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We have proposed a fractal model of a two-component composite
with chaotic structure and calculated its fractal dimension and
critical indices. The calculation of the conductivity of a composite
with chaotic structure is reduced to that of both the conductivity
of a composite with ordered structure and the probability function
of the existence of a connecting set (CS) with conducting bonds.

1. Introduction

The prediction of the effective conductivity σ for
composites with chaotic structure remains to be the
actual problem till now. The survey of the literature [1–
3] shows that the classical formulas for the conductivity
of composites with chaotic structure do not agree
with experimental data in the whole range of the
concentration of the conducting component and for all
values of the conductivities of components σ1 and σ2.
The classical theories (for example, the Maxwell model,
the method of effective medium, and the variational
method) agree well with experimental data on σ if the
conductivities of components (σ2 and σ1) of a composite
differ by at most two orders (10−2 < σ2/σ1 < 1) or
for small concentrations of one of the components (e.g.,
p ¿ 1). If the ratio σ2/σ1 < 10−2, then the results of
calculations of the effective conductivity by formulas of
the classical theories differ strongly from experimental
data [1, 4].

In order to predict the effective conductivity of a
composite, we can use the results of the theory of
percolation [5, 6] if the ratio of the conductivities of
components tends to zero (σ2/σ1 →0):
{

σ ≈ (p− pc)
t
, (p− pc) > 0,

σ ≈ (pc − p)−s
, (p− pc) < 0.

(1)

Here, t and s – the critical indices of conductivity
(t = s ≈1.1 for two-dimensional systems (d = 2), and
t ≈ 1.6÷2, s ≈0.6 for three-dimensional systems (d = 3);
and pc – the percolation threshold).

If the ratio of the conductivities of components of a
system belongs to the range 0 < σ2/σ1 < 10−2, no strict
theory which would allow one to predict the effective
conductivity of composites with chaotic structure is
available. We propose a fractal model and the method
of calculation of the conductivity of composites with
chaotic structure, which allows us to solve this problem.

2. Model of Structure

As a model of the structure of a composite, we study
a volumetric lattice composed from sites and bonds
connecting them. Each of the bonds belongs with
probability p to the component with conductivity σ1 = 1
(Fig. 1). To construct a fractal set (a lattice), we will
perform the iteration procedure, in which each bond is
replaced on the next stage by the lattice obtained on the
previous stage [7, 8]. Thus, we get a fractal set with the
infinite number of bonds which depends on the initial
type of a lattice.

We distinguish two configurations: in the first one,
the conducting bonds form a CS by connecting the
opposite sides of the lattice along the direction of
percolation, whereas no connecting cluster exists in a
nonconnecting set (NCS). On the transition of the NCS
in a CS, an infinite cluster-fractal is formed.

In order to determine the parameters of a model,
the critical point is the knowledge of the probability
function R(p) which is defined as the probability of
a CS among all possible configurations. On its basis,
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one can determine the critical concentration pc, i.e.
the concentration at which there appears a conducting
chain, critical indices, and fractal dimensions.

In [9], the function R(p) was calculated for lattices
with the dimension 1×2×1, and, on its basis, the
fractal dimension of lattices and the critical indices
were determined. The experimental studies indicate that
there exist the materials with a structure which possesses
the percolation threshold, fractal dimension, and other
structural parameters distinct from those described in
[9]. In this connection, there appears the problem of
the determination of other probability functions R(p)
describing materials with other structural parameters.
We determined analytically the probability function
R(p) for lattices with the dimension 1×2×2 (the number
of bonds was 19 on the initial iteration stage), 1×3×1
(the number of bonds was 20 on the initial iteration
stage), and, for lattices with greater dimensions (the
number of bonds is more than 25 on the initial iteration
stage), the probability function R(p) was found with the
help of the Monte-Carlo method.

3. The Probability Function of the Formation
of a CS

We determined the probability functions of the
percolation R(p) for the lattices lx × ly × lz (ly is
the direction of percolation) which is the sum of
the probabilities of all possible variants of conducting
configurations:

R(p) =
k∑

i=0

Aip
i(1− p)k−i, (2)

where k – the number of all bonds, i – the number
of conducting bonds; and Ai – the number of possible
configurations of a CS at the given p.

