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We have studied the general properties of the energy thresholds of
stability for a three-particle system with short-range interaction.
A wide region of the interaction constants and various ratios of the
masses of particles are considered. The specific effects characteri-
stic of the near-threshold stationary energy levels of three particles
are revealed. The asymptotic estimates are obtained at same limi-
ting cases, and the high-precision variational calculations of the
thresholds for various values of the interaction constants and the
masses of particles are carried out.

1. Introduction

The studies of the quantum systems of three particles
of different nature, which are performed within vari-
ous theoretical approaches, remain to be actual for a
long period (see survey [1]). This is related to both the
presence of nontrivial effects, which appear in this si-
mplest many-particle system, such as the famous Efimov
effect [2], and the importance of the theoretical consi-
deration of real three-particle and three-cluster systems
of different nature, e.g., nuclei with three nucleons or
with three clusters, hypothetical systems of the type
of trineutrons, molecular trimers, etc. Important and
insufficiently studied are the fine near-threshold effects
in the systems of three particles. The present work is
devoted to the analysis of the general properties of these
effects and the thresholds of stability for three-particle
systems. The study of properties of the three-particle
thresholds is executed qualitatively on the basis of the
analysis of the asymptotic estimates, and also using
the high-precision variational calculations with the use
of optimized Gaussian bases. This approach allows us
to investigate, with a high controlled accuracy, even
such fine effects as the Efimov effect, as well as the
structural functions of these near-threshold levels [3]
that are characterized by a very small energy.

2. Statement of the Problem

In the present work, we consider a system of three parti-
cles, among which two particles are identical (we set
their masses m1 = m2 = 1 without loss of generality),
and the third one can differ from them by the mass and
the pairwise interaction potential. We write the Hami-
ltonian of such a system in the case of pairwise interacti-
ons in the form (in the system of units with ~ = 1)

Ĥ = −1
2
∆1− 1

2
∆2− 1

2m
∆3+V (r12)+U(r13)+U(r23).(1)

Let the intensities of two-particle interaction potentials
be defined by the dimensionless interaction constants g
(for the pair of identical particles (12 )) and λ (for the
pairs of particles (13 ) and (23 )) on the given form of the
interaction, where V (r) = gv(r) and U(r) = λu(r). We
consider the potential functions v(r) and u(r) mainly wi-
th positive values. Negative values of g and λ correspond
to the attraction, and positive ones to the repulsion.
We will study the properties of the energy thresholds
of stability for three-particle systems, i.e. the regions
of such values of the constants g and λ, at which the
n-th energy level of the three-particle system appears
below the two-particle thresholds or below zero if the
two-particle subsystems are not bound,

En(three)− E0(two) ≤ 0, E0(two) ≤ 0,

En(three) < 0, the coupling of two particles is absent.(2)

We will study the energy thresholds of stability for three-
particle systems with the zero total angular momentum,
L = 0, for various ratios of the masses of particles,
the form of pairwise interaction potentials, and the
symmetry of the wave function relative to the permutati-
ons of identical particles (for the symmetric ϕs (1, 2; 3) =
ϕs (2, 1; 3) and antisymmetric ϕa (1, 2; 3) = −ϕa (2, 1; 3)
states).
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Fig. 1. Schematic image of the energy thresholds of stability of a
three-particle system for short-range interaction potentials: sn —
symmetric, an — antisymmetric states relative to the permutati-
ons of particles (12). The asterisks indicate the intersections of
the lines of the thresholds of states with different symmetries, the
vertical dash-dotted lines in the lower part of the figure are the
asymptotes for the lines of thresholds, and the dashed inclined li-
nes correspond to the equality of the binding energies ε12 = ε13 of
different pairs of particles

On the plane (g, λ), we will present the results of
studies in the form of the diagrams of the thresholds
of energy levels, namely the thresholds of stability of
the energy levels of three particles with the zero angular
momentum (Fig. 1). The systematization of the signifi-
cant amount of calculations and the qualitative analysis
allow us to represent the thresholds of stability in the
universal form of the diagrams of thresholds. In Fig. 1,
we give, for the sake of specificity, the example of the
diagrams of stability corresponding mainly to potenti-
als v(r) and u(r) which have the same Gaussian form
and correspond to almost equal masses. We emphasi-
ze that the characteristic properties of a diagram are
preserved for nonsingular short-range potentials of more

general forms. In Fig. 1, we show the main peculiariti-
es of such diagrams schematically without holding the
scale, but with the preservation of all main regulariti-
es. Each line of the threshold of the n-th level (for the
states sn symmetric relative to the permutation of the
identical first and second particles, and for the anti-
symmetric states an) separates the region of the exi-
stence of a bound state (the region of stability) with the
corresponding n-th level of three particles from the regi-
on, where this level does not exist (this side of the curve
is shaded). Because the bound states of three particles
can appear only under the attraction between different
particles (the potential U(r) with the negative constant
λ) while the interaction between identical particles (the
potential V (r)) can be both attractive (g < 0) and
repulsive (g > 0), the three-particle thresholds are posi-
tioned to the left from the axis of ordinates. On the axes,
we marked the points where two-particle ground bound
states appear: the s-state with the orbital moment l = 0
(−λs,cr, −gs,cr) and the p-state with the orbital moment
l = 1 (−λp,cr, −gp,cr). We also show the correspondi-
ng two-particle thresholds on the axes by lines with di-
fferent thicknesses. The inclined dashed lines separate
the regions, where the lowest threshold from two two-
particle ones is the threshold for two identical particles
(due to the potential gv(r), below the dashed line) or for
two different particles (due to the potential λu(r), above
the dashed line). The three-particle levels exist below the
lowest two-particle threshold. The dash-dotted vertical
lines in the lower part of Fig. 1 are the asymptotes of
three-particle thresholds as g → −∞. In this case, the
lower part of the figure is correlated with the rest parts
so as it follows from direct calculations. In the diagram
of the thresholds of stability, the bound states of the
system of three particles exist, by starting from the li-
nes of thresholds, as a rule, towards the increase in the
intensities of the attraction (i.e. to the left and down
on the diagram). On the energy diagrams of stability,
we can distinguish eight different regions by characteri-
stic peculiarities of the ground and excited three-particle
levels:
region I — the asymptotic region, where −λ ≈ g →∞,
region II — the asymptotes of thresholds as g → −∞,
λ = Const,
region III — the region of the infinite series of Efi-
mov levels near the values of the two-particle interacti-
on constants critical as for the appearance of the
bound s — states g ≈ −gs,cr, λ ≈ −λs,cr; on the diagram
of thresholds, the nonmonotonous and closed curves
correspond to the Efimov states (they are marked by
the words “Efimov’s effect”),
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region IV — the axis λ in the case of the absence of the
interaction between identical particles (12), when g = 0
and the conditions of the Thomas theorem are satisfied,
region V — the region where the effect of a “tube” is
manifested for λ ≈ −λs,cr and arbitrary positive g,
region VI — we indicate the characteristic behavior of
thresholds for the symmetric three-particle states in the
region g ≈ λ ¿ −gs,cr with the appearance of an acute
“wedge” on the line of equality of the threshold binding
energies of different pairs of particles, ε12 = ε13,
region VII — the region of a “rearrangement” of the
thresholds of energy levels,
region VIII — the region of the nonmonotonicity of the
curves for the thresholds of antisymmetric levels.

