov
stationary equation with boundary conditions which
correspond to the absorption of plasma particles
by the electrode (Section 3). It is assumed also
that, at great distances from the electrode, the
distribution function is Maxwellian, and ions move
directedly to the electrode and possess the thermal
distribution over velocities which is characterized by
the relevant temperature. Just the presence of the
thermal distribution of ions distinguishes the proposed
statement of the problem from the traditional one. The
analysis of the boundary-value problem for the self-
consistent potential of the electric field is carried out
in Section 4.

We applied different means for the construction
of approximate solutions of the problem (Section 5).
The solutions obtained are used for the numerical
study of the problem. In particular, we calculate
the distributions of electrons, ions, and the electric
potential near an electrode absorbing plasma particles.
The results of numerical analysis are discussed in
Section 6.
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2. Statement of the Problem and Input
Equations

We will consider a two-component plasma composed of
electrons and one-kind ions above the plane electrode
(x > 0). The electrode absorbs charged particles of
plasma and is under a floating potential. The field on
the electrode surface is determined from the condition
that the total current across the electrode surface
is zero. Collisions between charged particles are not
considered. We assume that electrons and ions possess
different temperatures, and, in addition, ions as a whole
are moving toward the electrode with some constant
velocity. The temperature and the velocity of directional
motion of ions are considered as parameters which
can take relevant values. We assume also that, at a
sufficiently great distance from the electrode surface,
the condition of quasineutrality for plasma is satisfied.
For the given temperature of ions (Ti), it is necessary
to study, first, whether there exists the least (critical)
drift velocity of ions (Ucr) such that if it is exceeded, the
electrode potential will be screened, and, second, how
Ucr depends on Ti.

The input equations are composed from both
the stationary kinetic equations for the distribution
functions of electrons and ions and the Poisson equation
for the potential of the self-consistent electric field. On
the boundary of plasma (x = 0), the condition of
absorption of charged particles by the electrode holds.
The value of the potential on the “electrode–plasma”
boundary (x = 0) is determined from the condition for
the total current across the electrode surface to be zero.
At x = ∞, i.e. for sufficiently great distances from the
electrode, we assume that the field is absent.

Thus, it is necessary to find the functions
Fσ(x, v), σ = e, i, and Φ(x) which satisfy the system of
equations

v
∂Fσ

∂x
− eσ

mσ

dΦ
dx

∂Fσ

∂v
= 0, x > 0, v ∈ (−∞, +∞); (1)

d2Φ
dx2

= −4π
∑

σ

eσnσ(x), x > 0, (2)

with the boundary conditions

Fe(x, v)|x=0,v>0 = 0, Fe(x, v)|x→+∞ =

= Cee
−mev2/(2Te)

[
θ(

√
2eeΦ0/me − v)θ(v) + θ(−v)

]
;

(3)

Fi(x, v)
∣∣∣
x=0,v>U

r
1− 2eiΦ0

miU2

= 0, Fi(x, v)
∣∣∣
x→+∞

=

= Ci exp
[
−mi

2Ti
(v − U)2

]
θ(−v + U), U < 0; (4)

Φ(0) = Φ0, Φ(+∞) = 0. (5)

Here, nσ(x) = nσ

+∞∫
−∞

Fσ(x, v)dv, nσ = nσ(+∞) is the

unperturbed density of particles of the kind σ = e, i,
which satisfies the condition of quasineutrality

∑
σ

eσnσ = 0, (6)

eσ is the charge of particles of the kind σ, Cσ is the
normalizing constant, U is the velocity of a directional
motion of ions, and

θ(x) =
{

1, if x ≥ 0,
0, if x < 0

is the Heaviside function.
The boundary conditions (3), (4) mean that the

surface has no electrons that move in the direction
from it, and ions must have energies that exceed their
energy at infinity. At great distances (x → +∞), only
unabsorbed particles can be present. As for electrons,
they are those moving to the surface or those which
change the direction of motion without collision with the
electrode. Ions can move only to the surface, and their
velocity must exceed the drift velocity. In the case of
collisionless plasma, these requirements are guaranteed
by the corresponding limitations on the velocity of
particles which are described with the help of the
Heaviside θ-function.

If the electrode is under a floating potential, then Φ0

is determined from the condition of compensation of the
electron and ion currents

Je(0) + Ji(0) = 0, (7)

where

Jσ(0) = Jσ(x)|x=0, Jσ(x) = eσnσ

+∞∫

−∞
vFσ(x, v)dv. (8)
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While solving problem (1)–(7), it is expedient to pass
to the dimensionless quantities

x̄ = x/λD, v̄ = (me/Te)1/2v; u = (me/Te)1/2U ; z̄σ =
eσ

e
,

n̄σ =
nσ

ne
, m̄σ =

mσ

me
, T̄σ =

Tσ

Te
; ϕ(x̄) =

eΦ(x)
Te

|x=x̄λD ,

fσ(x̄, v̄) = (Te/me)1/2Fσ(x, v)|x=x̄λD,v=(Te/me)1/2v̄;

n̄σ(x̄) =
nσ(x)

ne
|x=x̄λD = n̄σ

+∞∫

−∞
fσ(x̄, v̄)dv̄;

jσ(x̄) =
Jσ(x)
Jth

|x=x̄λD = zσn̄σ

+∞∫

−∞
v̄fσ(x̄, v̄)dv̄,

Jth = ene

(
Te

me

)1/2

, σ = e, i. (9)

Here, λD =
(

Te

4πe2ne

)1/2

is the Debye electron radius and
e = |ee|.

