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It is shown that the new type of modulation instability of waves
on a surface of the ideal fluid, which has been predicted recently
by the author on the basis of a system of two equations of motion
for the amplitude of an enveloping first harmonic and the non-
oscillating component of a wave (the zero harmonic) within the
method of multiple scales and the Euler equations of motion, can
be reproduced with the help of the Zakharov equations for the
Fourier amplitudes of the first and zero harmonics in the frame of
the Hamiltonian formalism.

1. Introduction

Stokes [1] weakly nonlinear periodic solutions to the
nonlinear equations describing the wave motion in
conservative media are unstable to small harmonic
long-wave perturbations. This instability was originally
discovered for the waves on the surface of an ideal fluid
in works [2–7]. Now it is known as the Benjamin–Feir
modulation instability (BF MI). It was also found in
many other nonlinear media and is a general physical
phenomenon. As a result of works [3,4], it became clear
that the analogy between the behaviour of waves of
small amplitudes in various media can be explained by
a likeness of expansions of the Hamiltonian for waves
of the different nature in a power series in a small
nonlinearity and the further reformulation of the Euler
equations of motion for various waves in the formally
identical Hamilton equations. The Hamiltonian theory
of waves on the surface of a fluid and in plasma
became only the first examples the general program
[3, 4] on the expansion of a Hamiltonian formalism
of the nonlinear mechanics of particles onto the wave
motion in a continuous medium: the searching for
the pairs of canonical variables, the construction of a

Hamiltonian of waves in the physical and Fourier spaces,
the determination of the first nonlinear terms of its
expansion in a series, and the following derivation of
the simplified equations of motion for amplitudes of the
lowest harmonics as the Hamilton equations obtained
from the Hamiltonian expanded in a series with the
truncated upper harmonics (Zakharov equations). In
particular, the MI can be investigated with the use of the
equations obtained in [3,4] and the coefficients calculated
in the case of a fluid of infinite depth. Moreover, a
more general type of MI was found on the basis of the
interaction of N waves [8], e.g., type II MI [9] with five
interacting waves.

The theory [3, 4] was also applied to the case of a
fluid of finite depth [10]. Here, except for the strong
complication of calculations due to the dependence of
coefficients of the Hamiltonian on depth h, there is
also the basic difference consisting in the appearance of
a non-oscillating component (the zero harmonic which
varies, by the terminology of the method of multiple
scales, in slower time) among Fourier harmonics. Such
component is equal to zero in the case of infinite depth
in the considered order of precision. Upper harmonics
are removed from the Hamiltonian and equations of
motion by means of the reduction of the Hamiltonian.
But to make the same with the zero harmonics is possible
only at additional assumptions about the character of
its time dependence. The elimination of the equation
for the zero harmonic can lead to a decrease of the
order of the dispersion equation and, thus, to losses
of a part of its solutions. The necessity of an accurate
treatment of the equation for the zero harmonic was also
discussed outside of the Hamiltonian approach [11–14].
In [10], the reduction of a Hamiltonian was not executed
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and the equation for a zero harmonic was maintained,
which would allow one to consider a wide spectrum of
problems. However, the analytic evaluations involved
only the zone of wave vectors of perturbations κ small
in comparison with wave vectors of the first harmonic
k0. We may assume that, on the influence on the first
harmonic of a perturbation with the wave vector κ ∼ k0,
the 0-harmonic with a wave vector of 0 will respond as
a result of the nonlinear resonant interaction [8, 15] if it
is possible in the system and the law of conservation of
energy is realized.

Recently in works [16, 17] concerning the same
problem as in [10] but on the basis of the system obtained
[18, 19] from the Euler equations of motion and at the
refusal from additional artificial assumptions about a
character of the dependence of the zero harmonic on
time, it is discovered that, at κ ' k0, there is really a
band of MI. There arises a question whether this can be
obtained in the Hamiltonian approach [10]. Work [10]
is written is very shortly. We have checked up and
reproduce all the results of work [10] in more direct
way. At the same time, some little inaccuracies have
been specified. Their elimination allows us to describe
the type of MI indicated in [17] within the Hamiltonian
method as well.