The characteristic peculiarities of the behavior of
the energy thresholds of stability of the three-particle
system in different regions on the plane (λ, g), the
general established phenomenon of the nonmonotonici-
ty of thresholds, and the effect of “traps” are studied
analytically and with the use of numerical calculations
within the Galerkin variation method with a Gaussian
basis and various high-precision optimization schemes.

3. Asymptotics of Thresholds and the Effect of
a “Tube”

Consider region I for the ground and excited symmetric
states on the diagram of thresholds, where λ → −∞ and
simultaneously g → +∞ (the left upper part of the di-
agram of thresholds in Fig. 1). We rewrite Hamiltonian
(1) in the center-of-mass system as

H = − 1
2m

(
1 +

m

2

)
∆ρ −∆r + gv(r)+

+λu
(∣∣∣ρ +

r
2

∣∣∣
)

+ λu
(∣∣∣ρ− r

2

∣∣∣
)

, (3)

where r = r1 − r2, ρ = r3 − (r1 + r2) /2 — Jacobi
relative coordinates. Let a short-range repulsive potenti-
al gv(r) have a maximum at zero and monotonically
decrease, and let the potential λu(r) have a minimum
value U0 (U0 < 0 — the attraction, and this occurs
not obligatorily at r = 0). In the limit of strong coupli-
ng, the main contribution to the ground-state energy is
determined by the minimum of the full three-particle
potential well, which is positioned at ρmin = 0 and
at some rmin, minimizing the effective total potenti-
al energy V (r) + 2U(r/2). For nonsingular short-range
potentials V and U , the threshold line is determined by
the formula

min
r

(gv(r) + 2λu(r/2)) = min
x

λu(x), (4)

which determines the value of rmin, where the minimum
of the effective attractive potential energy of three parti-
cles gv(r) + 2λu(r/2) is attained, and establishes the
connection between the constants g and λ in the consi-
dered region of the diagram of thresholds. In the simple
case of the interaction potentials V and U in the Gaussi-
an form with unit radii, which is thoroughly studied
numerically, the condition for the threshold has the form

ge−r2
min − 2 |λ| e−r2

min/4 = − |λ| . (5)

From the condition of the minimum of the left-hand side
of (5), we get

rmin =

√
4
3

ln
(

2g

|λ|
)

, (6)

and, with regard for (5),

r2
min = 4 ln(3/2) ≈ 1.62. (7)

Then, in the limit |λ| → ∞, the asymptotic formula
with regard for the next correction for the lines of the
thresholds of the ground and excited levels has finally
the following form:

g =
27
16

(
|λ|+ Cp,q

√
2 |λ|+ O(1)

)
. (8)

Here,

Cp,q =
9
2

√
1 +

1
m
− (2p + 1)

3rmin

2
−

− (2q + 3)

√(
1 +

2
m

)(
3
2
− r2

min

4

)
, p, q = 0, 1, 2, ...(9)

We note that the quantum numbers p = q = 0 in
(8) and (9) correspond to the ground state. The series
of states in p is due to one-dimensional small oscillations
along the coordinate x ≡ r − rmin, whereas the series of
states in q corresponds to three-dimensional oscillations
along the coordinate ρ near the minimum of the potenti-
al well in the three-particle system. Indeed, if we expand
the potential energy (in the case of the Gaussian potenti-
als V and U) in Hamiltonian (3) averaged over angles
near the minimum in ρ2 and in the squared deviation
x2 ≡ (r − rmin)2, we get, instead of (3), the approximate
oscillatory Hamiltonian as a function of both coordinates

H̃ρ,x = − 1
2m

(
1 +

m

2

)
∆ρ +

2
3

(
2− 4

3
ln

(
3
2

))
|λ| ρ2−
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− 1
x2

∂

∂x
x2 ∂

∂x
+ 2 ln

(
3
2

)
|λ|x2. (10)

The energy states of the oscillatory Hamiltonian (10)
generate the lines of thresholds (8) and (9). The motion
of the system of three particles in symmetric states in
approximation (10) is oscillations relative to the followi-
ng configuration. At the center of the system, a particle
with mass m is located. On the same diameter with it,
particles 1 and 2 (ρ = 0) are positioned, but the wave
function is spherically symmetric in angles (the sphere
diameter rmin ≈ 2

√
ln (3/2) + O

(
1/
√

g
)
). The distance

between particles 1 and 2 does not depend in the main
approximation on the mass of the third particle. That is,
such a configuration of the system (the third particle is
at the center between the two identical particles) occurs
even in the case where the mass m of the third particle
is small.

The more detailed consideration of the threshold in
region I shows that asymptote (8) for the ground state
is defined as

g → 27
16

(
|λ|+ C0,0

√
2 |λ|+ ...