We determined the probability functions R(p) for
two-dimensional lattices with dimensions 2×1, 2×2,
2×3, 2×4, 2×5, 2×6, 2×7, 3×1, 3×2, 3×3, 3×4, 4×1,
4×2, and 4×3, as well as R(p) for 3D lattices with
dimensions 1×2×1, 1×3×1, and 1×2×2(2×2×1), for
which the total number of bonds is less than 25. Below,
we present several such functions:
Lattice 1×2×2(2×2×1):

R(p) = 6p2(1− p)17 + 116p3(1− p)16 + 1017p4×

×(1− p)15 + 5301p5(1− p)14 + 18077p6(1− p)13+

Fig. 1. Simulation of the structure of a composite

+42257p7(1− p)12 + 70612p8(1− p)11 + 90186p9×

×(1− p)10 + 91664p10(1− p)9 + 75414p11(1− p)8+

+50362p12(1− p)7 + 27130p13(1− p)6 + 11628p14×

×(1− p)5 + 3876p15(1− p)4 + 969p16(1− p)3+

+171p17(1− p)2 + 19p18(1− p) + p19.

Lattice 1×3×1:

R(p) = 4p3(1− p)17 + 84p4(1− p)16 + 816p5(1− p)15+

+4818p6(1− p)14 + 19100p7(1− p)13 + 52822p8×

×(1− p)12 + 102940p9(1− p)11 + 142578p10(1− p)10+

+147528p11(1− p)9 + 118541p12(1− p)8 + 75520p13×

×(1− p)7 + 38376p14(1− p)6 + 15456p15(1− p)5+

+4842p16(1− p)4 + 1140p17(1− p)3 + 190p18(1− p)2+

+20p19(1− p) + p20.

It is clear that the sorting of all configurations of
conducting and nonconducting bonds is a rather difficult
problem in the general case. Therefore, in order to
calculate the percolation function for volumetric lattices
with the total number of bonds which is more than 25,
we used the Monte-Carlo numerical method allowing
the simulation of random distributions of bonds. The
procedure is repeated N times so that each following
distribution is independent of the previous one. After
the averaging of the results of calculations, we obtain
the probability function R(p) and the conductivity of
lattices.
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T a b l e 1. Values of the percolation threshold pc, derivative at the point of the percolation threshold λp, fractal
dimensions d0

f and df , and critical indices β, α, and ν obtained by the sorting of all combinations of conducting and
nonconducting bonds

lx × Ly × lz pc d0
f df λp = dR

dp

��
p=pc

ν = ln l0
ln λp

α = β
ν

β

1× 2× 1 0.208 3.585 1.323 1.958 1.031 2.262 2.333
1× 3× 1 0.374 2.727 1.832 2.534 1.182 0.895 1.058
1× 2× 2 0.138 4.248 1.395 2.042 0.971 2.853 2.770

T a b l e 2. Values of the percolation threshold pc, derivative at the point of the percolation threshold λp, fractal
dimensions d0

f and df , and critical indices β, α, and ν obtained with the help of the Monte-Carlo method

lx × Ly × lz pc d0
f df λp = dR

dp

��
p=pc

ν = ln l0
ln λp

α = β
ν

β

2×2×2 0.093 4.907 1.477 2.065 0.956 3.430 3.279
2×2×3 0.072 5.358 1.563 2.048 0.967 3.794 3.669
2×2×4 0.059 5.700 1.615 2.088 0.942 4.086 3.847
2×3×2 0.225 3.579 2.221 3.073 0.979 1.358 1.329
2×4×2 0.293 3.085 1.502 3.781 1.042 0.885 1.650
3×2×1 0.105 4.700 1.447 2.066 0.956 3.253 3.108
3×2×3 0.054 5.807 1.606 2.056 0.962 4.201 4.041
3×2×4 0.044 6.150 1.634 2.056 0.962 4.516 4.344
3×3×2 0.195 3.867 2.379 3.217 0.940 1.488 1.399
3×3×3 0.170 4.155 2.541 3.288 0.923 1.613 1.489
4×2×4 0.037 6.492 1.733 2.090 0.940 4.759 4.474
4×4×2 0.240 3.489 2.459 4.209 0.965 1.030 0.994
3×3×4 0.153 4.373 2.666 3.332 0.913 1.706 1.558
4×4×4 0.201 3.891 2.734 4.578 0.911 1.157 1.054