2. The Hamiltonian, Its Formal Expansion in
an Integro-Power Series and Equations of
Motion in the Fourier Representation

In the Hamilton formalism for potential nonlinear
waves, the equation of motion for the “complex normal
coordinate” a(k, t) can be written in the form of the
Hamilton equation

∂a(−→k , t)
∂t

= −i
δH

δa(−→k , t)
(1)

and a complex conjugate equation. Here, −→
k is a

horizontal wave vector, and H the Hamiltonian of waves
as a functional of a(−→k ) and a(−→k ).

For waves on a surface of an ideal fluid, the profile
of a wave (an increase and a decrease of the surface)
η(−→x , t) is related to a(−→k , t) by the formula

η(−→x , t) =
1
2π

∫ √
ω(−→k )

2g
(a(−→k , t) + a(−−→k , t))ei

−→
k −→x d

−→
k ,

ω(−→k ) =
√

g|−→k | tanh(|−→k |h),

where g is the gravitational acceleration, h the depth of a
fluid, and −→x = (x, y) a vector of horizontal coordinates.

In the variables a(k), a(k), the Hamiltonian is
expanded in a series in degrees of a(k) and a(k) [10]:

H =

∞∫

−∞
ω(k) a(k) a(k) dk+

+

∞∫

−∞

∞∫

−∞

∞∫

−∞
V (k, k1, k2) ( a(k) a(k1) a(k2)+

+a(k) a(k1) a(k2) ) δ(k − k1 − k2) dk dk1 dk2+

+
1
3

∞∫

−∞

∞∫

−∞

∞∫

−∞
U(k, k1, k2) ( a(k) a(k1) a(k2)+

+a(k) a(k1) a(k2) ) δ(k + k1 + k2) dk dk1 dk2+

+
1
2

∞∫

−∞

∞∫

−∞

∞∫

−∞

∞∫

−∞
W (k, k1, k2, k3)a(k)a(k1)a(k2)a(k3)×

×δ(k + k1 − k2 − k3) dk dk1 dk2 dk3. (2)

In the cases of infinite depth and finite arbitrary one,
the expansion coefficients V (k, k1, k2), U(k, k1, k2),
W (k, k1, k2, k3) were determined in [3, 4] and [10],
respectively. We mention a number of works, for
example [20–29], devoted to both these coefficients and
the development of the approach. We will present the
relevant expressions following to the notations in [22]
for the further calculations and the establishment of a
correspondence with the nonlinear coefficients obtained
in [17] by the method of multiple scales:

V (k, k1, k2) = −V0(−k, k1, k2)−

−V0(−k, k2, k1) + V0(k1, k2, − k ),

U(k, k1, k2) = V0(k, k1, k2)+

+V0(k, k2, k1) + V0(k1, k2,k ),

V0(k, k1, k2) = −N0N1M2E
(3)
0,1 , (3)

E
(3)
0,1 = − 1

4π

(
(−→k · −→k 1) + q0q1

)
,

W (k, k1, k2, k3) =
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= W0(−k,− k1, k2, k3) + W0(k2, k3,−k, −k1)−

−W0(−k, k2,− k1, k3)−W0(− k1, k2,−k, k3)−

−W0(−k, k3, −k1, k2)−W0(−k1, k3,−k, k2),

W0(k, k1, k2, k3) = −2N0N1M2M3E
(4)
0,1,2,3,

E
(4)
0,1,2,3 = − 1

8(2π)2
(2|−→k |2q1 + 2|−→k 1|2q0−

−q0q1(q0+2 + q1+2 + q0+3 + q1+2)),

N(k) =
(

ω(k)
2q(k)

)1/2

, M(k) =
(

q(k)
2ω(k)

)1/2

,

q(k) = |−→k | tanh(|−→k |h).

Varying Hamiltonian (2), we obtain the equation of
motion for a(k, t) as the Hamilton equation unified in
the approximation ε3 for the standard Hamiltonian (2)
as

∂

∂t
a(k, t) + i[ω(k) a(k)+

+

∞∫

−∞
V (k, k − ξ, ξ)a(ξ) a(k − ξ) dξ+

+2

∞∫

−∞
V (k + ξ, k, ξ)a(ξ) a(k + ξ) dξ+

+

∞∫

−∞
U(−k − ξ, k, ξ) a(ξ) a(−k − ξ) dξ+

+

∞∫

−∞

∞∫

−∞
W (ξ + ζ − k, k, ξ, ζ)×

×a(ξ) a(ζ) a(ξ + ζ − k) dξdζ] = 0. (4)