)
, (11)

and the coefficient

C0,0 = − 3√
2

{√
2 + m

m

(
3− 2 ln

(
3
2

))
+

+

√
2 ln

(
3
2

)
− 3

√
1 + m

2m

}
(12)

is positive at very small masses. Moreover, C0,0 →
3

(
3 /2 −

√
3− 2 ln (3 /2)

)
/
√

m ≈ 0.06 /
√

m as m →
0, is negative at greater masses and reaches a minimum
value at m ≈ 0.057 (C0,0 ≈ −1.39). At m → ∞, it
approaches the constant, C0,0 ≈ −0.55. Thus, the linear
asymptote of the threshold for the ground state in region
I of the threshold diagram in Fig. 1 is reached from the
top for very small masses (m ≤∼ 0.001) and is reached
from the bottom for the greater mass of the third parti-
cle.

We also note that, in region I of the diagram of
thresholds, the result which is asymptotic in the coupling
constant, |λ| → ∞, is easily generalized to other potenti-
als. In particular, let the interaction potential U between
different particles be chosen in the Gaussian form wi-
th another interaction radius R 6= 1. Then we get the
same configuration of three particles (the third particle

is located between two identical ones). Moreover, instead
of (7), we obtain (for R ≥ 1

/√
2 , when r2

min ≥ 0)

r2
min = 4R2 ln

4R2 − 1
2R2

. (13)

In the main approximation, we get

g = B (R) |λ|+ O
(√

|λ|
)

, (14)

where

B (R) =

(
4R2 − 1

)4R2−1

(2R2)4R2 . (15)

The least value of the coefficient, B (R) = 1, is
reached in (14) at R =

√
2 /2 , when rmin = 0 and

all three particles approach one another at small di-
stances. As R → ∞, the coefficient B (R) grows indefi-
nitely. For R <

√
2 /2 , all three particles are, all

the more, at small distances, where the small oscillati-
ons of the particles relative to the equilibrium position
occur. The asymptotics of a threshold remains invari-
able: g = |λ| + O

(√
|λ|

)
. Hence, in the region of the

diagram of thresholds where g → ∞ and λ → −∞, the
three-particle system can possess different configurati-
ons even in the case of the simplest interactions. Quali-
tatively, analogous results are obtained for a wider class
of the pairs of potentials V and U . For example, for
potentials in the form of exponentials, V (r) = ge−r and
U(r) = − |λ| e−r/R, we have, for R ≥ 1,

rmin = 2R ln
2R− 1

R
, B(R) =

1
R

(
2− 1

R

)2R−1

. (16)

In this case, the least value of the coefficient B (R) = 1
is also attained at R = 1, when rmin = 0, and both
rmin and B(R) grow with increase in R. Moreover, for
an arbitrary pair of the monotonous repulsive potential
V (r) between the identical particles and the attractive
potential U(r) between different particles in region I, a
linear dependence between the intensities of the potenti-
als takes place, which separates the region of stability
of three particles from the region, where the coupling
is absent. If the repulsive potential V is nonmonotonous
and has a sufficient decrease at zero, and if the attractive
potential U has a minimum at finite distances r1 > 0, a
two-cluster configuration of the system of three particles
is also possible: in this case, the identical particles are
positioned near each other, and the third one is located
at a distance r1 from them.

All the main qualitative and analytic results
concerning the asymptotics of the thresholds of stabi-
lity in region I are confirmed by the high-precision
systematic calculations with two-particle potentials of
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the Gaussian form for a great variety of masses wi-
thin the variational approach with the use of Gaussian
bases. The separate calculations were executed for other
potentials, and they also support the general schematic
Fig. 1.

We now consider the asymptotic limit of the strong
coupling between the identical first and second parti-
cles (region II, where g → −∞ in the lower part of
the diagram of thresholds (Fig. 1)). In this limit, the
size of subsystem (12) tends to zero, and the variables
in (1) are separated in the cluster approach. Then the
three-particle wave functions for Hamiltonian (3) can be
chosen as

Ψn(r, ρ) ≈ ϕ
(osc)
0 (r)fn(ρ) , (17)

where ϕ
(osc)
0 (r) is the ground state oscillatory wave

function of the relative coordinate r of pair (12), and the
wave function of the third particle, being in the effective
field of two other particles, depends on the coordinate
ρ and is the eigenfunction of the effective Hamiltonian
reckoned from the two-particle threshold,

h = − 1
2µ

∆ρ + Ueff(ρ) , , (18)

with the reduced mass µ = 2m(m+2)−1 and the effecti-
ve averaged potential

Ueff(ρ) = −2 |λ|
π3/2

∫
dre−r2

u
(∣∣∣ρ− r/

(
2 |g|1/4

)∣∣∣
)

. (19)

Consider the motion of the third particle relative to the
pair of particles (12) in potential (19) which looks, in
particular for the Gaussian form, as

Ueff(ρ) = − 2 |λ|
(
1 + 1/

(
4
√
|g|

))3/2
e
−ρ2/

�
1+1/

�
4
√
|g|
��

.(20)

Then, for the critical constants λ
(n)
cr , at which the n-th

three-particle near-threshold level in the three-particle
system appears, we get the asymptotics as g → −∞:

λ(n)
cr ≈ −m + 2

8m
g(n)

s,cr

(
1 +

1
8
√
|g|

)
. (21)

Here, g
(n)
s,cr are the critical constants of the appearance

of the n-th level in the system of two particles with the
zero orbital moment l = 0 (for the Gaussian potenti-
al with unit radius in the case of the unit masses of
particles, the critical constants of the s-states are as
follows: g

(0)
s,cr ≡ gs,cr = 2.684005; g

(1)
s,cr = 17.79570;

g
(2)
s,cr = 45.57348; g

(3)
s,cr = 85.96340, etc.). The expressions

analogous to (21) can be also obtained in the case where
the subsystem of two particles in the state with the wave
function (17) has a nonzero orbital moment. It follows
from (21) that the threshold of each three-particle level
(in the states symmetric in the permutations of the pair
of particles (12)) is positioned always to the left from
the corresponding vertical asymptote for λ

(n)
cr (they are

marked by dash-dotted vertical lines in the lower part
of Fig. 1). We can show analogously that, for the states
antisymmetric relative to the permutations of the pair of
particles (12), the thresholds approach, on the contrary,
the corresponding vertical asymptotes from the right si-
de. The high-precision calculations for different masses
and potentials in the form of a superposition of Gaussi-
an functions confirm completely the above-presented
conclusions about the asymptotics of thresholds for di-
fferent levels as g → −∞.