Below, we will use mainly the dimensionless
quantities (9). The cases requiring to use other
dimensionless or dimensional quantities will be indicated
separately. To simplify the form of formulas, the bar over
dimensionless quantities is dropped in what follows.

In terms of the dimensionless variables (9), problem
(1)–(7) takes the following form:

v
∂fσ

∂x
− zσ

mσ

dϕ

dx

∂fσ

∂v
= 0, x > 0, v ∈ (−∞,+∞); (1′)

d2ϕ

dx2
= −

∑
σ

zσnσ(x), x > 0 (σ = e, i), (2′)

fe(x, v)|x=0,v>0 = 0, fe(x, v)|x→+∞ =

= Cee
−v2/2

[
θ
(√

−2ϕ0 − v
)

θ(v) + θ(−v)
]
; (3′)

fi(x, v)
∣∣∣
x=0,v>u

r
1− 2ziϕ0

miu2

= 0, fi(x, v)
∣∣∣
x→+∞

=

= Ci exp
[
−mi

2Ti
(v − u)2

]
θ(−v + u), u < 0; (4′)

ϕ(0) = ϕ0, ϕ(+∞) = 0; (5′)

∑
σ

zσnσ = 0. (6′)

The quantity ϕ0 is determined from the condition

je(0) + ji(0) = 0. (7′)

3. Stationary Distribution Functions and
Self-Consistent Distributions
of Currents and Charges

The solutions of Eq. (1′) with the boundary conditions
(3′) and (4′) look as

fe(x, v) = Cee
−v2/2eϕ(x)[θ(

√
2[ϕ(x)− ϕ(0)]− v)θ(v)+

+ θ(−v)], (10a)

fi(x, v) = Cie
− mi

2Ti

�
v

r
1+

2ziϕ

miv2−u

�2

θ

(
−v

√
1 +

2ziϕ

miv2
+u

)

(10b)

or

fi(x, v)=Cie
− mi

2Ti

�
v

r
1+

2ziϕ(x)
miv2 −u

�2

θ

(
−v−

√
u2− 2ziϕ(x)

mi

)
,

(10c)

where θ(x) is the Heaviside function. In the construction
of functions (10a)–(10c), we used the method of
characteristics and the structure of the given functions
at infinity, where the field is absent.

Using formulas (10a) and (10b), we can find
nσ(x), σ = e, i. In view of the condition of normalization

Ce =
√

π

2

(
1 + erf

√
−ϕ(0)

)
, (11)

we have

ne(x) = eϕ(x) 1 + erf
√

ϕ(x)− ϕ(0)
1 + erf

√
−ϕ(0)

, x ≥ 0 (ne = 1).

(12)
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Under the condition |ϕ(x)| ¿ |ϕ(0)|, formula (12)
describes the Boltzmann distribution of electrons usually
used in similar problems.

For ions, respectively, we get

Ci =

u∫

−∞
e
− mi

2Ti
(v−u)2

dv =
√

πTi

2mi
, (13)

ni(x) = ni
2√
π

+∞∫

0

(ξ − u/
√

2Si)e−ξ2

√
(ξ − u/

√
2Si)2 − ziϕ(x)/Ti

dξ,

Si =
√

Ti

mi
. (14)

We now consider the electron and ion currents
Jσ(x), σ = e, i, which are necessary for the
determination of the potential on the region boundary.
The calculations on the basis of formulas (10a), (10b),
(11), and (13) give

Je(0) =

√
2
π

eϕ0

1 + erf
√−ϕ0

. (15)

Ji(0) = −zini

(√
2
π

Si − u

)
. (16)

If the electrode is under a floating potential, then the
quantity ϕ0 = ϕ(0) can be determined from condition
(7′). Using formulas (15) and (16), we obtain
√

2
π

eϕ0

1 + erf
√−ϕ0

= zini

(√
2
π

Si − u

)

or (with regard for the condition of quasineutrality (6′),
zini = 1)

eϕ0

1 + erf
√−ϕ0

= −
√

π

2
u + Si. (17)

For the further consideration, it is convenient to
introduce the notation

Ũ =
uT

1/2
i√
2Si

= u

√
mi

2
. (18)

Then formula (14) and Eq. (17) take the form

ni(ϕ; Ũ , Ti) = ni
2√
π

+∞∫

0

(
ξT

1/2
i − Ũ

)
e−ξ2

dξ
√(

ξT
1/2
i − Ũ

)2

− ziϕ

, (19)

eϕ0

1 + erf
√−ϕ0

= −Ũ

√
π

mi
+ Si,

(
Ũ ≤ 0; Ti ≥ 0, ϕ0 ≤ 0

)
. (20)

4. Boundary-Value Problem for the
Self-Consistent Potential of the
Electric Field and Its Analysis

The boundary-value problem (2′), (5′), (6′) can be
written, with regard for the formulas obtained, in the
following form:

d2ϕ

dx2
= −

∑
σ

zσnσ(ϕ;ϕ0, Ũ , Ti), x > 0, (21)

ϕ(0) = ϕ0, ϕ(+∞) = 0. (22)

Here, nσ(ϕ; ϕ0, Ũ , Ti) are determined, respectively, by
formulas (12) and (19) and ϕ0 can be found from Eq.
(20) or can be given as an additional condition in the
case of a fixed potential of the electrode.