3. Equation of Motion for the System of
Fourier Amplitudes of the First and Zero
Harmonics

Let the wave field represent a pulse of oscillating waves
with the central wave vector k0. Then the Fourier
amplitude of the first harmonic and its conjugate
quantity are concentrated near the wave vector k0,

a1 = a1(k, t) δ(k − k0). (5)

Nonlinear terms of the equations of motion generate the
non-oscillating component of a field (the zero harmonic)
and the second and higher harmonics. Their account
will be conducted by the expansion in the formal small
parameter ε:

a = εa1 + ε2(b + a2). (6)

The zero harmonic and its conjugate are concentrated
near the wave vector k = 0,

b → b(k, t) δ(k), b → b(k, t) δ(k), (7)

and the second harmonic

a2 = a21 + a22 (8)

consists of both a component of the wave field

a21 = a21(k, t) δ(k − 2 k0) (9)

concentrated near the wave vector 2k0 and that

a22 = a22(k, t) δ(k + 2 k0), (10)

concentrated near −2k0.

With the purpose to construct the approximate
equations of motion for the Fourier amplitudes of the
lowest harmonics a1 and b, we substitute (6) in (4) and
we collect terms with the same degrees of ε.

3.1. The first order in ε

In the first order in ε, we obtain the equations of motion
for the first harmonic in the linear approximation as

∂

∂t
a1(k) + i ω(k) a1(k) = 0. (11)
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3.2. The second order in ε

In the order of ε2, the equations of motion for the zero
and second harmonics look as

∂

∂t
a2(k) + i ω(k) a2(k) +

∂

∂t
b(k) + i ω(k) b(k)+

+i

∞∫

−∞
a1(ξ)V (k, k − ξ, ξ) a1(k − ξ) dξ+

+2 i

∞∫

−∞
a1(ξ)V (k + ξ, k, ξ) a1(k + ξ) dξ+

+i

∞∫

−∞
a1(ξ)U(k, −k − ξ, ξ) a1(−k − ξ) dξ = 0. (12)

In the first nonlinear term in (12), we consider that
it includes the first harmonics a1(ξ) and a1(k − ξ)
concentrated on the wave vector k0 (5). Therefore,
ξ = k0 and k − ξ = k0. Hence, the integration
variable ξ is concentrated in a neighbourhood of k0,
and the wave vector k, for which this nonlinear term
is different from zero, is 2 k0. Thus, the first nonlinear
term should be grouped together with the linear term
∂
∂t a21(k) + iω(k) a21(k), which is also concentrated on
the wave vector 2 k0. Thus, we obtain the evolutionary
equation for the first component a21(k, t) of the Fourier
amplitude of the second harmonic

2k0 :
∂

∂t
a21(k) + i ω(k) a21(k)+

+i V (2 k0, k0, k0)

∞∫

−∞
a1(ξ) a1(k − ξ) dξ = 0. (13)

Similarly, we obtain the evolutionary equation for
a22(k, t) and b(k, t) :

−2k0 :
∂

∂t
a22(k) + i ω(k) a22(k)+

+i U(−2 k0, k0, k0)

∞∫

−∞
a1(ξ) a1(−k − ξ) dξ = 0, (14)

0 :
∂

∂t
b(k) + i ω(k) b(k)+

+2 i V (k0, k0, k)

∞∫

−∞
a1(ξ) a1(k + ξ) dξ = 0. (15)

Equations (13), (14) allow one to express the second
harmonic through the first one in order to remove the
second harmonic from all formulas in the approximation
ε3. For a21(k, t), in view of the time dependence
a21(k, t) ∼ e−2 i ω(k0) t, Eq. (13) yields

a21(k) = − V (2 k0, k0, k0)
ω(2 k0)− 2 ω(k0)

∞∫

−∞
a1(ξ) a1(k − ξ) dξ. (16)

Taking the time dependence a22(k, t) ∼ e2 i ω(k0) t

into account, it follows from Eq. (14) that

a22(k) = − U(−2 k0, k0, k0)
ω(−2 k0) + 2 ω(k0)

∞∫

−∞
a1(ξ) a1(−k − ξ) dξ.

(17)

We will not integrate Eq. (15) to avoid the additional
assumptions about a character of the dependence b(k) on
time. Below, we will use (15) as the equation of motion
for the 0-harmonic b(k) and include it in the system
with the equation for the first harmonic a1(k) which
will be deduced in what follows. Let’s remark that, in
(15), V (k0, k, k0) is changed by V (k0, k0, k) taking into
account a symmetry to permutations of the second and
third arguments V (k, k1, k2) in (3).