T a b l e 3. Values of the percolation threshold pc, fractal
dimension df , critical indices β and ν for the classical
percolation cluster

pc df ν = ln l0
ln λp

β

0.24 [10] 2.484 [11] 0.82± 0.05 [13] 0.39± 0.07 [13]
2.529 [12] 0.905± 0.023 [14] 0.454± 0.008 [15]

4. Critical Indices

On the basis of the analytic probability function R(p),
we can determine the nonanalytic functions which
characterize the fractal structure in a neighborhood
of the percolation threshold pc. We have determined:
the percolation threshold pc; the derivative of the
probability function at the point of the percolation
threshold λp; the fractal dimension of the set d0

f in the
case where all bonds are conducting, i.e. p=1; the fractal
dimension of the set at the percolation threshold df ;
the critical index of the correlation length ν; the critical
index of the density of connecting sets β; and the critical
index α equal to β/ν. The results of calculations are
given in Tables 1 and 2. The constructed fractal sets in
a neighborhood of the percolation threshold differ from
the classical percolation cluster in a neighborhood of
the percolation threshold in the three-dimensional case
which has characteristics presented in Table 3. It follows
from the comparison that the fractal sets obtained here

differ essentially from the classical percolation cluster
and can be used in the simulation of inhomogeneous
media such as, for example, polymers or polymeric
composites.

5. Conductivity

To determine the effective conductivity σ of a composite
with chaotic structure, we developed a computer
program calculating the conductivity of lattices as a
function of the concentration of conducting bonds. The
task of the determination of the effective conductivity
σ of a composite with chaotic structure is quite
complicated. Therefore, while solving this problem, we
admit some simplifications (assumptions), the main
assumption being the neglect of the correlation between
different bonds on a lattice under study [16].

The calculations were carried out for a two-
component composite. The conductivity of the first
component σ1 = 1, and the conductivity of the second
one σ2 = 10−x, where 1<x <10. For lattices with
the total number of bonds less than 25, we performed
the sorting of all possible variants of the positions of
conducting and nonconducting bonds. For lattices with
the number of bonds greater than 25, we realized chaotic
distributions of bonds with the help of the Monte-
Carlo method. The results of calculations of the effective

986 ISSN 0503-1265. Ukr. J. Phys. 2007. V. 52, N 10



CONDUCTIVITY OF COMPOSITES WITH CHAOTIC STRUCTURE

conductivity were compared with experimental data [4],
which showed the adequacy of both the proposed model
and the developed computer program to real systems.

In a separate way, we calculated the effective
conductivity of a lattice σ in the case where it contains a
CS with conducting bonds. This calculation was carried
out in the following manner: first, the initial number
of conducting bonds was taken to be equal to ly,
because a CS is not formed for less values. Taking the
number of bonds to be equal to ly, we performed the
sorting of all possible distributions of bonds. For each
distribution of bonds, we analyzed the lattice for the
presence of a CS. If it was present, we calculated its
conductivity. Then the obtained values of the effective
conductivity were averaged over all the configurations
of bonds. Thereafter, the number of conducting bonds
was increased by 1, and the sorting of all possible
configurations was realized. During the sorting, the
lattices were analyzed for the presence a CS, and the
calculation of the average value of the conductivity was
carried out. Then again the number of conducting bonds
was increased by 1, etc., until it becomes equal to k, and
the effective conductivity of lattices becomes equal to
σ1 = 1. The results of calculations are given in Table 4
and Fig. 2.