We will write problem (21), (22) in a form more
convenient for its study. In this case, we will use the
condition of quasineutrality zini = 1 and, taking into
account that the quantities ϕ(x), u and Ũ take negative
values, make substitution

ϕ(x) = −|ϕ(x)|, u = −|u|, Ũ = − ˜|U |. (23)

Then formulas (12) and (19) and Eq. (20) become

ne(|ϕ|, |ϕ0|) = e−|ϕ|
1 + erf

√
|ϕ0| − |ϕ|

1 + erf
√
|ϕ0|

. (12′)

ni(|ϕ|; ˜|U |, Ti) = ni
2√
π

+∞∫

0

(ξT 1/2
i + ˜|U |)e−ξ2

√
(ξT 1/2

i + ˜|U |)2 + zi|ϕ|
dξ,

(19′)

e−|ϕ0|

1 + erf
√
|ϕ0|

= ˜|U |
√

π

mi
+ Si (|ϕ0| ≥ 0). (24)

Thus, we are faced with the necessity to solve
the following nonlinear boundary-value problem (the
modulus sign for the quantities ϕ, ϕ0, u, Ũ is dropped):

d2ϕ

dx2
= f(ϕ; ϕ0, Ũ , Ti), x > 0, (25)

ISSN 0503-1265. Ukr. J. Phys. 2007. V. 52, N 12 1133
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Fig. 1. Dependence of ϕ0 on Ũ , Ũ ∈ [0; Ũmax(Ti)] for various
values of Ti: 1 – Ti = 0; 2 – Ti = 0.1; 3 – Ti = 1

ϕ(0) = ϕ0, ϕ(+∞) = 0. (26)

Here, ϕ0 = ϕ0(Ũ , Ti) is determined from Eq. (24), and
f(ϕ; ϕ0, Ũ , Ti) looks as

f(ϕ; ϕ0, Ũ , Ti) = −e−ϕ 1 + erf
√

ϕ0 − ϕ

1 + erf
√

ϕ0
+

+
2√
π

+∞∫

0

(
ξT

1/2
i + Ũ

)
e−ξ2

dξ
√(

ξT
1/2
i + Ũ

)2

+ ziϕ

, Ti ≥ 0, Ũ ≥ 0. (27)

With regard for substitutions (23), the dimensionless
velocity of ions Ũ and the potential ϕ(x) in terms of
dimensional quantities take the form

Ũ = −U

√
mi

2Te
, ϕ = −eΦ

Te
. (28)

Equation (24) from which we obtain ϕ0 = ϕ(0), is an
important component of the statement of the problem,
and, therefore, we consider it separately. In this case,
the calculation algorithm of this quantity is as follows:
we take some admissible value of the parameter Ti

which determines the interval [0; Ũmax(Ti)], in which the
parameter Ũ is varied. Then, for every Ũ from the given
interval, we determine ϕ0 as the root of Eq. (24). Thus,
ϕ0 = ϕ0(Ũ , Ti).

The form of Eq. (24) allows us to draw some general
conclusions about its roots. In this case, we are interested
only in nonnegative roots.

Let f1(ϕ0) ≡ e−ϕ0/[1 + erf(
√

ϕ0)], ϕ0 ≥ 0, and
f2(Ũ , Ti,mi) ≡ Ũ

√
π

mi
+ Si, Ũ ≥ 0.

The functions f1(ϕ0) and f2(Ũ , Ti, mi) have the
following properties:

f1(0) = 1, f1(+∞) = 0;

f2(Ũ , 0,mi) = Ũ
√

π/mi; f2(0, Ti,mi) = Si ≥ 0,

∀Ti ≥ 0; f2(∞, Ti, mi) = ∞.

For every fixed value of Ti ≥ 0, the function
f2(Ũ , Ti,mi) is a monotonically increasing function of
Ũ , and Eq. (24) has a root only for those values of Ũ ,
for which f2(Ũ , Ti,mi) ≤ 1.

For every Ti ≥ 0, the quantity Ũ varies in the
interval [0; Ũmax(Ti)], and

Ũmax(Ti) =
√

mi

π
−

√
Ti

π
;

max
Ti≥0

[Ũmax(Ti)] = Ũmax(0) =
√

mi

π
. (29)

In the case of hydrogen ions, Ũmax(0) =
√

mi/π ≈√
1836/π ≈ 24.17.
Thus, ∀Ũ ∈ [0; Ũmax(Ti)], Eq. (24) has a single root

ϕ0 = ϕ0(Ũ , Ti), and, for Ũ = Ũmax(Ti), the root of this
equation ϕ0 = 0.

The plots of the function ϕ0 = ϕ0(Ũ , Ti) for various
values of Ti ≥ 0 are given in Fig. 1.

If we pass to the limit Ti → 0 in Eq. (24), we obtain

e−|ϕ0|

1 + erf
√
|ϕ0|

= Ũ

√
π

mi
. (24′)

Thus, there are no essential limitations on the
existence of the solution of Eq. (24). But it is obvious
that the boundary-value problem (25)–(27) has a
solution not for each solution of Eq. (24). We are
interested in: under which conditions there exist the
nontrivial solutions of the given problem and how these
conditions depend on parameters of the problem. We
note that problem (24)–(27) has always the trivial
solution ϕ(x, ϕ0) ≡ 0 which corresponds to the case
where Ũ = Ũmax(Ti).