Consider region III in the vicinity of the critical
constants of the appearance of the two-particle ground
bound s-states: g → −gs,cr and λ → −λs,cr in Fig.
1. This is the region where the Efimov effect [2] is
manifested, and the infinite series of Efimov weakly
bound levels for the system of three (generally sayi-
ng, different) particles is observed. In the diagram of
thresholds, it is seen as the infinite collection of closed
self-similar (with the universal scale for highly excited
states) convex curves are accumulated at the critical poi-
nt (−λs,cr, −gs,cr) for three pairs of particles interacting
in a resonance way. The lines of thresholds for the series
of Efimov energy levels are considerably stretched along
the dashed inclined line (which starts from the region of
the Efimov effect), where the two-particle thresholds of
different pairs of particles in the s-state coincide, and are
somewhat elongated vertically upward along the g axis,
when only two pairs of particles interact in a resonance
way. The fundamental Efimov effect is described in
detail by V. Efimov himself and many other researchers.
Here, we should like to emphasize only separate points.
Firstly, the infinite series of symmetric three-particle Efi-
mov levels with the zero angular momentum is realized
only in the limit g → −gs,cr, λ → −λs,cr, i.e. in the case
where all three pairs of particles in singlet states are at
a resonance. Outside this region, the number of levels
is always bounded, though these levels have the certain
specific properties of properly Efimov levels especially
in the case of two resonating pairs of particles (13)
and (23) (λ → −λs,cr) even under a sufficiently large
decrease in the attraction between the particles of the
third pair, (12). Secondly, by the example of the
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Fig. 2. Isolines of the ground state energy of the three-particle
system for m = 0.06 with Gaussian potentials. At the calculated
isolines, we indicate the difference of the energies of three and two
particles

series of Efimov levels, we have the ideal demonstrati-
on of the energy “traps” (see Section 5 for more details),
when the strengthening of the attraction on the diagram
of thresholds leads to a nonmonotonous variation of the
number of energy levels: the three-particle levels at first
separate from the two-particle threshold and then di-
sappear on it. The Efimov levels exist only in a certain
interval of the coupling constants of all three pairs of
particles interacting in a resonance way. Thirdly, for
three-particle states antisymmetric in the pair of the
identical particles (12), the singlet point (−λs,cr,−gs,cr)
is nonsingular (see Fig. 1, region VIII). At the same ti-
me, the limiting region near the point (−λs,cr,−gp,cr),
where one pair (12) of the identical particles resonates
in the state with the angular momentum l = 1, is, as if,
“attractive” for the corresponding states. In this region
of Fig. 1, there exists a certain anomaly: the curves for
the thresholds of antisymmetric states are significantly
stretched towards small coupling constants along the li-
ne where the two-particle thresholds of two different pai-
rs of particles in the singlet and triplet states coincide.
Finally, we note that we do not discuss the three-particle
antisymmetric states with nonzero angular momentum,
where there exists the possibility for a collapse to ari-
se [4], which requires a separate consideration.

Consider the case where the interaction of one pair of
particles, (12) is absent (when g = 0). This corresponds
to region IV on the λ axis in Fig. 1, where the conditi-
ons of the Thomas theorem [5] are satisfied. Then, there
always exists the bound ground state of three particles

in a wider region of coupling constants λ of two pairs of
particles as compared with an isolated pair of two parti-
cles. This means that the three-particle threshold of the
ground state for g = 0 is always positioned to the right
from the two-particle critical point in the constant λ. Fi-
rst of all, we note that the important common point for
the Thomas and Efimov effects is the presence of pairs of
particles interacting in a resonance way. Moreover, the
regions of these effects are positioned near each other in
the diagram of thresholds (Fig. 1). At the same time,
the Thomas effect is referred only to the ground state
of three particles, whereas the Efimov effect concerns
the infinite series of near-threshold weakly bound states.
Secondly, the universality of the Thomas theorem consi-
sts in that it holds for Hamiltonian (3) with g = 0 for
an arbitrary attractive potential λu(r) between two pai-
rs of particles and an arbitrary finite mass m of the
third particle. Moreover, the less the mass m, the wi-
der is the region of the manifestation of the Thomas
effect relative to the interaction constant. We note that,
for small masses, the number of three-particle levels
becomes great, when the two-particle subsystems are not
bound yet. Thirdly, there occurs the effect of a “trap” for
the first excited state at g = 0 for particles with close
masses (under certain conditions, this concerns higher
excited states too), as distinct from the ground state.
In this case, the existence of an excited level depends
nonmonotonically on strengthening the attraction by
variation of |λ|. In addition, the intersection points of
the lines of the thresholds of excited levels with the
abscissa axis (Fig. 1) from the side of great values of
|λ| are located to the right from the corresponding two-
particle critical values of the coupling constants, where
the binding energies of two particles are equal to zero.
We emphasize once more that the schematic Figure 1
represents all main regularities so as they follow from the
asymptotic estimates and the high-precision calculati-
ons.

A special attention should be paid to the effect of a
“tube” for symmetric states at the diagram of thresholds
(region V in the upper part of Fig. 1), where the bounded
region near λ ∼ −λs,cr contains at least one bound state
of three particles even under the unlimited increase of
the repulsion between the pair of identical particles (g
is arbitrary). The effect of a “tube” is seen more clearly
in Fig. 2, where, on the real scale, we show the results
of high-precision calculations for the threshold of the
ground state and the isolines of the energy of three parti-
cles, which is reckoned from the two-particle threshold,
for the Gaussian potentials with unit interaction radii
for the mass m = 0.06. The form of the energy surface
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in the region g À 1 and near λ ∼ −40, indeed, remi-
nds of a “tube” positioned vertically. It is seen that the
isoenergetic lines ∆E = const for the ground state of
three particles with small values of ∆E ≈ −0.1 are
pulled into the “tube” in the upper part of the figure
for λ ≈ −40 and great repulsive constants g. The isoli-
nes do not form a “tube” already at ∆E ≈ −1 and
greater values, but reveal the clear asymptotic behavior
characteristic of the isolines with great values of ∆E,
showing a sharp change of the modes near the absci-
ssa axis (on the given scale). It is important that, on the
increase of the attraction between particles (13) and (23)
(the motion along the horizontal axis in Fig. 2) under a
significant repulsion between the pair of particles (12),
the nonmonotonicity in the number of bound states is
always observed (we call this as the effect of a “trap”
related to the presence of the “tube”).