3.3. The third order in ε

Here, we obtain the equation of motion for the first
harmonic a1(k) in the ε3 approximation. Nonlinear
terms look as

i

∞∫

−∞
a2(ξ)V (k, k − ξ, ξ) a1(k − ξ) dξ+

+2 i

∞∫

−∞
a1(ξ) V (k + ξ, k, ξ) a2(k + ξ) dξ+

+i

∞∫

−∞
a1(ξ) V (k, k − ξ, ξ) a2(k − ξ) dξ + (18)

+i

∞∫

−∞
a1(ξ) U(k, −k − ξ, ξ) a2(−k − ξ) dξ+

+2 i

∞∫

−∞
a2(ξ) V (k + ξ, k, ξ) a1(k + ξ) dξ+
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+i

∞∫

−∞
a2(ξ)U(k, −k − ξ, ξ) a1(−k − ξ) dξ + (19)

+i

∞∫

−∞
a1(ξ)V (k, k − ξ, ξ) b(k − ξ) dξ+

+i

∞∫

−∞
b(ξ) V (k, k − ξ, ξ) a1(k − ξ) dξ+

+2 i

∞∫

−∞
a1(ξ)V (k + ξ, k, ξ) b(k + ξ) dξ+

+2 i

∞∫

−∞
b(ξ) V (k + ξ, k, ξ) a1(k + ξ) dξ+

+i

∞∫

−∞
a1(ξ)U(k, −k − ξ, ξ) b(−k − ξ) dξ+

+i

∞∫

−∞
b(ξ) U(k,−k − ξ, ξ) a1(−k − ξ) dξ+

+i

∞∫

−∞

∞∫

−∞
W (k, −k + ξ + ζ, ξ, ζ)×

×a1(ζ) a1(ξ)a1(−k + ξ + ζ) dξ dζ. (20)

We divide them into 5 groups.
1) In first three terms (18) which contain the

second harmonic a2 we consider that it consists of
the component of a wave field a21 (9) concentrated
in a neighbourhood of the wave vector 2k0 and the
component of a wave field a22 (10), concentrated in the
region of −2k0, the amplitude of the first harmonic and
its conjugate being concentrated on the wave vector k0

(5). Arguing as in the derivation of (13), we can conclude
that the kernels can be taken out of the integrals:

i V (3 k0, 2 k0, k0)

∞∫

−∞
a1(ξ) a21(k − ξ) dξ+

+2 i V (2 k0, k0, k0)

∞∫

−∞
a1(ξ) a21(k + ξ) dξ+

+i V (3 k0, k0, 2 k0)

∞∫

−∞
a1(ξ) a21(k − ξ) dξ+

+i V (−k0, −2 k0, k0)

∞∫

−∞
a1(ξ) a22(k − ξ) dξ+

+2 i V (−2 k0, −3 k0, k0)

∞∫

−∞
a1(ξ) a22(k + ξ) dξ+

+i V (−k0, k0, −2 k0)

∞∫

−∞
a1(ξ) a22(k − ξ) dξ. (21)

Moreover, these terms are concentrated at k equal to
3k0, k0, 3k0, −k0, −3k0, and −k0, respectively. Further,
we retain only the second term (21) as essential, because
it is concentrated on the wave vector k0 of the first
harmonic, for which we will construct an evolutionary
equation of motion.

2) Analogously, in the following three terms (19)
which contain the conjugate of the second harmonic a2,
we take into account that it consists of the component
of a wave field a21 concentrated in the region of the
wave vector 2k0 (a21 = a21(k, t) δ(k − 2k0)) and the
component a22 concentrated in a vicinity of −2k0 (a22 =
a22(k, t) δ(k+2k0)). This allows us again to take out the
kernels of the integrals:

i U(−3 k0, 2 k0, k0)

∞∫

−∞
a1(ξ) a21(−k − ξ) dξ+

+2 i V (k0, −k0, 2 k0)

∞∫

−∞
a21(−k − ξ) a1(−ξ) dξ+

+i U(−3 k0, k0, 2 k0)

∞∫

−∞
a1(ξ) a21(−k − ξ) dξ+

+i U(k0, −2 k0, k0)

∞∫

−∞
a1(ξ) a22(−k − ξ) dξ+

+2 i V (k0, 3 k0, −2 k0)

∞∫

−∞
a22(−k − ξ) a1(−ξ) dξ+

+i U(k0, k0, −2 k0)

∞∫

−∞
a1(ξ) a22(−k − ξ) dξ. (22)

These terms are concentrated at k equal to −3k0, −k0,
−3k0, k0, 3k0, and k0, respectively. In (22), the fourth
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and sixth terms are essential as they are concentrated
on the wave vector k0 of the first harmonic.