Let us study the function f(ϕ; ϕ0, Ũ , Ti). We consider
the general case where the quantity Ti takes any values,
i.e. Ti ∈ [0; 1], and Ũ ∈ [0; Ũmax(Ti)]. We note that, for
a given Ti ≥ 0 and any Ũ ∈ [0; Ũmax(Ti)], ϕ varies from
0 to ϕ0(Ũ).

1134 ISSN 0503-1265. Ukr. J. Phys. 2007. V. 52, N 12
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As seen, the function f(ϕ; ϕ0, Ũ , Ti) has the following
properties:

1) f(0; ϕ0, Ũ , Ti) ≡ 0, (30)

2) f(ϕ;ϕ0, Ũ , 0) = −e−ϕ 1 + erf
√

ϕ0 − ϕ

1 + erf
√

ϕ0
+

Ũ√
Ũ2 + ziϕ

.

(31)

Formula (31) is not defined at the point (ϕ = 0, Ũ =
0) which is the essentially singular point of function (31).
Therefore, we take Ũ > 0.

We note that relation (31) corresponding to
the case where Ti = 0 differs from the charge
distribution calculated for Boltzmann electrons [1] by
the additional factor (1 + erf

√
ϕ0 − ϕ) /

(
1 + erf

√
ϕ0

)
.

It is obvious that, as ϕ0 À ϕ(x), this factor
tends to unity, and, as x → 0 (ϕ(x) → ϕ0),
(1 + erf

√
ϕ0 − ϕ) /

(
1 + erf

√
ϕ0

) ≈ 1
2 .

3) f(ϕ;ϕ0(0), 0, Ti) = −e−ϕ 1 + erf
√

ϕ0 − ϕ

1 + erf
√

ϕ0
+

+ eziϕ/Ti

(
1− erf

√
ziϕ

Ti

)
, (Ti > 0, Ũ = 0), (32)

4) f(ϕ0; ϕ0, Ũ , Ti) = − e−ϕ0

1 + erf
√

ϕ0
+

+
2√
π

+∞∫

0

(ξT 1/2
i + Ũ)e−ξ2

dξ√
(ξT 1/2

i + Ũ)2 + ziϕ0

,

5) f(ϕ0; ϕ0, Ũ , 0) = − e−ϕ0

1 + erf
√

ϕ0
+

Ũ√
Ũ2 + ziϕ0

or, according to (24′),

f(ϕ0; ϕ0, Ũ , 0) = −Ũ

√
π

mi
+

Ũ√
Ũ2 + ziϕ0

,

6) f ′ϕ(ϕ; ϕ0, Ũ , Ti) = e−ϕ 1 + erf
√

ϕ0 − ϕ

1 + erf
√

ϕ0
+

+
e−ϕ

1 + erf
√

ϕ0

1√
π(ϕ0 − ϕ)

−

− zi√
π

+∞∫

0

(
ξT

1/2
i + Ũ

)
e−ξ2

dξ
√[(

ξT
1/2
i + Ũ

)2

+ ziϕ

]3
, Ti ≥ 0, (33)

7) f ′ϕ(ϕ; ϕ0, Ũ , 0) = e−ϕ 1 + erf
√

ϕ0 − ϕ

1 + erf
√

ϕ0
+

+
e−ϕ0

1 + erf
√

ϕ0

1√
π(ϕ0 − ϕ)

− zi

2
Ũ√

(Ũ2 + ziϕ)3
, Ũ > 0,

(34)

8) f ′ϕ(0; ϕ0, Ũ , Ti) = 1 +
1√
πϕ0

e−ϕ0

1 + erf
√

ϕ0
−

− zi√
π

+∞∫

0

e−ξ2
dξ√(

ξT
1/2
i + Ũ

)2
, Ti ≥ 0, (35)

9) f ′ϕ(0; ϕ0, Ũ , 0) = 1 +
1√
πϕ0

e−ϕ0

1 + erf
√

ϕ0
− zi

2Ũ2
, (36)

10) f ′ϕ(ϕ; ϕ0(0), 0, Ti) = e−ϕ 1 + erf
√

ϕ0,max − ϕ

1 + erf√ϕ0,max
+

+
e−ϕ0,max

1 + erf√ϕ0,max

1√
π (ϕ0,max − ϕ)

+

+
zi

Ti
eziϕ/Ti

(
1− erf

√
ziϕ

Ti

)
− zi

Ti

1√
π

1√
ziϕ/Ti

, (37)

where Ti > 0, and ϕ0,max = max
Ũ≥0

ϕ0(Ũ) = ϕ0(0).