The phenomenon of a “tube” can be explained on a
qualitative level. We will show firstly that the number
of levels in a “tube” is always bounded, but it grows
infinitely as m → 0. We use the fact [3] that the pair
correlation functions G(n)(r) ≡ 〈ϕn| δ(r − r12) |ϕn〉 in
Efimov states |ϕn〉 for r = 0 for the adjacent levels sati-
sfy the relation

G(n+1)(0)
/
G(n)(0) → 1√

Λ0

, (22)

where Λ0 is the ratio of the energies of adjacent Efi-
mov levels in the limit n → ∞ (Λ0 = e2π/so =
515.035 . . . in the case of three identical particles, and
the Danilov—Minlos—Faddeev—Efimov constant s0 =
1.00623 determines the index of singularity of the li-
miting equation of Skornyakov—Ter-Martirosyan in the
case of the zero interaction radius). Relation (22) takes
place due to the fact that, as n → ∞, the spatial regi-
on, where the pair correlation function behaves itself as
G(r) ∼ r−2 [3], is spreading. It is true from distances of
the order of the radius of forces to distances of the order
of the size of the system ∼ (√

Λ0

)n
R0 (here, R0 is the

characteristic size of the system in the ground state, n is
the level number, and

√
Λ0 ≈ 22.69 is the ratio of sizes

of the system for adjacent Efimov levels). Therefore, the
pair correlation function for sufficiently great n has the
following normalizing factor of ∼ r−2:

Cn →




(
√

Λ0)n
R0∫

r0

r−2dr




−1

→∼
(√

Λ0

)−n

R−1
0 . (23)

At small distances, the pair correlation function is of the
same order as that at r ∼ r0, therefore we obtain relation
(22).

In order to approach the region of the “tube” from
the region, where the Efimov effect manifests itself, we
consider some additional short-range repulsion W (r12)
between the pair of particles (12) which is taken as a
perturbation of the zero Hamiltonian, for which the Efi-
mov effect is observed. The greater the number of a level,
the greater is the size of the three-particle system, whi-
ch reminds of a spherical concentric “halo” [3] with the
ratio of the radii of the adjacent spheres ∼ √

Λ0. The
greater the size of a system of particles with short-range
interaction, the better are satisfied the conditions for the
“gas” approach [6] taking into account a contribution of
the short-range repulsion W (r12) to the energy. In the
principal approximation in the “gas” parameter, a shift
of the n-th level is determined by the two-particle T -
matrix:

∆En = 〈ϕn|T12 |ϕn〉 → 4π

m
aG12,n(0) . (24)

Here, T12 is the two-particle T -matrix defined for the
potential W (r12), a is the scattering length by the
potential W (r12) (for the repulsive potentials, a > 0).
These quantities are finite for short-range repulsive
potentials of the given form in the limit of the infinitely
great repulsion, g → ∞. In this case, the effective radi-
us and other low-energy parameters which are present
in the next terms of the expansion of the energy in the
“gas” parameter are also finite. These conclusions allow
us to consider the most wide region in the constant g in
the diagram of thresholds from the region of the Efimov
effect to the region of the “tube” with g → ∞, if the
summary potential −gs,cru(r12) + W (r12) is replaced by
gu(r12). Hence, if the intensity of the repulsive potenti-
al increases, g → ∞, the energy shift ∆En obtained
due to the repulsion has a finite limit. Moreover, the
greater the number n of an excited level, the more exact
is the relation ∆En →∼ aG(n)(0) ∼ a

(√
Λ0

)−n. Let ε0

be the quantity of the order of the binding energy of
the ground state of three particles for the critical two-
particle constant. With regard for the energy ∼ −ε0Λ−n

0

of the n-th level of the “zero” Hamiltonian near the criti-
cal constants (near the Efimov region), the total energy
of the n-th level in the region of the “tube” looks as

En = E(0)
n + ∆En ≈ −ε0Λ−n

0 + B0aΛ−n/2
0 , (25)

and B0 > 0. Since Λ0 À 1 (for m ≈ 1), the energy
En becomes positive with increase in n for an arbitrary
small repulsion which is characterized by the scattering
length a. This clarifies the above-mentioned conclusion
about the finiteness of the number of levels under a
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Fig. 3. Diagram of thresholds (schematically) in the case of a
small mass of the third particle. The numbers numerate the states
symmetric in the particles (12) permutations, the other designati-
ons are the same as in Fig. 1

deviation from the accumulation point of Efimov levels
by the constant g. That is, for the infinite number of
levels to exist, it is necessary that the interaction of
all three pairs of particles be resonant, g → −gs,cr and
λ → −λs,cr simultaneously. All the more, the number of
levels becomes finite, when the repulsion gu(r12) reaches
a significant intensity (in this case, the T -matrix is
bounded, and the length a tends to a finite limit of
the order of the radius of forces). At the same time,
the arbitrariness of the repulsion intensity for the pair
(12), the finiteness of the t-matrix, and the conditions for
the resonance and hence the appearance of the effecti-
ve long-range interaction for two pairs of particles do
not contradict the possibility for the bound states of
three particles to exist. The presence of at least one
bound state of three particles in the region under study
is confirmed by the numerical calculations for different
forms of potentials and for different masses. We note
that the “tube” (see Figs. 1 and 2) is asymmetrically posi-
tioned relative to the vertical asymptote λ = −λs,cr (the

resonance region for two pairs of particles). To a great
degree, it is positioned to the left from the asymptote,
where the attractive constant λ is greater by modulus.
But, with the further increase in the attractive constant
λ by modulus, we come away from the resonance region.
And at sufficiently large repulsive constants g, the three-
particle level can disappear, arising again only in the li-
mit of a strong coupling (see Figs. 1 and 2). We emphasi-
ze once more that all main qualitative conclusions of this
section are confirmed by the numerical calculations.