3) In the following three terms containing the zero
harmonic b, we consider that it is concentrated in a
neighbourhood of the wave vector k = 0 (7), the
amplitude of the first harmonic and its conjugate being
concentrated on the wave vector k0 (5). This allows us
to partially fix the arguments of kernels:

i

∞∫

−∞
a1(ξ) V (k0, k0 − ξ, k0) b(k − ξ) dξ+

+i

∞∫

−∞
a1(ξ) V (k0, k0, k0 − ξ)b(k − ξ) dξ+

+2 i

∞∫

−∞
a1(ξ)V (k0 + ξ, k0,− k0) b(k + ξ) dξ. (23)

Here, the first and second terms are concentrated at k =
k0, whereas the third one is concentrated at k = −k0.
So we keep only the first and second terms.

4) Analogously, in the following three nonlinear
terms which contain the conjugate of the zero harmonic
b, we consider that it is concentrated on the wave vector
k = 0 (5). This allows us to partially fix the arguments
of kernels:

2 i

∞∫

−∞
b(ξ − k)V (k0, k0, ξ − k0) a1(ξ) dξ+

+i

∞∫

−∞
b(−k − ξ)U(k0, −k0 − ξ, k0)a1(ξ) dξ+

+i

∞∫

−∞
b(−k − ξ)U(k0, k0, −k0 − ξ) a1(ξ) dξ. (24)

Now the first term is concentrated at k = k0, and second
and third ones are concentrated at k = −k0. Further,
only the first term is kept as the main one.

5) As for the last nonlinear term (20), we consider
that the amplitude of the first harmonic and its
conjugate are concentrated on the wave vector k0 (5).
This allows us again to take out the kernels of the
integrals:

iW (k0, k0, k0, k0)

∞∫

−∞

∞∫

−∞
a1(ξ)a1(ζ)×

× a1(−k + ξ + ζ) dξ dζ. (25)

We now construct the equation of motion for the first
harmonic from the linear terms in the ε approximation
(11) and from the above-mentioned basic nonlinear
terms in the ε3 approximation from (21)–(24):

2 i V (2 k0, k0, k0)

∞∫

−∞
a1(ξ) a21(k + ξ) dξ, (26)

2 i U(−2 k0, k0, k0)

∞∫

−∞
a1(ξ) a22(−k − ξ) dξ, (27)

2 i

∞∫

−∞
V (k0, k0, k0 − ξ) b(k − ξ)a1(ξ) dξ,

2 i

∞∫

−∞
V (k0, k0, ξ − k0) b(ξ − k) a1(ξ)dξ,

and terms (25). In these equations, we took the
symmetry of the coefficients V (k1, k2, k3), U(k1, k2, k3)
relative to permutations of the arguments into account
[10], [22].

Then we introduce the expressions for the
components of the second harmonic a21 and a22 [(16),
(17)] given in terms of the first harmonic obtained in
the ε2 approximation into (26), (27):

−2 i V 2(2 k0, k0, k0)
ω(2 k0)− 2 ω(k0)

×

×
∞∫

−∞

∞∫

−∞
a1(ξ) a1(ζ) a1(−ζ + ξ + k) dζ dξ,

−2 i U2(−2 k0, k0, k0)
ω(2 k0) + 2ω(k0)

×

×
∞∫

−∞

∞∫

−∞
a1(ξ)a1(ζ) a1(−ζ + ξ + k) dζdξ.

