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A generalized approach, which takes into account the influence
of the discreteness of an ionic subsystem for investigation of ionic
and electronic structures of a semibounded metal is proposed. The
generalized equation of electron diffusion for an inhomogeneous
electron gas is obtained on the basis of the generalized “jellium”
model. The calculation of quasiequilibrium partition function by
the method of functional integration in the case of the local
pseudopotential of the electron-ion interaction of a metal surface
is presented. The connection of quasiequilibrium distribution
functions of electrons with the electrochemical potential by proper
cumulant averages of the “jellium” model is obtained. In the linear
approximation by electrochemical potential, the relation with the
time-dependent density functional theory (TDDFT) is obtained.

1. Introduction

Investigations of the structure and properties of metals’
surface and its reconstruction in various catalytic
processes are a topical problem in the physics of
surface. Atoms situated near a metal surface undergo
the action of the other forces as compared with atoms
in depth of a metal. In the processes of absorption,
desorption, and surface diffusion, this fact results in
the relaxation or reconstruction of a crystal lattice in
a layer near to the surface. Changes of the atomic
structure near the surface also results in changes of
the electronic structure and forces between atoms.
This means that, in the presence of the processes
of absorption and surface diffusion, electronic and

ionic structures should be calculated self-consistently.
For this type of calculations, the method of density
functional [1–3], the method of molecular orbitals [4],
and the quantum Monte-Carlo methods [5] are the
most convenient to be used. For the description of
nonequilibrium characteristics of half-bounded electron
systems and various condensed systems in the last ten
years, TDDFT is actively developed and widely used
[6–29]. The problems and tasks of quantum chemistry,
the perspectives of development, and achievements of
TDDFT are presented, for example, in [26]. TDDFT
is based on the Kohn–Sham density functional theory
(DFT) [1, 30–34]. In this theory with the use of
the Runge–Gross theorem [6], the complicated time-
dependent Schrödinger equation for many particles
is transformed in a system of Kohn–Sham time-
dependent one-particle equations that describe a system
of N non-interacting particles, which are placed in
external time-dependent potentials vs(r, t), produce
the same density ρ(r, t), and can be solved more
faster. Almost in every time-dependent Kohn–Sham
calculation for the approximation of the unknown time-
dependent exchange-correlation potential, the adiabatic
local density approximation (ALDA) is used. In [9],
on the basis of the formulation of a time-dependent
density current theory in the ALDA, a relation between
the generalized viscosity coefficients and exchange-
correlation functions is found. In [18] within TDDFT,
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a generalized hydrodynamic approach is used to obtain
a relation of the exchange-correlation part of vector
potential with the viscosity tensor, based on the Landau
theory of the Fermi liquid. The description of memory
effects in TDDFT, by considering initial states, is
presented in [10, 14]. Simple approximated solutions
of linear response equations in TDDFT are obtained
in [35]. The problems concerning the formulation of
Kohn–Sham time-dependent density function theory [6],
radical Kohn–Sham formulation [20], and reformulation
of TDDFT [36,37] are critically analyzed in [29].

There are various theoretical approaches [38,
39] developed for the description of equilibrium
characteristics and nonequilibrium processes (diffusion,
absorption, desorption) for spatially inhomogeneous
electron-atomic systems. It is important that both
DFT and TDDFT are based on the Kohn–Sham’s idea
and they have an identical strategy of investigations,
however, they meet some difficulties [29]. A self-
consistent description of atomic and electron subsystems
within the investigation of nonequilibrium processes
is presented in [38], where the kinetic description
of electron processes is carried out. It is obvious
that, in the processes of absorption, desorption, and
surface diffusion, a metal surface is reconstructed
with changing the nonequilibrium properties of both
electronic and ionic subsystems. Thus, electron diffusion,
heat-viscosity, and electromagnetic properties of an
electron subsystem are changed in the field of ions
of a metal surface. A generalized approach, which
takes the influence of discreteness of an ion subsystem
into account and is based on the “jellium” model
[41, 42], is proposed in [40] for the investigation of
ionic and electron structures of a semibounded metal.
The influence of the discreteness of the ion density
on the characteristics of a semibounded “jellium”
was developed by means of the construction of the
perturbation theory with a pseudopotential of electron-
ion interaction in [34, 43–45], where, however, a linear
response of electron density to a lattice potential does
not take the inhomogeneity of an electron subsystem
into account. In our approach, we show how the
surface potential is formed and present a calculation
of the grand partition function for the generalized
model with cumulant averages of the “jellium” model
[41, 42]. In the present paper, the generalized equation
of electron diffusion for an inhomogeneous electron gas,
based on the “jellium” model, is obtained, and the
calculation of the quasiequilibrium partition function
by means of the functional integration method with
a local pseudopotential of electron-ion interaction

of a metal surface is presented. The relation of
quasiequilibrium distribution functions of electrons with
the electrochemical potential via the corresponding
cumulant averages of the “jellium” model [41, 42]
and the generalized equation of electron diffusion
in the linear approximation with regard for a
nonequilibrium electrochemical potential are obtained.
In the same approximation, the equation for the time
correlation function “density-density”, which determines
a dynamical structure factor of the electron subsystem of
a semibounded metal, is presented. The relation of this
electron diffusion model in the linear approximation to
TDDFT [6–12] is shown.