The interesting universal phenomenon of a “wedge”
(region VI in Fig. 1 and, respectively, in Figs. 3 and
4) is observed on the line where the binding energies of
two different pairs of particles are equal, ε12 = ε13 (on
the dashed inclined lines). For the sake of specificity, we
consider Fig. 3. As above, we have correctly preserved all
the regularities, which are obtained in the calculations,
though the scale of the figure is rather arbitrary. The
effect of a “wedge” consists in the following. If we move
along the dashed line (from the left to the right) from
the region of a strong coupling, |g| ≈ |λ| À 1, to the
side where the attraction decreases, then the threshold
line of the n-th symmetric state of three particles (in
Fig. 3, they are the lines of the 6-th and 5-th exci-
ted states) is finished by a sharp cusp in the form of
a “wedge” oriented from the left to the right. The li-
nes of thresholds approach the dashed inclined line from
the top and from the bottom with different slopes, and
the derivative of the threshold line undergoes a break
here. The “wedge“ arises not due to the nonanalyticity,
but as a consequence of the competition of thresholds.
On the further motion to the right (within Fig. 3),
firstly the 6-th excited state and then the 5-th one
stop to exist. But with the decrease of the attraction
along the dashed inclined line, where the energies of the
two-particle thresholds are equal, the 5-th excited state
appears again, while we approach the Efimov region. Its
threshold line has the form of a “wedge” oriented from
the right to the left. For higher excited states, the effect
of a “wedge” holds analogously. Inside the closed region
of the thresholds of Efimov states, the bulbous curves of
thresholds have a cusp in the form of a “wedge” on the
dashed inclined line. We note that, for antisymmetric
states, no similar regularities are observed.

4. Dependence of the Three-Particle
Thresholds on the Mass

Firstly, we consider the case of great values of the mass
m of the third particle. If the mass is infinite (the three-
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Fig. 4. To the left, the calculated diagram of the thresholds of stability (given on an arbitrary scale) is shown, the arrows at three
different places indicate the direction of an increase in the attraction, the other notations are analogous to those in Fig. 1. To the right,
the dependence of the energies of three particles on the strengthening of the attraction is shown: A

′−A
′′
corresponds to the dependence

of the ground state energy on the constant λ (at g = const) with the available “trap” in the resonance region, B
′ −B

′′
corresponds to

the dependence of the energies of the ground and first excited levels on the constant −g (at λ = const) with the available “trap” for the
excited state, C

′ − C
′′
demonstrates the presence of a “trap” for the ground state (at λ/g = const)

particle model passes into a model with two particles in
the short-range field of a fixed center), then it is obvi-
ous from (1) that, in the absence of the potential V (r12),
the problem of three particles is equivalent to that of two
independent particles in the field of the attractive center
U(ri). The ground state of such a system arises under
the same conditions as those for each of the particles in
the field of a center:

λ0,cr = −1
2
g(0)

s,cr . (26)

In the general case of arbitrary masses, λ0,cr = −(1 +
1/m)g(0)

s,cr/2), and, for the Gaussian potential with unit
radius, we get λ0,cr = −1.342. We emphasize that, for
the infinite mass of the third particle in the case where

g = 0, the Thomas theorem becomes trivial, and the
three-particle state exists, by beginning exactly from the
two-particle critical constant. For the excited states in
the case of the infinite mass m = ∞, the couplings for
three and two particles also appear at the same points
on the λ axis. In addition, the energies monotonically
increase with |λ|. Generally, for m = ∞, the thresholds
of stability are transformed only slightly on the whole
plane (λ, g) as compared with the case where m ∼ 1,
though, in the region of the “tube”, there remains only
the ground state which differs cardinally from the exci-
ted states for this reason. As m = ∞, the whole “tube”
is positioned to the left from the asymptote λ = −λ0,cr.
Moreover, the right edge of the threshold of a three-
particle state crosses the abscissa axis at the resonance
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point of two pairs of particles λ = −λs,cr and rises
sharply (almost vertically) upward. In the resonance
region of all three pairs of particles (λ → −gs,cr/2, g →
−gs,cr ), the conditions for the appearance of the infi-
nite Efimov spectrum, which possesses the universal
properties by beginning already from the second excited
level, are realized in the standard way. In other regi-
ons in the diagram of the thresholds of stability in the
case m = ∞, the general peculiarities seen in Fig. 1 are
preserved as well.

We now consider the other limiting case of very small
mass m → 0 (a two-center model of three particles). In
the region where g > −gs,cr, heavy particles (12) are not
coupled in the absence of the third light particle, and
λ ≥ −(1+1/m)gs,cr/2, as well as in the case where there
exists the coupling in the pair of heavy and light parti-
cles (pair (13) or (23)), we can adiabatically separate the
variables. If we make averaging over the fast movement
of the light particle (in the state ϕ), then we get the
equation for the wave function of the coordinate of the
relative motion of particles (12)

{−∆x + mg12 exp(−mx2) + W (x)}Φ(x) = ε(12)Φ(x)(27)

(in the case of the Gaussian potentials with unit radii)
with the additional potential

W (x)≡
∫

dρ |ϕ|2
{

(1+m)
2

g

(
exp

(
−

(
ρ−

√
m

2
x
)2

)
+

+ exp

(
−

(
ρ+

√
m

2
x
)2

))
−

(
1+

m

2

)
g exp

(−ρ2
)
}
→

→ −m |g|C0 + m |g|C1x
2 + . . . , (28)

where x ≡ (r2 − r1) /
√

m, and all quantities of the di-
mension of energy are multiplied by m. Then, as m → 0
and for small deviations from the position of equilibri-
um, we have the oscillatory potential (C1 > 0). Si-
nce the oscillatory frequency ω0 ∼

√
m, the spectrum

becomes denser for smaller masses. Hence, for constants
gs,cr/2 < |λ| < gs,cr/2m and small masses (m → 0), we
have the growing number of bound levels of the equi-
distant spectrum. Respectively, the thresholds for small
masses will represent the equidistant spectrum in this
region.