In such a way, we obtain the equations of motion for
the first harmonic:

∂

∂t
a1(k) + iω(k) a1(k)−

−2 i

(
V 2(2 k0, k0, k0)
ω(2 k0)− 2 ω(k0)

+
U2(−2 k0, k0, k0)
ω(2 k0) + 2 ω(k0)

)
×
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×
∞∫

−∞

∞∫

−∞
a1(ξ)a1(ζ) a1(−ζ + ξ + k) dζdξ+

+2 i

∞∫

−∞
V (k0, k0, k0 − ξ) b(k − ξ)a1(ξ) dξ+

+2 i

∞∫

−∞
V (k0, k0, ξ − k0) b(ξ − k) a1(ξ)dξ+

+iW (k0, k0, k0, k0)×

×
∞∫

−∞

∞∫

−∞
a1(ζ) a1(ξ) a1(−k + ξ + ζ) dξ dζ = 0

or
∂

∂t
a(k) + iω(k) a(k)+

+i

∞∫

−∞
f(k0 − ξ) b(k − ξ)a(ξ) dξ+

+i

∞∫

−∞
f(ξ − k0) b(ξ − k) a(ξ)dξ+

+iλ

∞∫

−∞

∞∫

−∞
a(ζ) a(ξ) a(ζ + ξ − k) dξ dζ = 0, (28)

where we denote

f(k) = 2V (k0, k0, k), (29)

λ = W (k0, k0, k0, k0)−

−2 V 2(2 k0, k0, k0)
ω(2 k0)− 2 ω(k0)

− 2 U2(−2 k0, k0, k0)
ω(2 k0) + 2 ω(k0)

, (30)

and a1 is designated as a. In the same notations, we
rewrite the equations for the 0-harmonic (15) as

∂

∂t
b(k) + i ω(k) b(k)+

+i f (k)

∞∫

−∞
a(ξ) a(k + ξ) dξ = 0. (31)

Equations (28) and (31) coincide with Eqs. (19) and
(20) in [10], though they are obtained by the somewhat
different method, as compared with that in [10], of
step-by-step account of approximations. But there is
one difference. Expression (29) for f(k) differs by the
sequence of arguments from formula (18), f(k) =
2V (k, k0, k0), in [10]. This difference cannot be removed
by using properties of the symmetry of coefficients [22].
This can be seen from formula (3) for the coefficient
V (k, k1, k2).

4. Modulation Instability

We present the solution of the system of equations of
motion (28), (31) which contains the correction on the
nonlinearity as

a(k) = A0 e−i t (ω(k0)+λ1A2
0)δ(k − k0),

b(k) = λ2A2
0δ(k).

Substituting it in (28) and (31), we get

λ
(1)
1 = λ, λ

(1)
2 = 0,

λ
(2)
1 = λ− 2

f2(0)
ω(0)

, λ
(2)
2 = − f(0)

ω(0)
. (32)

For waves on the surface of a fluid at small κ, ω(κ) ∼ κ
and, as seen from (40), f(κ) ∼ √

κ. The expression for
λ

(2)
2 diverges, therefore we choose the first variant.
We introduce a perturbation

a(k) = e−i t (ω(k0)+λ1A2
0)[A0 δ(k − k0)+

+ε α(k) e−iΩ tδ(k − k0 − κ)+

+ε α(k) ei Ω t δ(k − k0 + κ)], (33)

b(k) = λ2A2
0δ(k)+

+ε β(k) e−i Ω t δ(k − κ) + ε β(k) ei Ω t δ(k + κ), (34)

where α(k) and β(k) are real quantities.
Let’s explore a possibility of existence of the

imaginary part of the frequency Ω for some wave vectors
of a perturbation wave κ depending on the normalized
depth of a fluid k0h, which will testify to the instability
of a nonperturbed wave at such wave vectors of the
perturbation. After the substitution of (33) and (34)
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in the linearized equations of motion (28), (31), we
obtain a system of homogeneous equations for α(k0+κ),
α(k0 − κ), β(κ), and β(−κ):
(
Ω + ω(k0 − κ)− ω(k0) + λA2

0

)
α(k0 − κ)+

+λA2
0 α(k0 + κ) +A0 (f(−κ) β(−κ) + f(κ) β(κ)) = 0,

(
Ω− ω(k0 + κ) + ω(k0)− λ A2

0

)
α(k0 + κ)−

−λA2
0α(k0 − κ)−A0 (f(−κ) β(−κ) + f(κ) β(κ)) = 0,

β(−κ) (Ω + ω(−κ))+

+A0f(−κ) (α(k0 − κ) + α(k0 + κ)) = 0,

β(κ) (Ω − ω(κ))−

−A0 f(κ) (α(k0 − κ) + α(k0 + κ)) = 0.