2. Generalized “jellium” Model. Calculation of
the Great Partition Function

2.1. Hamiltonian of the system

To take the influence of the discreteness of the ion
subsystem of a semibounded metal into account, the
Hamiltonian of the system should be written as

H = − ~
2

2m

N∑

i=1

∆i +
1
2

N∑

i6=j=1

e2

|ri − rj |+

+
1
2

Nion∑

i 6=j=1

(Ze)2

|Ri −Rj | +
N∑

i=1

Nion∑

j=1

ew(ri,Rj), (1)

where the first and the second terms of the equation
denote the kinetic energy and the potential energy of
the interaction between electrons, respectively, the third
term is the potential energy of the interaction between
ions, and the last denotes the potential energy of the
interaction between electrons and ions. Electrons with
charge e, mass m, and coordinates ri are in the field of
ions, i = 1, . . . , N , Nion denotes the number of ions, Ze
is the ion charge, and Rj (−∞ < Xj , Yj < +∞, Zj 6 z0,
Z0 = const, z = Z0 is the dividing surface) stands
for the radius-vector of the ion, j = 1, . . . , Nion. We
consider ions as immobile in the volume of the system
V = SL, where S denotes the square of the surface of the
semibounded metal, L determines the range of change
of an electron coordinate in the normal direction to the
metal surface: z ∈ (−L/2, +L/2), S →∞, L →∞. The
system obeys the electro-neutrality condition

ZNion = N. (2)

Let us specify the Hamiltonian of the “jellium” model
Hjell investigated in [41,42]. This model is considered as
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the basic one for the description of thermodynamical and
structure characteristics of a semibounded metal. The
Hamiltonian of this system can be presented as

H = Hjell+
N∑

i=1




Nion∑

j=1

ewps(ri −Rj) +
∫

dR
eρjell(R)
|ri −R|


+

+
N∑

i=1

Vion(ri) +
1
2

Nion∑

i 6=j=1

(Ze)2

|Ri −Rj |−

− (eN)2

2V 2

∫
dR

∫
dR′ 1

|R−R′| , (3)

where

Hjell = Hunif
jell +

N∑

i=1

Vjell(ri), (4)

Hunif
jell = − ~

2

2m

N∑

i=1

∆i +
1
2

N∑

i 6=j=1

e2

|ri − rj |+

+
(eN)2

2V 2

∫
dR

∫
dR′ 1

|R−R′| −
e2N

V

N∑

i=1

∫
dR

1
|ri −R|

(5)

is the Hamiltonian of a homogeneous “jellium”,

Vjell(ri) = e

∫
dR

eN/V − ρjell(R)
|ri −R| (6)

means the term of the surface potential which is formed
by the semibounded “jellium”;

ρjell(R) ≡ ρjell(Z) = ρ0θ(−d− Z), ρ0 =
eN

SL/2
(7)

denotes the distribution of the ion density in the
“jellium” model, and parameter d is determined by the
electro-neutrality condition.

Then the potential of the ion-electron interaction
reads

w(ri,Rj) = wps(ri −Rj) + ∆w(ri,Rj), (8)

where wps(ri−Rj) is the periodic potential of interaction
between electrons in the case of a semibounded metal
(pseudopotential), ∆w(ri,Rj) denotes the deviation of

the potential of the ion-electron interaction of the
semibounded metal from the periodic potential. Then

Vion(ri) =
Nion∑

j=1

e∆w(ri,Rj) (9)

is the term of the surface potential which is formed with
the deviation ∆w(ri,Rj) of the real potential of the ion-
electron interaction of the semibounded metal w(ri,Rj)
from the potential of a nonbounded metal. As a result of
the specifying of Hunif

jell , the Hamiltonian of the system
can be written as

H = Hunif
jell +

N∑

i=1

(Nion∑

j=1

ewps(ri −Rj)+

+
∫

dR
eρjell(R)
|ri −R|

)
+

N∑

i=1

V (ri)+

+
1
2

Nion∑

i 6=j=1

(Ze)2

|Ri −Rj | −
(eN)2

2V 2

∫
dR

∫
dR′ 1

|R−R′| ,

(10)

where

V (ri) = Vjell(ri) + Vion(ri) (11)

denotes the total surface potential which acts
on electrons. The potential of the ion-electron
interaction can be modeled by means of a local model
pseudopotential

w(ri −Rj) = − Ze

|ri −Rj | + f(ri −Rj). (12)

The obvious form of the functions f(ri − Rj) depends
on the chosen local model pseudopotential. We consider
that the surface potential V (r) is the function of the
electron coordinate in the direction normal to the
dividing surface:

V (r) = V (z).