In the diagrams of the thresholds of stability (see Fig.
3), the indicated regularities are manifested, as m → 0,
in the enlargement of “islands” (“traps”) of the infinite
series of Efimov levels, the separation (due to the mergi-
ng with the earlier isolated thresholds in the places of
a “wedge”) of the increasing number of the new lines of

thresholds from the islands, the “pulling” of them into
the region of the “tube”, and the gradual filling of the
whole region |λ| > gs,cr/2, g > −g

(0)
s,cr. It is easy to

trace the change of the general pattern in Fig. 3 with
decrease in the mass of the third particle or, conversely,
an increase in this mass. We can qualitatively explain
the growth of the number of thresholds in the “tube” by
the following reasoning. Because Λ0 depends on the mass
of particles [3] and tends to 1 with decrease in the mass
of the third particle, energy (25) depends more and more
weaker on the level number n. Therefore, the number of
levels, for which energy (25) remains negative, increases.
That is, the less the mass, the greater is the number of
thresholds which correspond to excited levels and can
be “pulled” into the “tube”. This is completely confirmed
by the high-precision calculations for small masses. In
particular, the first excited level begins to move into the
“tube” on the transition from great masses to m ∼ 1 (Fig.
1). In the limit m → 0, the number of levels in the “tube”
tends to infinity, but, for any finite mass, the number of
levels is finite (Fig. 3). In the general aspect, the less the
mass of the third particle, the more the symmetric states
become similar to the first excited one (for m = 1). This
implies that, in a certain sense, the effects of Efimov and
Thomas and the effect of a “tube” have many common
features. On the contrary, we may expect that, in the
case of the model of two particles in the field of a fixed
center and under a variation of the forms of interaction
potentials, all three effects can be significantly impoveri-
shed, so that they will have few common features.

5. Effect of “Traps”, and Effects of
“Rearrangement” of Energy Levels

The nonmonotonous change of the number of levels of
the three-particle system with increase in the interacti-
on constants in the region of attraction, where the levels
appear and then disappear on a two-particle threshold
with increase in the attraction (the effect of a “trap”) is
characteristic (see the diagrams of thresholds in Figs. 1
and 3) of a wide region of the interaction constants whi-
ch can be positioned even sufficiently far from the Efi-
mov region of the resonance interaction. If the general
constant of attraction in the three-particle system grows
so that g and λ are linearly related to each other, we can
easily reveal a nonmonotonous character of the behavi-
or (appearance and disappearance) of levels. That is, the
effect of a “trap” has a sufficiently universal character. In
Fig. 4, the lines with arrows show some directions of the
coordinated increase in the intensities of the interacti-
on potentials, where the three-particle levels appear and
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then disappear with increase in the interaction constants
(the continuous and dotted lines correspond, respecti-
vely, to the absence and presence of the given bound
state). In this figure, we present (schematically) the
results of high-precision calculations with the Gaussian
potentials of unit radii and m = 1 (but, for the conveni-
ence of a perception, we choose the scale to be arbi-
trary). The figure demonstrates the presence of a “trap”
even in a very narrow interval of the constant λ near
a critical value of the resonance interaction constant
λ ≈ −gs,cr, though this region is small. For the sake
of convenience, we schematically present (to the right
in Fig. 4) the dependence of the binding energies on
the coupling constants with strengthening the attracti-
on along the mentioned directions. In this case, we
see the appearance of “traps” for the energy levels in
both the ground and excited states near two-particle
thresholds. In the general aspect, the effect of a “trap” for
three-particle levels, which demonstrates the essentially
different mode of the dependence of the ground-state
energy of two particles and that of the three-particle
levels on the interaction constants, is a consequence of
the two-particle structure of the full interaction potenti-
al in the three-particle system.

Quite nontrivial is the possibility to vary the modes
of behavior of the thresholds (and of the energy levels)
with the help of the interaction potentials which involve
at least two modes of attraction with essentially different
radii. In this case, we can nontrivially realize a certain
generalization of the well-known Zel’dovich two-particle
effect of a “rearrangement” of the energy spectra in the
system of three particles. For the pairwise interaction
potentials with the components of different radii, for
example, of the type

U(r) = V (r) = −g
(
exp

(−r2
)

+ b exp
(
− (r/r0)

2
))

(29)

(where r0 À 1 and b > 0), one observes a “rearran-
gement” (Fig. 5) of the energy spectrum in the three-
particle system (a three-particle analog of the Zel’dovich
effect). Due to a great value of the ratio of the interacti-
on radii of the two-component attractive potential (r0 À
1), the spectrum of three particles is close to the
superposition of the spectra of two problems involvi-
ng three particles with the separately taken components
of the interaction potential, and the quasidegeneration
of the levels occurs. But, at the points of the expected
intersection of levels of these two spectra, we observe the
effects related to the “rearrangement” of levels. For

Fig. 5. Dependence of the binding energies of three particles on the
coupling constant for the two-component potential with different
radii (29); 0, 1, 2, 3 are the numbers of the ground and excited
levels. The shaded region corresponds to the continuous spectrum
for three particles

example, the first excited level replaces the ground-state
level with increase in the total attraction (with increase
in g). In its turn, the ground-state level sharply changes
the mode of the dependence on the interaction constant.
In Fig. 5, on the real scale, we present the results of
calculations of a three-particle completely symmetric
energy spectrum (the binding energies) as a function
of the interaction constant g for a specific example of
potential (29) (m = 1, b = 0.001, r0 = 100). At the same
interaction constant g ≈ 2.1, the “rearrangement” of the
spectrum of four levels occurs successively: n-th level
replaces (n + 1)-th level. The ground state level is the
only one which, after the “rearrangement”, corresponds
to the binding energy with a quite different mode of the
dependence on g. The effect of a “rearrangement” of the
three-particle spectrum is much more pronounced than
that for the two-particle threshold and occurs for a less
attraction. By changing the class of the corresponding
interaction potentials and their parameters, we can vary
the number of levels in the region of a “rearrangement”
and can also create a “trap” for other levels (see results
in [7] for nonlocal separable potentials). The close condi-
tions for a realization of the effects of “rearrangement”
and “traps” for the energy states are known in solid state
physics for a long time in the case where, for example,
the conditions for a “quasidegeneration” of the phonon
and optical branches of oscillations are realized, or the
crystals with admixtures are considered.
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Fig. 6. Calculated diagram with the “rearrangement” of the lines
of the thresholds of stability (on the real scale) for the second and
third excited levels at m = 0.06 and for the Gaussian potenti-
al. The insert shows the “rearrangement” effect of thresholds on a
greater scale. Dots show the line of the two-particle threshold