Excepting β(κ) and β(−κ), we obtain
(
Ω + ω(k0 − κ)− ω(k0)− λ(Ω)A2

0

)
α(k0 − κ)−

−λ(Ω)A2
0 α(k0 + κ) = 0,

(
Ω− ω(k0 + κ) + ω(k0) + λ(Ω)A2

0

)
α(k0 + κ)+

+λ(Ω)A2
0 α(k0 − κ) = 0,

where

λ(Ω) = −λ + λ(0)(Ω), (35)

λ(0)(Ω) =
f2(−κ)

ω(κ) + Ω
+

f2(κ)
ω(κ) − Ω

. (36)

The superscript in λ(0)(Ω) underlines that it is the
contribution to the nonlinear interaction from the 0-
harmonic. Equating the determinant to zero gives the
required equation for the perturbation frequency Ω

(Ω− δ)2 = ∆2 − 2λ(Ω)A2
0 ∆, (37)

where

∆ =
1
2

(ω(k0 + κ) + ω(k0 − κ))− ω(k0),

δ =
1
2

(ω(k0 + κ)− ω(k0 − κ)) .

In the extended form, relation (37) looks like

(Ω + ω(k0 − κ)− ω(k0)) (Ω− ω(k0 + κ) + ω(k0)) =

= −2λ(Ω)A2
0 ∆ (38)

and coincides with that in [10].
The first term in (35) is calculated from (30). For

waves on the surface of a fluid of finite depth, we get

λ =
k3
0

32π2

9σ4 − 10σ2 + 9
σ3

, σ = tanh k0h. (39)

Let’s calculate the second term in (35). To derive
f(κ) = 2V (k0, k0, κ) according to (29), we simplify the
coefficient V (k, k1, k2) (3). We have

f(κ) =
k

3/2
0 ω

1/2
0

4
√

2π
√

σ


2

κ
k0

√
ω0

ω(κ)
+ (1− σ2)

√
ω(κ)
ω0


 .

(40)

Since our purpose is to investigate all four roots of Eq.
(37), we do not approximate Ω in the denominator in
(36), as it was made in [10]. According to (36), we get

λ(0)(Ω) =
k3
0

16π2σ
×

×
(

κ2

ω2(κ)− Ω2

(
2
ω0

k0
+ (1− σ2)

Ω
κ

)2

+ (1− σ2)2
)

.

(41)

4.1. κ ¿ k0. Comparison with the known results

In this case, we can approximate Ω in the denominator
in (36). The asymptotes of four roots Ω(κ) of Eq. (38)
at small κ and A0 read

Ω1,2 = cgκ ∓ 1
6

∂3ω(k0)
∂k3

κ3,

Ω3,4 = ±
√

ghκ, cg =
ω0

2k0

(
1 +

1− σ2

σ
k0h

)
, (42)

where cg is the group velocity of linear waves. They are
shown (after the normalization Ω̂ = Ω

ω0
, κ̂ = κ

k0
) by

dotted curves 1a, 2a, 3a, 4a on the plots of the real part
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Fig. 1. Real part of the normed frequency bΩ versus the normed
wave vector bκ for four roots of Eq. (37) for various depths
(respectively, from the top down): k0h= 10; 2, 1.363, and 1.
k0A0= 0.2. The numbering of roots corresponds to that of their
asymptotes at small κ (42). The asymptotes are drawn by dotted
lines with a letter a near the number of a curve
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Fig. 2. The same as in Fig. 1 for the imaginary part of bΩ

Re Ω̂ in Fig. 1. Setting the purpose to determine the
imaginary part of the first two roots in the next
approximation in the case of κ ¿ k0, we can use the
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asymptote Ω = κcg in (37) (see also [25], [29]). We get

λ(Ω) |Ω=cgκ =
k3
0

16π2σ

(
− 9σ4 − 10σ2 + 9

2σ2
+

+
1

gh− c2
g

(
2
ω0

k0
+ (1− σ2)cg

)2

+ (1− σ2)2
)

. (43)

Since ∆ < 0 for a convex function ω(k) according
to the Jensen inequality, Eq. (37) can have complex
roots, if λ(Ω) < 0. Coefficient (43) [obtained at f(κ) =
2V (k0, k0,κ)] changes a sign at k0h = 1.363 that
coincides with the depth at which the Benjamin–Feir
MI disappears. Some mismatch of (43) with formula (29)
in [10] is related to the above-mentioned difference in the
sequence of arguments in (29).