Then, in the second-quantization representation based
on the wave function formalism, we have

Ψp,α(r) =
1√
S

eipr||ϕα(z), r = (r||, z),
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where ϕα(z) and εα denote eigenfunctions and
eigenvalues of the Schrödinger equation
[
− ~

2

2m

d2

dz2
+ V (z)

]
ϕα(z) = εαϕα(z).

By performing the Fourier transformation of the electron
density, we present Hamiltonian (10) as

H =
∑
p,α

Eα(p)a†α(p)aα(p)+

+
1

2SL

∑
q

′ ∑

k

νk(q)ρk(q)ρ−k(−q)−

−ZNion

SL

∑
q

′ ∑

k

νk(q)Sk(q)ρk(q)+

+
eNion

SL

∑

q,k

Sk(q)fk(q)ρk(q)− N

2S

∑
q

′
ν(q|0)+

+
1
2

Nion∑

i 6=j=1

1
S

∑
q

′Z2ν(q|Zi − Zj)eiq(R||i−R||j), (13)

where the prime near the sum means, due to the electro-
neutrality condition (2), the absence of terms with
q = 0, νk(q) = 4πe2/(q2 + k2) and fk(q) are the
three-dimensional Fourier transforms of the Coulomb
potential and a local term of the pseudopotential (12):

e2

|ri − rj | =
1

SL

∑

q,k

νk(q)eiq(r||i−r||j)+ik(zi−zj),

f(ri −Rj) =
1

SL

∑

q,k

fk(q)eiq(r||i−R||j)+ik(zi−Zj),

R||j = (Xj , Yj),R||j = (Xj , Yj);

ν(q|z) = 2πe2e−q|z|/q denote the two-dimensional
Fourier transform of the Coulomb potential:

e2

r
=

1
S

∑
q

ν(q|z)e−qr|| ,

Eα(p) =
~2p2

2m
+ εα is the electron energy in a state

(p, α),

Sk(q) =
1

Nion

Nion∑

j=1

e−iqR||j−ikZj (14)

is the structure factor of the ion subsystem, and the
Fourier transform of the electron density looks as

ρk(q) =
∑

p,α1,α2

〈α1|eikz|α2〉a†α1
(p)aα2

(p− q), (15)

where

〈α1| . . . |α2〉 =
∫

dz ϕ∗α1
(z) . . . ϕα2(z).

In the calculation of thermodynamical potential for a
spatially inhomogeneous electron gas in the generalized
“jellium model (13), we present the great partition
function as

Ξ = Sp e−β(H−µN), (16)

where µ denotes the chemical potential of the electron
subsystem. Considering (13), we obtain

Ξ = Ce−βHiiSp e−βH′
0−βHee−βHei , (17)

where

C = exp

(
β

N

2S

∑
q

′
ν(q|0)

)
,

Hii =
1
2

Nion∑

i6=j=1

1
S

∑
q

′Z2ν(q|Zi − Zj)eiq(R||i−R||j)

is the Hamiltonian of the ion-ion interaction,

H ′
0 =

∑
p,α

(
Eα(p)− µ

)
a†α(p)aα(p)

is the kinetic part of the Hamiltonian of electrons;

Hee =
1

2SL

∑
q

′ ∑

k

νk(q)ρk(q)ρ−k(−q)

denotes the Hamiltonian of interaction between electrons
in the representation of collective variables;

Hei = −ZNion

SL

∑
q

′ ∑

k

νk(q)Sk(q)ρk(q)+
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+
eNion

SL

∑

q,k

Sk(q)fk(q)ρk(q) (18)

is the Hamiltonian of the ion-electron interaction in the
representation of collective variables with modulation of
the ion-electron interaction by the local pseudopoten-
tial (12).

Then using the interaction representation, the great
partition function can be written as

Ξ = Ce−βHiiΞ0〈TS(β)〉0, (19)

where

Ξ0 = Sp e−βH′
0 (20)

denotes the partition function of the non-interacting
semibounded ”jellium”, 〈. . . 〉0 = 1

Ξ0
Sp (e−βH′

0 . . . ).