In Fig. 2(а, b), we present the plots of the functions
y = f

(
ϕ; ϕ0, Ũ , Ti

)
, ϕ ∈

[
0; ϕ0(Ũ)

]
for certain values

of Ti ∈ [0; 1] and Ũ ∈
[
0; Ũmax(Ti)

]
. In the construction

of these plots, we used Eq. (24) and formula (27).
Formulas (33)–(37) yield the following properties of

the function f ′ϕ
(
ϕ;ϕ0, Ũ , Ti

)
:

ISSN 0503-1265. Ukr. J. Phys. 2007. V. 52, N 12 1135
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a b
Fig. 2. Plots of the function y = f

�
ϕ; ϕ0, Ũ , Ti

�
, ϕ ∈

h
0; ϕ0(Ũ)

i
, for various values of the parameters Ti(0 ≤ Ti ≤ 1) and Ũ =

kŨmax(Ti), 0.001 ≤ k ≤ 0.5. (a): Ti = 0; 1 – 0.001; 2 – 0.01; 3 – 0.02; 4 – 0.029; 5 – 0.1; 6 – 0.5. (b): Ti = 1; 1 – 0.001; 2 – 0.01; 3 –
0.02; 4 – 0.1; 5 – 0.5

Fig. 3. Plots of the function f ′ϕ
�
0; ϕ0, Ũ , Ti

�
, as a function of

Ũ , Ũ ∈
h
0; Ũmax(Ti)

i
for various values of the parameter Ti: 1 –

0; 2 – 0.1; 3 – 0.5; 4 – 1

1) For all admissible values of Ti and Ũ , the
derivative f ′ϕ

(
ϕ;ϕ0, Ũ , Ti

)
does not exist for ϕ = ϕ0,

i.e. lim f ′ϕ
(
ϕ;ϕ0, Ũ , Ti

)
= +∞ as ϕ → ϕ0 − 0.

2) If Ũ > 0, the derivative f ′ϕ
(
ϕ; ϕ0, Ũ , 0

)
exists for

ϕ = 0 and is determined by formulas (35) and (36); for
Ũ = 0, the derivative for ϕ = 0 does not exist, according
to (37).

3) For sufficiently small values of the parameter
Ũ , f ′ϕ(ϕ; ϕ0, ...) changes the sign from the negative to
positive one on the change of ϕ from 0 to ϕ0(Ũ), and,
hence, it has local minimum.

4) For each fixed value of Ti ≥ 0, the function
f ′ϕ

(
0; ϕ0, Ũ , Ti

)
changes the sign from the negative to

positive on the change of Ũ from 0 to Ũmax(Ti);
therefore, there exists such a (critical) value Ũ = Ũcr,
at which f ′ϕ

[
0; ϕ0(Ũcr), Ũcr, Ti

]
= 0. The presented

properties of the function f
(
ϕ; ϕ0, Ũ , Ti

)
are used on

the establishment of the conditions of the existence of
nonzero solutions of problem (24)–(27).

In Fig. 3, we give the plots of the function
f ′ϕ

(
0; ϕ0, Ũ , Ti

)
as a function of Ũ , Ũ ∈

[
0; Ũmax(Ti)

]
.

These plots demonstrate the dependence of the behavior
of the given function on the parameter Ũ for various
values of Ti ≥ 0 and the dependence of the point of the
crossing of the axis 0Ũ by the plots of the given function,
Ũcr, on Ti. In the construction of these plots, we used Eq.
(24) and formulas (35) and (36).

5. Construction of Approximate Solutions of
the Problem

Equation (25) has fixed point ϕ = 0, ∀Ti ≥ 0, ∀Ũ ∈[
0; Ũmax(Ti)

]
, and, therefore, problem (24)–(27) has

trivial (zero) solution ϕ(x;ϕ0, Ũ) ≡ 0 which corresponds
to the value of the parameter Ũ = Ũmax(Ti). We are
interested in nontrivial solutions of problem (24)–(27).

Consider the boundary-value problem

ϕ′′ = f(ϕ), x > 0; ϕ(0) = ϕ0, ϕ(+∞) = 0, (38)
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where ϕ0 ≥ 0, and the function f(ϕ) is continuous on
the interval [0;ϕ0], continuously differentiable on the
interval [0;ϕ0), and satisfies the condition f(0) = 0.
We would like to know which (additional) conditions
must be satisfied by the function f(ϕ) in order
that problem (38) have a nonzero solution 0 ≤
ϕ(x, ϕ0) ≤ ϕ0 corresponding to the screened field. Let a
solution of the given problem, ϕ(x; ϕ0), exist. Then the
relations ϕ′′ϕ′ = f(ϕ)ϕ′, dϕ′2 = 2f(ϕ)dϕ, ϕ′2(x) =

= 2
x∫
0

f(ϕ(x))dϕ+C1 = 2
ϕ∫

ϕ0

f(ξ)dξ+C1, and (ξ = ϕ(x))

are valid. The conditions ϕ(+∞) = 0 and ϕ′′(+∞) = 0

yield ϕ′(+∞) = 0, C1 = −2
ϕ0∫
0

f(ξ)dξ, and, therefore,

ϕ′2(x) = 2
ϕ∫
0

f(ξ)dξ. The last relation yields the first

necessary condition which must be satisfied by the
function f(ϕ):
ϕ∫

0

f(ξ)dξ ≥ 0, ∀ϕ ≥ 0. (39)

For problem (24)–(27), where the function
f(ϕ; ϕ0, Ũ , Ti) is determined by formula (27), it was
shown that there exist the values of the parameter
Ũ such that f(ϕ; ϕ0, Ũ , Ti) < 0 if ϕ ∈ [0;ϕc(Ũ)] ⊂
[0;ϕ0(Ũ)]. Therefore, for such Ũ , problem (24)–(27) has
no solution. We can show that the exact solution of
problem (38) given implicitly looks as
ϕ0∫

ϕ

dξ√
2

ξ∫
0

f(ζ)dζ

= x, x ≥ 0. (40)

The divergence of the integral on the left-hand side
of Eq. (40) as x → +∞ (in this case, ϕ(x) → 0) is
the second necessary condition which must be satisfied
by the function f(ϕ). For example, in the case where
f(ϕ) = ϕn, n ≥ 1, both the first and second conditions
are satisfied, and the boundary-value problem (38) has
a solution. In the case where f(ϕ) =

√
ϕ, the first

condition is satisfied, and the second one does not hold;
therefore, problem (38) has no solution.