We now compare (38) with the corresponding
equation

(Ω + ω(k0 − κ)− ω(k0))(Ω− ω(k0 + κ) + ω(k0)) =

= −2q(Ω)A2
0 ∆, (44)

obtained in [17] by the method of multiple scales from
the Euler equations of motion. Here,

q(Ω) = q̃ + q(0)(Ω), (45)

where

q̃ =
ω0k

2
0

16σ2

(
−9σ4 − 10σ2 + 9

σ2
+ 2

(
σ2 − 1

)2
)

, (46)

q(0)(Ω) =
ω0k

2
0

8σ2

κ2

ω2(κ)− Ω2
×

×
(

2
ω0

k0
+ (1− σ2)

Ω
κ

)(
2
ω0

k0
+ (1− σ2)cg

)
,

and q(0)(Ω) is the contribution of the 0-harmonic to
the nonlinear interaction. In the special case considered
above, κ ¿ k0, concerning two roots which correspond
to the asymptote Ω = κcg, we have

q(0)(Ω) |Ω=cgκ =
ω0k

2
0

8σ2

1
gh− c2

g

(
2
ω0

k0
+ (1− σ2)cg

)2

.

(47)

Taking into account the formula A2
0 = σ

2π2
k0
ω0
A2

0 for the
physical amplitude A0 and the wave amplitude in the

Fourier space A0, as well as relations (38) and (44), we
should compare the coefficient λ(Ω) of the given paper
with the coefficient q(Ω) in [17] multiplied by

σ

2π2

k0

ω0
. (48)

It is seen that expression (45) for q(Ω) as the sum of
(46) and (47) with regard for (48) is identically equal to
expression (43) for λ(Ω), which indicates the coincidence
of results of the given work and [17] in the case of
κ ¿ k0.

4.2. κ ' k0. New instability

At arbitrary κ, the numerical calculation of solutions of
Eq. (37) is necessary. The equation of the fourth order
obtained in [10] was not solved numerically and was
reduced to a quadratic equation for a small deviation
Ω from the resonance surface, ω(k0 + κ) − ω(k0) =
ω(k0) − ω(k0 − κ), for the analysis of the instability
increment. The results of numerical tabulation of the
dependence of the real and imaginary parts of Ω̂ = Ω

ω0
on κ̂ = κ

k0
for four solutions of Eq. (37) for several

values of k0h for k0A0 = 0.2 are shown in Figs. 1 and 2.
Indexing the roots corresponds to their asymptotes at
small κ (4.). In Fig. 2, except for the known band of
instability at κ ¿ k0 (the Benjamin–Feir instability),
we observe one more section of instability at κ ' k0.
The third band is the right edge of the known “eight” of
Phillips [8]. Unlike the BF instability which disappears
at k0h = 1.363, the additional band of instability exists
at this and smaller depths. The essential role in the
formation of this instability is played also by the first
harmonic a1 and the 0-harmonic b. Therefore the long-
term evolution of the considered instability can lead
to the formation of structures intermediate between
solitons of the envelope of fast oscillations described
by a nonlinear Schrödinger equation and solitary waves
without a filling characteristic of shallow water. This
type of MI was specified in [17] on the basis of a system of
evolutionary equations for the zero and basic harmonics
which was obtained by the method of multiple scales
from the Euler equations of motion. The reproduction
of this result by the Hamiltonian method indicates the
validity of both approaches.
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РIВНЯННЯ ЗАХАРОВА З НУЛЬОВОЮ ГАРМОНIКОЮ
I МОДУЛЯЦIЙНА НЕСТIЙКIСТЬ

Ю.В. Седлецький

Р е з ю м е

Показано, що новий тип модуляцiйної нестiйкостi хвиль на по-
верхнi iдеальної рiдини, передбачений нещодавно з системи
двох рiвнянь руху, для амплiтуди обвiдної основної гармонiки i
неосциллюючої компоненти хвилi (нульової гармонiки) в рам-
ках методу багатьох масштабiв i ейлерових рiвнянь руху мож-
но також описати, виходячи з системи двох рiвнянь Захарова
для фур’є-амлiтуд першої i нульової гармонiк, на основi гамiль-
тонiвського формалiзму.
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