S(β) = S1(β)S2(β),

S1(β) = exp
[
− 1

2SL

β∫

0

dβ′×

×
∑
q

′ ∑

k

νk(q)ρk(q|β′)ρ−k(−q|β′)
]

(21)

is the contribution from the interaction between
electrons;

S2(β)=exp
[ZNion

SL

β∫

0

dβ′
∑
q

′ ∑

k

νk(q)Sk(q)ρk(q|β′)−

−eNion

SL

β∫

0

dβ′
∑

q,k

Sk(q)fk(q)ρk(q|β′)
]

(22)

is the ion-electron contribution, where

ρk(q|β′) = eβ′H′
0ρk(q)e−β′H′

0 .

Taking wk(q) = −Zνk(q)+efk(q), for S2(β), we obtain

S2(β) = exp


−Nion

SL

β∫

0

dβ′
∑

q,k

wk(q)Sk(q)ρk(q|β′)

 .

(23)

By selecting the Hamiltonian of the interacting
semibounded “jellium” from (19), its characteristics

being considered in [41, 42], the great partition function
(19) can be presented via averages of the selected
Hamiltonian as

Ξ = Ce−βHiiΞjell〈S2(β)〉jell, (24)

where

Ξjell = Sp
(
e−βH′

0TS1(β)
)

means the partition function of the “jellium”,

〈. . . 〉jell =
1

Ξjell
Sp

(
e−βH′

0TS1(β) . . .
)

. (25)

Having passed from the temperature representation
to the frequency representation, we have, according to
the rule (A = ρ):

Ak(q|ν) =
1
β

β∫

0

dβ′eiνβ′Ak(q|β′),

Ak(q|β′) =
∑

ν

e−iνβ′Ak(q|ν),

where ν denotes the Bose frequency. For 〈S2(β)〉jell, one
can obtain

〈S2(β)〉jell = exp
[ ∞∑

n=1

(
βNion

SL

)n in

n!
×

×
∑

q1,... ,qn

∑

k1,... ,kn

Sk1(q1)wk1(q1) . . . Skn(qn)wkn(qn)×

×Mk1,... ,kn(q1, . . . ,qn)
]
, (26)

where

Mk1,... ,kn(q1, . . . ,qn) = in〈ρk1(q1|0) . . . ρkn(qn|0)〉jell,c.

The irreducible averages are calculated by using the
nonequilibrium statistical operator of the “jellium” model
as a reference frame [40]. Analogously to [42], the
s-particle distribution function of electrons can be
presented in the form

Fs(r1, . . . , rn) = Fs(r1, . . . , rn)jell exp
[∑

n>1

in

n!

(
βNi

SL

)n

×
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×
∑

q1,... ,qn

′ ∑

k1,... ,kn

wk1(q1)Sk1(q1)wkn
(qn)Skn

(qn)×

× . . . ∆M
(s)
−k1,... ,−kn

(−q1, . . . ,−qn)
]
, (27)

where

∆M
(s)
k1,... ,kn

(q1, . . . ,qn) = M
(s)
k1,... ,kn

(q1, . . . ,qn)−

−Mk1,... ,kn
(q1, . . . ,qn), (28)

the calculation of this type of averages is given in
[41,42,46].

Thus, using the “jellium” model as a reference
frame, we obtain a factorized representation (27) of
the partition function and the distribution function
of electrons. One of the multipliers corresponds to
the “jellium” model and another one considers the
discreteness of the ion subsystem.

3. Generalized Equation of Electron Diffusion
of an Inhomogeneous Electron Gas of a
Metal Surface

For the description of electron diffusion processes in the
presented model, a mean value of the electron density
operator related to the corresponding inhomogeneous
electrical field can be chosen as the main parameter of
the reduced description

∇ ·E(r; t) = e〈%(r)〉t, (29)

where 〈(...)〉t = Sp (...)ρ(t), ρ(t) denotes the
nonequilibrium statistical operator of the generalized
“jellium” model obeying the Liouville equation with
Hamiltonian (13). Taking the chosen geometry of the
model into account, a value of 〈%(r)〉t corresponds to
the mixed Fourier transform 〈ρk(q)〉t. To found ρ(t),
the method of nonequilibrium statistical operator by
Zubarev [47, 48] is applied to a solution of the Liouville
equation with regard for the projection technique. In this
approach, the solution of the equation can be presented
in the general form as

ρ(t) = ρq(t) +

t∫

−∞
eε(t′−t)Tq(t, t′)×

×(1− Pq(t′))iLNρq(t′)dt′, (30)

where

Tq(t, t′) = exp



−

t∫

t′

(1− Pq(t′′))iLNdt′′



 (31)

is the generalized evolution operator within the
projection technique. The quantity Pq(t) stands for the
Kawasaki–Gunton projection operator which acts on
statistical operators according to

Pq(t)ρ′ = ρq(t) Sp (ρ′) +
∑

n

(
Sp (ρ′P̂n)−

−Sp (ρ′)〈P̂n〉t
)

δρq(t)
δ〈P̂n〉t

, (32)

and has the following properties:

Pq(t)ρ(t′) = ρq(t), Pq(t)ρq(t′) = ρq(t),

Pq(t)Pq(t′) = Pq(t), Pq(t)
∂ρ(t)
∂t

=
∂ρq(t)

∂t
.