The presented conditions are the necessary ones
for the existence of a solution of problem (38). If
f ′ϕ(0) ≥ 0 in this case, we will consider that boundary-
value problem (38) has a solution. In particular, for
f ′ϕ(0) > 0, the expansion f(ϕ) = f ′(0)ϕ + O(ϕ2) is
valid in a neighborhood of the point ϕ = 0, i.e. f(ϕ) ≈
f ′(0)ϕ. Therefore, integral (40) is divergent for the given

function as ϕ → 0, and the conditions of existence
of a solution of problem (38) are satisfied. If f ′ϕ(0) =
0, then, in a neighborhood of ϕ = 0, the expansion
f(ϕ) = 1

2f ′′(0)ϕ2 + O(ϕ3) holds, i.e. f(ϕ) ≈ aϕ2, where
a = f ′′(0)/2. Then, if a > 0, problem (38) has also a
solution for the given function, namely,

ϕ(x; ϕ0) =
6
a

(
x +

√
6
a
ϕ
−1/2
0

)−2

, x ≥ 0; ϕ0 ≥ 0. (41)

Formula (41) implies that ϕ(x; ϕ0) → 0, as x → +∞
by the power law; whereas, for f(ϕ) = ϕ, ϕ(x; ϕ0) → 0
by the exponential law as x → +∞.

Earlier, it has been shown that, for every fixed value
of Ti ≥ 0, there exists such (critical) value of Ũ =
Ũcr(Ti), at which f ′ϕ

[
0;ϕ0(Ũcr), Ũcr, Ti

]
= 0. If Ũ >

Ũcr(Ti), then f ′ϕ
[
0;ϕ0(Ũcr), Ũcr, Ti

]
> 0, and therefore

f ′ϕ
(
ϕ;ϕ0, Ũ , Ti

)
> 0 and f

(
ϕ;ϕ0, Ũ , Ti

)
> 0 for all ϕ ≥

0. Thus, at Ũ > Ũcr, problem (24)–(27) has a nonzero
solution which can be presented in the form (40). In the
case where Ũ = Ũcr in a neighbohood of the point ϕ = 0,

the expansion f
(
ϕ; ϕ0, Ũ , Ti

)
= 1

2f ′′
(
0;ϕ0, Ũ , Ti

)
ϕ2 +

O(ϕ3) is valid. That is, f
(
ϕ; ϕ0, Ũ , Ti

)
≈ aϕ2, where

a = 1
2f ′′

(
0; ϕ0, Ũ , Ti

)
. Therefore, if a > 0, then

problem (24)–(27) also has a solution.
If we pass from Eq. (25) to the system of equations for

ϕ and ϕ′, then the point ϕ = 0, ϕ′ = 0 in the phase plane
(ϕ, ϕ′) is an isolated singular point of the given system
of equations. Depending on a value of the parameter Ũ ,
this point changes its type. Namely, we have a saddle
singular point at Ũ > Ũcr and a center at Ũ < Ũcr. At
Ũ = Ũcr, the point ϕ = 0, ϕ′ = 0 is a nonelementary
singular point. Thus, the parameter Ũ is a bifurcation
parameter of the problem, and the value Ũ = Ũcr is
critical or the bifurcation point for the given parameter.

In Fig. 4, we give the plot of Ũcr versus Ti (the
reduced temperature of ions), and Fig. 5 presents the
dependence of ϕ0,cr ≡ ϕ0

(
Ũcr, Ti

)
on Ti ∈ [0; 1]. In this

case, we used that Ũcr(Ti) is a solution of the following
system of nonlinear equations:

1 +
1√
πϕ0

e−ϕ0

1 + erf
√

ϕ0
−− zi√

π

+∞∫

0

e−ξ2
dξ

(ξT 1/2
i + Ũcr)2

= 0,

e−ϕ0

1 + erf
√

ϕ0
= Ũcr

√
π

mi
+ Si, (42)
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Fig. 4. Dependence of Ũcr on Ti (the reduced temperature of ions),
Ti ∈ [0; 1]

Fig. 5. Dependence of ϕ0,cr on Ti, Ti ∈ [0; 1]

where Si = (Ti/mi)
1/2

, ϕ0 = ϕ0(Ũcr), Ũcr = Ũcr(Ti).
If ϕ0 is fixed, then Ũcr(Ti) is determined by the first

equation from the above-presented ones.
In the case of a floating potential, we get

1+ 1√
πϕ0

(
Ũcr

√
π

mi
+ Si

)
− zi√

π

+∞∫
0

e−ξ2
dξ

(ξT
1/2
i +Ũ)cr)2

= 0 from

system (42), and this relation yields

√
ϕ0 =

(
Ũcr

√
π

mi
+ Si

)
/


zi

+∞∫

0

e−ξ2
dξ

(ξT 1/2
i + Ũcr)2

−√π


 .