Even for simple potentials in the Gaussian form, the
performed high-precision studies of the energy thresholds
for three particles reveal one more effect of a sharp
change of the modes in the diagrams of the thresholds
of stability which can be also named the effect of a
“rearrangement”. This effect has no analog on the two-
particle level. There exist the regions of parameters (in
the λ axis, these are the regions close to the vertical
asymptotes in Fig. 3), where the “rearrangement” of
the adjacent energy thresholds occurs in the digram of
thresholds. That is, on the monotonous change of the
interaction intensities, the threshold of the (n + 1)-th
level sharply approaches that of the n-th one and occupi-
es its place. This effect is especially clearly manifested in
the case of small masses of the third particle (see Fig. 6,
where the lower part of the diagram of the thresholds of
three first excited levels calculated for the mass m = 0.06
is shown). We note that, in Fig. 3, this effect of the
rearrangement of thresholds is not marked in order to
avoid the complication of a perception of the general
scheme of three-particle thresholds. The presence of the
effect of a “rearrangement” is probably related to the
following. In addition to the considerable short-range
attractive interaction between particles (12) present in
Hamiltonian (1), there appears an additional effective
oscillatory interaction having a great radius at small
masses of the third particle. This additional interacti-
on between particles (12) is generated by the motion
of the third light particle. Then, as m → 0, the radi-
us of the oscillatory well grows. As known [7], in the

presence of two potentials with essentially different radii,
there occurs the “rearrangement” of the energy spectrum
on increasing the intensities of the potentials. In our
case where the intensity of the short-range attraction
becomes close to the critical constant of the appearance
of the n-th level in this well, the lowest level of the other
well falls into the well with less radius. On its previous
place, the next level falls, etc. In this case, the spectrum
for the well with a greater radius is practically renewed
and is preserved, until the increase of the intensity of
the short-range attraction induces the appearance of a
new, (n + 1)-th level, and the “rearrangement” repeats.
As seen from Fig. 6, this region of the rearrangement
of thresholds contains also “traps”, because the lines of
thresholds depending on g are not monotonous.

Finally, we note that, for the three-particle problem,
the nonmonotonicity of the thresholds of stability is
a general regularity, which is rather a rule than the
exception. One can assume that the nonmonotonicity of
thresholds in a three-particle system is a consequence
of the difference of the modes of dependence of the
ground-state energy of two particles and three-particle
energies for the chosen, even simple, interaction potenti-
als. Indeed, for simple attractive potentials in a two-
particle system, one mode is always realized; we will
say that this is one configuration. At the same time,
for the system of three particles with pairwise interacti-
on potentials and greater number of coordinates, various
spatial configurations of three particles can be realized.
This can induce a change of the modes of the dependence
of three-particle energies and thresholds and, therefore,
the nonmonotonous behavior of the number of levels of
three particles in various regions of parameters of the
interaction potentials. We may expect a more compli-
cated behavior of the thresholds of stability in the
problems with four and greater number of particles with
pairwise interaction potentials.

6. Conclusions

In conclusion, we emphasize that we have systematically
studied the energy thresholds of stability for the general
quantum problem of three particles interacting by short-
range potentials. Analytically and by the high-precision
calculations of the energy spectra of three particles, we
have established the general nonmonotonic dependence
of the thresholds of stability on the strengthening (or
the weakening) of the attraction between particles. As
a result, we have revealed a number of new nontri-
vial universal effects in the behavior of the three-
particle thresholds of stability. In the first turn, we
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mark the effect of a “trap”, when the number of
three-particle bound states nonmonotonically depends
on the strengthening of the interaction between parti-
cles. Secondly, we have discovered the effect of a
“rearrangement” of the energy levels and the thresholds
of stability, which has no analog in the two-particle
systems. At the same time, we have constructed a
three-particle generalization of the Zel’dovich effect of
a “rearrangement” of the energy levels for the attracti-
ve interaction potentials with the modes of attraction
which essentially differ by their interaction radii. Thi-
rdly, we have revealed both the effect of a “tube” for
the energy states in the region of a significant repulsion
between a pair of identical particles and the effect of a
“wedge” on the boundary, where the binding energies of
two different pairs of particles coincide. We have made
a sufficiently full and clear analysis of the dependences
of the thresholds of stability on the masses of particles
and the form of a short-range interaction, and have also
considered different symmetries of states.

The revealed regularities are important for the
comprehension of the general properties of three-particle
systems of different nature. In addition, the possibilities
to describe the characteristic peculiarities of thresholds
in three-particle systems with the Coulomb interacti-
on, as well as those of the states with nonzero angular
momenta, are open. These problems will be analyzed
in further publications. Challenging is also the necessity
to study the thresholds of stability for one- and two-
dimensional systems, where one can expect significant
differences in properties from those in three-dimensional

problems.
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ЕНЕРГЕТИЧНI ПОРОГИ СТАБIЛЬНОСТI
ТРИЧАСТИНКОВИХ СИСТЕМ

I.В. Сименог, Ю.М. Бiдасюк, Б.Є. Гринюк, М.В. Кузьменко

Р е з ю м е

Вивчено загальнi властивостi енергетичних порогiв стабiльно-
стi системи трьох частинок iз короткодiйною взаємодiєю. Роз-
глянуто широку область констант взаємодiї та рiзнi спiввiдно-
шення мас частинок. Виявлено специфiчнi ефекти, характер-
нi для бiляпорогових стацiонарних енергетичних рiвнiв трьох
частинок. Для порогiв отримано асимптотичнi оцiнки в пев-
них граничних випадках. Виконано прецизiйнi варiацiйнi роз-
рахунки порогiв при рiзних значеннях констант взаємодiї та
мас частинок.
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