To found the proper form of the nonequilibrium
statistical operator ρ(t) of the inhomogeneous electron
gas, we need to set the auxiliary statistical operator ρq(t)
which is determined by the Gibbs method with a fixed
parameter of the reduced description 〈ρk(q)〉t and obeys
the normalization condition Sp ρq(t) = 1. In the case
under consideration, the auxiliary statistical operator
has the following form:

ρq(t) = exp(−Φ(t)− β(H − 1
SL

∑

k

∑
q

µ̃k(q; t)ρk(q))).

(33)

Here, Φ(t) = ln Z(t) is the Massieu–Planck functional,
and Z(t) denotes the partition function of the
quasiequilibrium statistical operator:

Z(t) = Sp exp

(
−β

(
H − 1

SL

∑

k

∑
q

µ̃k(q; t)ρk(q)

))
,

(34)

µ̃k(q; t) = µk(q; t) + eϕk(q; t) stands for the Fourier
transform of the electrochemical potential of electrons,
µk(q; t) stands for the Fourier transform of the chemical
potential of electrons, and ϕk(q; t) denotes the Fourier

ISSN 0503-1265. Ukr. J. Phys. 2007. V. 52, N 11 1101
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transform of a local electric potential. The quantity
µ̃k(q; t) can be found from the self-consistency condition

〈ρk(q)〉t = 〈ρk(q)〉tq, (35)

and the thermodynamical relations

δS(t)
δ〈ρk(q)〉t = −µk(q; t), (36)

δS(t)
δ〈eρk(q)〉t = −ϕk(q; t), (37)

where S(t) is the nonequilibrium entropy determined
according the Gibbs’ hypothesis as

S(t) = −Sp (ln ρq(t))ρq(t) = Φ(t) + β

(
〈H〉t−

−
∑

k

∑
q

µ̃k(q; t)〈ρk(q)〉t
)

=

= ln Z(t) + β(〈H〉t −
∑

k

∑
q

µk(q; t)〈ρk(q)〉t−

−
∑

k

∑
q

ϕk(q; t)〈eρk(q)〉t), (38)

and 〈eρk(q)〉t = e〈ρk(q)〉t denotes the mean electron
charge density. According to the structure of the
nonequilibrium entropy, the transport processes in the
system in the accepted model are predetermined by
gradients of the local values of the chemical and
electrical potentials. According to the structure of the
quasiequilibrium statistical operator, the Kawasaki–
Ganton projection operator has the structure

Pq(t)ρ′ = (ρq(t)−
∑

k

∑
q

δρq(t)
δ〈ρk(q)〉t 〈ρk(q)〉tSp (ρ′))+

+
∑

k

∑
q

δρq(t)
δ〈ρk(q)〉t Sp (ρk(q)ρ′).

This structure will be manifested also in the action of
the operators

(1− Pq(t))iLNρq(t′) =
∑

k

∑
q

1∫

0

dτ×

×(ρq)τ (t′)P(t′)iLNρk(q)βµ̃k(q; t′)ρq(t′)1−τ =

=
∑

k

∑
q

1∫

0

dτ(ρq)τ (t′)P(t′)iLNρk(q)ρq(t′)1−τ δS(t′)
δ〈ρk(q)〉t′ ,

where P(t) is a Mori-like projection operator which acts
on the operators of dynamical quantities and can be
written down as

P(t′)Â = 〈Â〉tq +
∑

k

∑
q

δ〈Â〉tq
δ〈ρk(q)〉t′ (ρk(q)− 〈ρk(q)〉t′).

As seen from its structure, it depends on a form of
the quasiequilibrium statistical operator which includes
the quasiequilibrium partition function Z(t). By using
the quasiequilibrium statistical operator ρ(t) for the
parameter of the reduced description 〈ρk(q)〉t with
regard for the relation

∂

∂t
〈ρk(q)〉t = 〈iLρk(q)〉tq + 〈(1− P (t))iLρk(q)〉t,

we obtain the generalized quantum equation of electron
diffusion

∂

∂t
〈ρk(q)〉t = −

∑

k′

t∫

−∞
eε(t′−t)kq2D(kq; k′,−q; t, t′)k′×

×β(µk′(−q; t′) + eϕk′(−q; t′))dt′, (39)

where

kq2D(kq; k′,−q; t, t′)k′ = Sp
{

(1−P(t))iLρk(q)×

×Tq(t, t′)