(43)

By substituting (43) in (24), we get the equation for Ũcr:

exp


− 1

mi

(
Ũcr +

√
Ti/π

zi√
π
I(Ũcr, Ti)− 1

)2

 =

(
Ũcr

√
π

mi
+ Si

)
×

×

1 + erf

Ũcr +
√

Ti/π
√

mi

(
zi√
π
I(Ũcr, Ti)− 1

)

 . (44)

Here, I(Ũcr, Ti) =
+∞∫
0

e−ξ2
dξ

(ξT
1/2
i +Ũcr)2

; Ti ≥ 0; and

Ũcr ∈
[
0;

√
mi

π
−

√
Ti

mi

]
.

In the case where Ti = 0, Eqs. (42) look as

1 +
1√
πϕ0

e−ϕ0

1 + erf
√

ϕ0
− zi

2Ũ2
cr

= 0,

e−ϕ0

1 + erf
√

ϕ0
= Ũcr

√
π

mi
, ϕ0 = ϕ0(Ũcr),

and we have √
ϕ0 = 2Ũ3

cr√
mi(zi−2Ũ2

cr)
instead of (43). The

last formula implies that the inequality zi − 2Ũ2
cr > 0

or Ũcr <
√

zi

2 =
√

2
2

√
zi ≈ 1.4142

2

√
zi = 0.7071

√
zi,

(zi = 1, 2, ...) must be satisfied.
We note that, in the case of the Boltzmann

distribution of electrons at Ti = 0 [1, 2], the equations
for Ũcr take the form 1 − zi/(2Ũ2

cr) = 0. Therefore,
Ũcr =

√
2

2

√
zi ≈ 0.7071

√
zi.

With regard for the deviation of a distribution of
electrons from the Boltzmann one, we have, respectively,

exp


− 1

mi

(
2Ũ3

cr

zi − 2Ũ2
cr

)2

 = Ũcr

√
π

mi
×

×

1 + erf

2Ũ3
cr√

mi

(
zi − 2Ũ2

cr

)

 , Ũcr ∈

(
0;

√
zi

2

]
. (45)

On the construction of an approximate solution of
problem (24)–(27), we may use various methods [6–10].
In particular, the exact solution of the given problem is
given implicitly in the form (40). With regard for the
dependence of x on ϕ and parameters of the problem,
formula (40) takes the form

x
(
ϕ;ϕ0, Ũ , Ti

)
=

ϕ0∫

ϕ

dξ√
2

∫ ξ

0
f(ζ; Ũ , Ti)dζ

=

ϕ0∫

ϕ

F (ξ)dξ,

(46)

where F (ξ) = 1/
√

2
∫ ξ

0
f(ζ; Ũ , Ti)dζ, ξ ∈ [ϕ; ϕ0], ϕ ∈

[0; ϕ0].
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a b
Fig. 6. Dependence of the potential ϕ = ϕ

�
x; ϕ0, Ũ , Ti

�
on the coordinate x for various values of the parameters Ti and Ũ = Ũcr + δ.

(а): Ti = 0; (b): Ti = 1, 1 – δ = 10−4; 2 – 10−3; 3 – 10−2; 4 – 10−1; 5 – 1; 6 – 5; 7 – 10

Let ϕn = nhϕ, hϕ = ϕ0/N, n = 0, 1, ..., N ;

xn(ϕ0) = x(ϕn; ϕ0) =
ϕ0∫
ϕ

F (ξ)dξ, n = 0, 1, ..., N ;

x0(ϕ0) =
ϕ0∫
0

F (ξ)dξ = +∞, xN (ϕ0) = 0,

xn(ϕ0) = xn+1(ϕ0)+
ϕn+1∫
ϕn

F (ξ)dξ, n = N−1, N−2, .., 1.

Thus, for the calculation of xn, we have the
recurrence process

xn(ϕ0) = In(ϕ0, Ũ , Ti) + xn+1(ϕ0),

n = N − 1, N − 2, ..., 1; xN (ϕ0) = 0, (47)

where In(ϕ0, Ũ , Ti) =
ϕn+1∫
ϕn

F (ξ; ϕ0, Ũ , Ti)dξ, n =

= 1, 2, ..., N − 1; I1 =
ϕ2∫
ϕ1

F (ξ)dξ, IN−1 =
ϕ0∫

ϕN−1

F (ξ)dξ;

In =
ϕn+1∫
ϕn

F (ξ) dξ ≈ ϕn+1 − ϕn

2

∑M
k=1 AkF

(
ξ
(n)
k

)
dξ,

ξ
(n)
k =

ϕn+1 − ϕn

2
ηk +

ϕn+1 + ϕn

2
=

hϕ

2
ηk + ϕn +

hϕ

2
,

if ϕn+1 − ϕn = hϕ, ∀n = 1, N − 1; ηk ∈ [−1; 1],

k = 1,M ; F
(
ξ
(n)
k

)
= 1/

√√√√2
ξ
(n)
k∫
0

f
(
ζ;ϕ0, Ũ , Ti

)
dζ,

ξ
(n)
k∫
0

f(ζ)dζ ≈ ξ
(n)
k

2

∑M
i=1 Akf(ζi), where ζi = ξ

(n)
k

2 ηi+
ξ
(n)
k

2 ,

ηi ∈ [−1; 1]; k = 1,M ; n = 1, N − 1.