The use of direct computer-based methods for the
prediction of the effective conductivity of composites
with chaotic structure requires quite great expenditures.
To obtain the high-precision results, we need powerful
T a b l e 4. Averaged values of the effective conductivity
for three-dimensional lattices which contain a CS, σ1 = 1,
σ2 = 10−4

Quantity of 1× 2× 1, 1× 2× 2 1× 3× 1,
conducting k = 12 (2× 2× 1), k = 20

bonds k = 19

1 – – –
2 0.015 0.006 –
3 0.052 0.019 0.0009
4 0.113 0.041 0.004
5 0.200 0.074 0.012
6 0.303 0.116 0.028
7 0.413 0.167 0.054
8 0.529 0.225 0.094
9 0.646 0.288 0.147
10 0.764 0.354 0.211
11 0.882 0.423 0.282
12 1.000 0.494 0.357
13 0.565 0.435
14 0.638 0.515
15 0.710 0.596
16 0.783 0.677
17 0.855 0.758
18 0.928 0.839
19 1.000 0.917
20 1.000

Fig. 2. Comparison of the effective conductivity in the presence
of the CS (solid curve) and the effective conductivity for a “cube
in cube” cell multiplied by the probability function R(p) (dashed
line), 1, 2 – σ2 = 10−1 and σ1 = 1; 3,4 – σ2 = 10−6 and σ1 = 1

computers and much computer time, which yields the
necessity to develop a simple scheme of prediction of
the effective conductivity of composites with chaotic
structure, but with at least the same accuracy of
calculations. We propose a rather simple scheme
of calculations which is illustrated by the example
of the lattice 1×2×1. For this lattice, we made
comparison of the results of calculations of the effective
conductivity in the presence of a CS with those
obtained by the formula for a “cube in cube” cell [1]
and multiplied by the probability function R(p) (see
Fig. 2).

From Fig. 2, we see that the curves practically
coincide. This fact allows us to simplify the calculations
of the effective conductivity of a composite with chaotic
structure.

On the basis of the performed calculations, we
consider the problem of the reduction of the calculation
of the conductivity of a composite with chaotic structure
to that of the conductivity of a composite with ordered
structure. The obtained results allow us to substantiate
the following scheme of calculations of the effective
conductivity of composites with chaotic structure: the
conductivity of a composite containing a CS with a
random distribution of bonds equals the conductivity of
a composite containing a CS with an ordered distribution
of bonds (of the “cube in cube” type) multiplied by the
probability function R(p) (Fig. 2).

The calculation of the effective conductivity of an
ordered structure was performed in the following way:
we use the formula for the conductivity of a cell, in which
a cube with conductivity σ2 is positioned in a cube with
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Fig. 3. Effective conductivity versus the concentration of
conducting bonds at σ2 = 10−5 and σ1 = 1. Dots – experimental
data, solid curve – the results of calculations for a “cube in cube”
cell multiplied by the probability function R(p), and the dashed
curve is obtained by the method of effective medium

conductivity σ1 [1] (the cell is a CS):

σ =
σ1

2
(ψ1 + ψ2) , (3)

where

ψ1 =
σ1 + (σ2 − σ1) (1− p)2/3

σ1 + (σ2 − σ1) (1− p)2/3
[
1− (1− p)1/3

] ,

ψ2 =
σ2 + (σ1 − σ2) (1− p)1/3

[
1− (1− p)2/3

]

σ2 + (σ1 − σ2) (1− p)1/3
.

Here, p – the volumetric concentration of the phase with
conductivity σ1. In order to calculate the conductivity of
a cell, in which a cube with conductivity σ1 is positioned
in a cube with conductivity σ2 (the cell is an NCS), it
is necessary to change the indices 1 ↔ 2 and to replace
(1− p) ↔ p.

To illustrate the calculation of the effective
conductivity of a composite with chaotic structure, we
use a probability function of the lattice 1×2×1 of the
form

R(p) = 4p2(1− p)10 + 48p3(1− p)9 + 238p4(1− p)8+

+616p5(1− p)7 + 856p6(1− p)6 + 776p7(1− p)5+

+493p8(1− p)4 + 220p9(1− p)3 + 66p10(1− p)2+

+12p11(1− p) + p12.