1∫

0

dτρτ
q (t′)(1− P(t′))iLρk′(−q)ρ1−τ

q (t′)
}

;

(40)

and D(kq; k′,−q; t, t′) stands for the generalized
coefficient of electron diffusion. For its calculation, we
need to calculate the quasiequilibrium partition function
(34) of distribution (33).
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4. Calculation of Quasiequilibrium Partition
Function for the Inhomogeneous Electron
Gas within the Generalized “Jellium” Model

For the calculation of the quasiequilibrium partition
function (34), we use the functional integration method
developed for spatially inhomogeneous electron systems
in [41, 42]. Specifying the contribution of the collective
variables in Hamiltonian (13), Z(t) can be presented in
the particular case as a local potential:

Z(t) = Sp
{

exp
(
−β

(
H0 − 1

2S

∑
q

′
ν(q|0)+

+
1

2SL

∑

k,q

νk(q)ρk(q)ρ−k(−q)+

+
1

2SL

∑

k,q

B(q, k; t)ρ−k(−q)
))}

, (41)

where B(q, k; t) = NionSk(q)ωk(q) − µ̄k(q; t). Then, to
calculate Z(t), we specify the frame corresponding to the
“jellium” model:

Z(t) = exp

{
β

N

2S

∑
q

′
ν(q|0)

}
Zjell∆Z(t), (42)

where

Zjell = Sp {exp(−βHjell)} (43)

is the partition function of the “jellium” model
of inhomogeneous electron gas corresponding to the
equilibrium state calculated in [41,42].

∆Z(t) =
1

Zjell
Sp {exp(−βHjell)S(β; t)} = 〈S(β; t)〉jell,

(44)

S(β; t) = T exp


−

β∫

0

dβ′
1

SL

∑

k,q

B(q, k; t)ρ−k(−q; β′)


 ,

(45)

ρk(q; β′) = eβ′Hjellρk(q)e−β′Hjell . (46)

For the calculation of ∆Z(t), we use the cumulant
representation

∆Z(t) = exp
[∑

n=1

in

n!

(
β

SL

)n ∑
q1...qn

∑

k1....kn

B(q1, k1; t)×

× . . . B(qn, kn; t)M−k1...−kn
(−q1....− qn)

]
, (47)

where

Mk1....kn
(q1....qn) = in〈Tρk1(q1|0), ....ρkn

(qn|0)〉cjell
(48)

denotes the cumulant irreducible averages of
fluctuations of the electron density calculated by using
the equilibrium statistical operator of the “jellium”
model. In particular, the second cumulant has the
following structure:

Mk1,k2(q1,q2) = 〈ρk1(q1)ρk2(q2)〉jell−

−〈ρk1(q1)〉jell〈ρk2(q2)〉jell. (49)

It is related to the static structure factor
S(k1,q1; k2,q2) = 〈ρk1(q1)ρk2(q2)〉jell of the
inhomogeneous electron gas of the metal surface.

In the Gauss’ approximation, ∆Z(t) has the form

∆ZG(t) = exp
[
−1

2

(
β

SL

)2 ∑
q1q2

∑

k1k2

B(q1, k1; t)×

×B(q2, k2; t)M−k1,−k2(−q1,−q2)
]
, (50)

and it is expressed via the second cumulant of the
“jellium” model of inhomogeneous electron gas [41, 42].
According to the definition of the s-particle distribution
function of electrons [41,42], we get the quasiequilibrium
s-particle distribution functions of electrons, whose
structures are similar (27):

Fs(r1, . . . , rn; t) = Fs(r1, . . . , rn)jell×

× exp
[∑

n>1

in

n!

(
βNi

SL

)n ∑
q1,... ,qn

′ ∑

k1,... ,kn

B(q1, k1; t)×

× . . . B(qn, kn; t)∆M
(s)
−k1,... ,−kn

(−q1, . . . ,−qn)
]
, (51)
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where ∆M
(s)
−k1,... ,−kn