While solving problem (24)–(27) by the difference
method, we put the given problem in correspondence
with a nonlinear difference boundary-value problem
which approximates the differential problem to within
the order of the square of a step of discretization and
is a system of nonlinear equations, whose solution is
determined with the help of the Newton method.

On the solution of (24)–(27) by the method of
its reduction to a Cauchy problem, we put the given
boundary-value problem in correspondence with the
Cauchy problem with the initial conditions

ϕ(0) = ϕ0, ϕ′(0) = ϕ′0 = −

√√√√√2

ϕ0∫

0

f
(
ξ; ϕ0, Ũ , Ti

)
dξ .

(48)

We are interested in the solutions which are positive,
monotonically decreasing, and tend to zero as x → +∞.
Therefore, we take the “–” sign. An approximate solution
of the posed Cauchy problem can be found also by one
of the well-known methods, for example, by the Runge–
Kutta method, by reducing it to an implicit difference
scheme with the following use of one of the iteration
methods, etc. [6–9].

Let Ũ < Ũcr. Then the equation f
(
ϕ;ϕ0, Ũ , Ti

)
= 0,

ϕ ∈
[
0;ϕ0(Ũ

]
, has the root ϕ = ϕc(Ũ) 6= 0 in addition

to the root ϕ = 0. That is, f
[
ϕc(Ũ); ϕ0(Ũ), Ũ , Ti

]
= 0.

We can show that, in this case, ϕ(x) → ϕc as x → +∞,
which does not correspond to the conditions of the
boundary-value problem. If Ũ → Ũcr, then ϕc → 0.
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Fig. 7. Plots of the potentials ϕ in the case where Ti = 0 and for
various Ũ . 1 – Ũ = Ũcr ≈ 0.7037; 2 – Ũ ≈ 1.2188; 3 – 2.1111; 4 –
0.4976; 5 – 0.3147

a

b
Fig. 8. Dependence of the total current (j0 = (Je(0) + Ji(0))/Jth)

passing across the electrode surface on the field potential on
the electrode surface (ϕ0 = −eΦ/Te) for various values of the
parameters Ti and Ũ = Ũcr + δ. (а): Ti = 0; (b): Ti = 1, 1 – 0; 2 –
10−4; 3 – 10−3; 4 – 10−2; 5 – 10−1; 6 – 1

Fig. 9. Dependence of the total current (j0) passing across the
electrode surface on the field on the electrode surface (ϕ0) for
various values of the parameter Ti and for Ũ = 0.70369 ≈ Ũcr(0),

1 – 0; 2 – 1

6. Numerical Analysis and Conclusions

On the execution of numerical calculations, we used
solutions of problem (25)–(27) which were obtained
by different methods. In this case, we have considered
the cases of both a floating potential of the electrode
[condition (24)] and a fixed potential. In the latter case,
ϕ0 was assumed to be given. The typical dependences
of the potential for various values of the temperature
of ions and the drift velocity are presented in Figs.
6, 7. Figures 6,а,b correspond to the floating potential
of an electrode, and Fig. 7 does to a fixed one. The
dependences of the current on the electrode potential
are given in Figs. 6–9. The numerical results obtained
on the basis of various calculation schemes which realize
the obtained solutions coincide with a sufficiently high
accuracy. This enhances the reliability of the obtained
numerical results. Their analysis shows:

1. For every value of the temperature of ions Ti,
there exists the own critical velocity of a drift of ions Ũcr

which is a lower bound for the drift velocity, beginning
from which problem (25)–(27) has nonzero solutions
satisfying the condition of monotonous tending to zero
with increase in the distance from the electrode plane.
The dependence of Ũcr on the temperature of ions Ti is
shown in Fig. 4. If Ũ < Ũcr, then, under condition (34)
(a floating potential of the electrode) as x → +∞, the
potential has a finite value or can be nonmonotonous in
the case of a fixed potential of the electrode (Fig. 7).

2. A numerical value of the critical velocity of a drift
of ions decreases with increase in the temperature of ions
Ti. It reaches the greatest value at Ti = 0 (Fig. 4).
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3. Near the critical velocity of a drift, the field
potentials – solutions of problem (24)–(27) – coincide
for different Ti with a sufficiently high accuracy, i.e. they
depend weakly on the temperature of ions. On the other
hand, the field potentials for different Ti and for the same
drift velocity can significantly differ from one another.

4. Near the critical velocity of a drift, the total
current (j0 = j(0) = je(0) + ji(0)), which passes across
the electrode surface, depends on the field potential
on the electrode surface ϕ0, on the drift velocity of
ions, and weakly depends on the temperature of ions
Ti (Fig. 8(а,b)).
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ПРО ВПЛИВ ТЕПЛОВОГО РУХУ IОНIВ
НА КРИТЕРIЙ БОМА

А.Г. Загороднiй, I.В. Рогаль

Р е з ю м е

Критерiю Бома належить одне з основоположних мiсць при
розглядi проблеми формування приелектродного шару плаз-
ми. Цей критерiй сформульовано у припущеннi, що iони плаз-
ми мають нульову температуру, а розподiл електронiв є больц-
мановим. У цiй роботi дослiджено вплив теплового руху iонiв
на умову екранування плоского електрода, що перебуває як
пiд плаваючим, так i пiд заданим потенцiалом. Показано, що
тепловий рух iонiв приводить до зменшення критичногшо зна-
чення швидкостi iонiв.
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