On the basis of the function R(p), we determined
the value of the percolation threshold p(pc = 0.2086...)
characterizing the transition of the NCS to a CS.
Respectively, the percolation threshold determines the
formulas for the calculation of the effective conductivity.
Prior to the percolation threshold, the effective
conductivity is calculated by the formula for a cell, in
which a cube with conductivity σ1 is positioned in a cube
with conductivity σ2 (the probability of that the given
volume element of a composite belongs to the NCS is
equal to 1). After the percolation threshold, the effective
conductivity is calculated by the formula for a cell, in
which a cube with conductivity σ2 is positioned in a
cube with conductivity σ1 (the probability of that the
given volume element of a composite belongs to the CS
is equal to a value of the probability function R(p), and
the probability of that it does not belong to the CS is
(1−R(p))).

Therefore, the effective conductivity can be
calculated by the formula

σ =
{

σNCS, p < pc

σCSR(p), p > pc.
(4)

The effective conductivity has a jump near
the percolation threshold. In this connection, in a
neighborhood of the percolation threshold (at a change
of the concentration from 0.15 to 0.25), the calculation
of the conductivity was carried out by the following
scheme. We determined the arithmetic mean of the
conductivities at p = 0.15 and at p = 0.25, i.e. we got
the value of conductivity at the concentration p = 0.2.
Then the procedure was repeated for the points p=0.15
and p = 0.2, the points p = 0.2 and p = 0.25, etc.

Thus, the calculation of the effective conductivity
of composites with fractal structure is performed by
formula (4) in the concentration ranges 0≤ p ≤0.15
and 0.25≤ p ≤1. In a neighborhood of the percolation
threshold 0.15<p<0.25, the calculation was performed
by the above-described scheme.

The comparison of the results of calculations of the
effective conductivity of a composite possessing a chaotic
structure by the presented scheme and experimental
data [9] is shown in Fig. 3. There, we present also the
results of calculations within the method of effective
medium (self-consistent field) [3] by the formulas

σ = σ1

[
(3p1 − 1) + (3p2 − 1)

σ2

σ1

]/
4+
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+σ1

√√√√
[
(3p1 − 1) + (3p2 − 1)

σ2

σ1

]2
/

16 +
σ2

2σ1
(5)

According to calculations (Fig. 3), the result for
a “cube in cube” cell multiplied by the probability
function R(p) coincides rather well with experimental
data, whereas the method of effective medium at the
concentration of conducting bonds 0 < p < 0.4 leads to
significant discrepancies [4].

The calculations showed that if the discrepancy
between the conductivities of components at σ2/σ1 >
10−4 decreases, and the results of calculations by the
model of effective medium and by the scheme proposed
by us practically coincide.

6. Conclusions

We have proposed a model of the chaotic fractal
structure of a composite in the three-dimensional case
and determined the probability function R(p) (when the
total number of bonds of a lattice is less than 25, R(p)
was determined exactly; when the number of bonds was
greater than 25, we used the Monte-Carlo method). On
the basis of the function R(p), we calculated both the
percolation threshold of a lattice pc which characterizes
the transition from the “weakly” conducting state to a
“well” conducting one, and the derivative at the point
of the percolation threshold λp = dR

dp

∣∣∣
p=pc

. We also

calculated the fractal dimensions and critical indices of
the model.

By using the developed computer program, we
determined the conductivity of lattices with chaotic
distribution of bonds in the presence of the connecting
set formed by conducting bonds. We also determined
the conductivity of lattices with an ordered distribution
of bonds of the “cube in cube” type by the above-
presented formulas. The obtained results allow us to
reduce the calculation of the conductivity of a composite
with chaotic structure to that of the conductivity
of a composite with ordered structure by using the
probability function R(p).
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ПРОВIДНIСТЬ КОМПОЗИТIВ З ХАОТИЧНОЮ
СТРУКТУРОЮ

В.В. Новiков, К.О. Нежевенко

Р е з ю м е

Запропоновано фрактальну модель двокомпонентного компо-
зита з хаотичною структурою, розраховано її фрактальну роз-
мiрнiсть та критичнi показники. Розрахунок провiдностi ком-
позита з хаотичною структурою зведено до розрахунку провiд-
ностi композита з упорядкованою структурою та функцiї ймо-
вiрностi iснування з’єднуючої множини з провiдних зв’язкiв.
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