(−q1, . . . ,−qn) coincides with
(28). Equations (51) give the relation of the distribution
functions to the electrochemical potential µ̄k(q; t). From
this point of view, we obtain the self-consistent system
of the coupled generalized equation of electron diffusion
(39), the Maxwell equation (29), and Eq. (51). This
enables, in particular, to set the inverse problem
of calculation of the diffusion coefficients by using
the relation of the unary quasiequilibrium distribution
function (with regard for the self-consistency condition
(35)) to a nonequilibrium electrochemical potential with
corresponding relation (29). It is important that the
relation of the quasiequilibrium distribution functions
of electrons to the electrochemical potential in (51)
is expressed via the corresponding cumulant averages
of the “jellium” model. Thus, for the corresponding
approximation of the quasiequilibrium distribution
functions (51) related to the approximation of the
quasiequilibrium partition function in the generalized
“jellium” model [41, 42], by calculating the cumulant
averages (49) and by performing the corresponding
approximate calculation of the generalized diffusion
coefficient (40), we obtain the self-consistent system of
equations (39), (29), (51). The obtained system enables
us to make calculation of a nonequilibrium profile of
the electron density and a nonequilibrium value of the
electrical field. This self-consistent system of equations
generalizes the time-dependent density functional theory
[6–10] with the corresponding approximations in
finding the Kohn–Sham Hamiltonian in the TDDFT
formulation. Indeed, the Kohn–Sham Hamiltonian in the
TDDFT formulation has the form

ĤKS(t) = ĤDFT
KS +

∫
drv1(r; t)+

+vH,1(r; t) + vxc,1(r; t)]ρ̂(r), (52)

where ĤDFT
KS denotes the Kohn–Sham Hamiltonian in

the DFT formulation, v1(r; t) is the periodic potential
related to the “density-density” function of a response
v1(r; t):

ρ1(r; ω) =
∫

dr′χ(r, r′;ω)v1(r′; ω),

ρ(r; t) = ρDFT(r) + ρ1(r;ω)e−iωt + c.c.,

ρ(r; t) = 〈ρ(r; t)〉t,

vH,1(r; t) = e2

∫
dr′

ρ(r′; t)
|r− r′|

is the Hartree potential, ρDFT(r) denotes a mean
spatially inhomogeneous value of electron density in
DFT,

vxc,1(r; t) = vxc,DFT(r)+

+

t∫

−∞
dt′

∫
dr′fxc(r, r′; t− t′)ρ1(r′; t) (53)

is a time-dependent exchange-correlation potential
related to the kernel of exchange-correlation dissipative
processes:

fxc(r, r′; t− t′) =
δvxc,1[ρ](r; t)

δρ(r′; t′)
|ρDFT(r),

where vxc,DFT(r) denotes an exchange-correlation
potential in DFT.

In a linear approximation for the generalized
equation of electron diffusion, according to the deviation
of the nonequilibrium electrochemical potential from its
equilibrium value δµ̃k(q; t) = µ̃k(q; t) − µ̃k(q), one can
obtain, in the closed form,

∂

∂t
δ〈ρk(q)〉t = −

∑

k′

t∫

−∞
eε(t′−t)kq2×

×D̃(kq; k′,−q; t, t′)k′δ〈ρk′(q)〉t′dt′, (54)

where δ〈ρk(q)〉t = 〈ρk(q)〉t − 〈ρk(q)〉0 , and
〈ρk(q)〉0 means the spatially inhomogeneous value of
electron density calculated by using the nonequilibrium
statistical operator of the generalized “jellium” model
and can be found in (27). In this case, δ〈ρk(q)〉t is related
to δµ̃k(q; t) = µ̃k(q; t)− µ̃k(q) by the expression

δ〈ρk(q)〉t = −
∑

k′
χ(k,q, k′,−q)δµ̃k′(q; t) (55)

which follows from the self-consistency condition (35)
µ̃k(q) = µk(q)+ eϕk(q), where µk(q) and ϕk(q) are the
local equilibrium values of the electrochemical potential
and the average scalar potential of the inhomogeneous
electron gas,

χ(k,q, k′,−q) = 〈ρk(q)

1∫

0

ρξ
0ρk′(−q)ρ−ξ

0 〉0dξ (56)
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denotes the Kubo “density-density” correlation function,

kq2D̃(kq; k′,−q; t, t′)k′=
∑

k′′
Sp {(1− P0)iLρk(q)×

×T0(t, t′)

1∫

0

dτρτ
0(1− P0)iLρk′′(−q)ρ1−τ

0 }×

×χ−1(k′′,q, k′,−q)

is the renormalized spatially inhomogeneous diffusion
coefficient, P0 stands for a Mori-like projection operator
constructed on ρk(q), and T0(t, t′) denotes a time
evolution operator with the corresponding Mori-like
operator. Based on Eq. (54) and using the well-known
method described in [49], one can obtain the equation
for the time correlation function “density-density”:

Φρρ(k,q, k′,−q; t) = 〈ρk(q; t)ρk′(−q)〉0, (57)

∂

∂t
Φρρ(k,q, k′,−q; t) = −

∑

k′′

t∫

−∞
eε(t′−t)kq2×

×D̃(kq; k′′,−q; t, t′)k′′Φρρ(k′′,q, k′,−q; t′)dt′. (58)

By separating the terms ϕ1,k(q), ϕ1,k(q; t), the Hartree
terms ϕH,k(q) and ϕH,k(q; t), and the exchange-
correlation terms ϕxc,k(q) and ϕxc,k(q; t), according
to Eqs. (54), (55) and (52), (53) in the frequency
representation in the Fourier transforms ϕk(q) and
ϕk(q; t) of the corresponding scalar potentials (v(r)
(DFT) and v(r; t) (TDDFT), one can establish the
connection of the generalized diffusion coefficient with
the kernel of exchange-correlation dissipative processes.
Indeed, Eq. (53) can be represented as

δvxc,1(r; t) =

t∫

−∞
dt′

∫
dr′fxc(r, r′; t− t′)δρ1(r′; t), (59)

where δvxc,1(r; t) = vxc,1(r; t)−vxc,DFT (r) ч δρ1(r′; t) =
ρ1(r′; t)− ρDFT (r). Then, by applying the time Fourier
transformation to Eqs. (59) and (54) and the (k,q)
Fourier transformation to (59),

δvxc,k(q;ω) =
∑

k′
fxc(k, k′q, ω)δρk′(q; ω), (60)

iωδρk(q; ω) = −
∑

k′
kq2D̃(kq; k′,−q;ω)k′δρk′(q; ω),

(61)

we obtain the relation of δvxc,k(q;ω) and fxc(k, k′q, ω)
to the generalized diffusion coefficient D̃(kq; k′,−q; ω).

5. Conclusions

Thus, we have presented the statistical theory of the
processes of electron diffusion for the electron subsystem
on the basis of the generalized “jellium” model that
considers the discreteness of the ion subsystem of a
semibounded metal. In this approach, the calculation of
the great partition function and the partition function of
a quasiequilibrium distribution of the electron subsystem
is executed by means of the functional integration
method via the corresponding cumulant averages of
the “jellium” model. Thus, this enables us to obtain
the analytical relations for the spatially inhomogeneous
equilibrium s-particle functions and their relation to
the quasiequilibrium distribution functions for the
electron subsystem. Moreover, using the pair-correlation
approximation with s = 1 in (51), one can obtain the
relation

F1(r1; t) = ρ(r1; t) = F1(r1)jell×

× exp[
i

1!
(
βNi

SL
)
∑
q1

∑

k1

B(q1, k1; t)∆M
(1)
−k1

(−q1)], (62)

between the nonequilibrium mean value of electron
density of a semibounded metal and the electrochemical
potential via the mean values F1(r1)jell = ρjell(r1),
∆M

(1)
−k1

(−q1) which are calculated in [41, 42].
The electrochemical potential is related to ρ(r1; t)
by the generalized diffusion equation (39), which
enables us to calculate the spatially inhomogeneous
time-dependent diffusion coefficient of the electron
subsystem. Furthermore, relations (51) enable one to
calculate the binary and higher-order quasiequilibrium
structure distribution functions as a function of the
electrochemical potential related to ρ(r1; t) by Eq. (39).
Thus, we have obtained a self-consistent scheme of
calculation of the time-dependent characteristics via
the equilibrium structure distribution functions of a
semibounded metal [41, 42]. This approach enables one
to describe only the electron diffusion processes caused
by the gradients of the chemical potential of electrons
and by the potential term of the electrical field related to
the gradient of the scalar electrical potential. To describe
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the heat-viscosity and electromagnetic processes, we
need to have a more general formulation of statistical
theory based on the conservation laws of the number
density of particles, momentum, and total energy.
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СТАТИСТИЧНА ТЕОРIЯ ЕЛЕКТРОДИФУЗIЙНИХ
ПРОЦЕСIВ ЕЛЕКТРОННОЇ ПIДСИСТЕМИ
В УЗАГАЛЬНЕНIЙ МОДЕЛI “ЖЕЛЕ”

П.П. Костробiй, Б.М. Маркович, А.I. Василенко,
М.В. Токарчук

Р е з ю м е

Для дослiдження iонної та електронної структур напiвобме-
женого металу запропоновано узагальнений пiдхiд, що врахо-

вує вплив дискретностi iонної пiдсистеми, основою для якого є
модель напiвобмеженого “желе”. На основi такої моделi отри-
мано узагальнене рiвняння електродифузiї для неоднорiдно-
го електронного газу та представлено розрахунок квазiрiвно-
важної статистичної суми методом функцiонального iнтегру-
вання у випадку локального псевдопотенцiалу електрон-iонної
взаємодiї поверхнi металу. Отримано зв’язок квазiрiвноважних
функцiй розподiлу електронiв iз електрохiмiчним потенцiалом
через вiдповiднi кумулянтнi середнi моделi “желе”. У лiнiйному
наближенi за електрохiмiчним потенцiалом отримано зв’язок iз
часозалежною теорiєю функцiонала густини (TDDFT).
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