
V.T. SHVETS, S.V. DATS’KO, Ye.K. MALYNOVS’KIJ

THERMODYNAMIC PROPERTIES OF METALLIC
HYDROGEN

V.T. SHVETS, S.V. DATSKO, YE.K. MALYNOVSKIJ

UDC 537.311.31

c©2007

Odesa State Academy of Refrigeration
(1/3, Dvoryans’ka Str., Odesa 65026, Ukraine; e-mail: valtar@paco.net)

The internal energy, free energy, and pressure as functions
of density and temperature have been calculated for metallic
hydrogen. The regions of temperatures and pressure correspond
to the conditions of experiments on the formation of metallic
hydrogen, as well as to those observed in the cores of giant planets
of the Solar system, such as Jupiter and Saturn. Hydrogen is
assumed to be in an atomic state, and all its electrons are itinerant.
To calculate the thermodynamic potentials of metallic hydrogen,
the perturbation expansion in the electron-proton interaction is
used. The electron subsystem is considered within the random
phase approximation with regard for the exchange interaction
and electron correlations within the local field approximation. A
proton-proton interaction is taken into account within the rigid
sphere approximation. Since the electron-proton interaction for
metallic hydrogen is known precisely, the only parameter of the
theory is a sphere diameter. For its determination, the effective
pairwise proton-proton interaction is used. The zeroth-, second-,
and third-order terms of the perturbation expansion are taken into
account to perform the numerical calculations of thermodynamic
characteristics. The third-order term is found to be important,
although it is far smaller than the second-order one over the
whole regions of temperature and pressure under consideration.
The thermodynamic potentials of metallic hydrogen are the
monotonically increasing functions of density and temperature.
The pressure values, calculated for the temperatures and densities
characteristic of the conditions of obtaining of metallic hydrogen
under terrestrial conditions, coincide to a high accuracy with the
corresponding values reported by the authors of the discovery of
metallic hydrogen.

1. Introduction

The possibility that hydrogen can exist in a metallic
state was first predicted in 1935 [1]. However, the
actual discovery of metallic hydrogen, together with
a detailed study of the dependence of its electric
resistance on pressure and temperature, was made in
1996 [2]. In work [2], the molecular hydrogen in a
liquid state was subjected to a shock compression
to the high values of pressure (0.93—1.80 Mbar) at
temperatures 2200—4400 K. Under a pressure of 1.4
Mbar at a temperature of 3000 K, the metal—insulator
transition was observed. Actually, a case in point
was the metal—semiconductor transition, since the
band gap in molecular hydrogen did not disappear

completely, but only decreased from 15 to 0.3 eV,
i.e. practically to the temperature of a specimen. It
should be noted that the attempts to probe the metallic
state of hydrogen, both theoretically and experimentally,
had also been made earlier. So, in work [3], the
electric resistance of molecular hydrogen was measured
under the lower values of pressure (0.1—0.2 Mbar).
The authors observed the exponential character of the
temperature dependence of the resistance, which is
characteristic of the semiconductors with a band gap
of 12 eV. The first deep investigation of the equation
of state for the metallic hydrogen in a crystalline
state at low temperatures dated back to 1971 [4]. The
first statement on the discovery of metallic hydrogen
was issued in 1978 [5]. The authors reported on
the discovery of metallic hydrogen at a pressure of
2 Mbar.

In recent years, the studies of the equilibrium
properties of metallic hydrogen have been conducted on
a wide front [6—9]. To a great extent, the importance of
such studies is based on a fact that, taking into account
the extreme conditions of the existence of metallic
hydrogen under terrestrial conditions, only a few of
its equilibrium characteristics, for example the density
or temperature, are measurable. Such an important
characteristic of metallic hydrogen as pressure is already
a calculable characteristic. An important feature of the
theoretical investigation of the equilibrium properties of
metallic hydrogen is the use of the approximation of
nearly free electrons. It is this approximation that we
also use for the calculations of the electric conductivity
of metallic hydrogen [10]. In the present work, we
also make assumption that hydrogen is in the genuine
metallic state with a zero band gap, rather than in
the semiconducting state with a band gap of 0.3 eV,
as has been observed experimentally. Such a state
can be realized either at higher pressures or at higher
temperatures. It is noteworthy that the Jupiter core
having a radius twice smaller than that of the planet
consists of hydrogen that is at pressures of 3—40 Mbar
and temperatures of 10000—20000 K.
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2. Hamiltonian

Assume that hydrogen is in a disordered atomic state
and all its electrons are itinerant. Then the Hamiltonian
of the electron subsystem of metallic hydrogen can be
chosen in the same form, as that used for the simple
liquid metals [11]:

H = Hi + He + Hie. (1)

The Hamiltonian of the proton subsystem reads

Hi =
N∑

n=1

Tn +
1

2V

∑
q

V (q)[ρi(q)ρi(−q)−N ]. (2)

The first term on the right-hand side describes the
kinetic energy of protons, the second one — the Coulomb
energy of their interaction. Here, V is the system
volume, N — the number of protons, Tn — the
kinetic energy of the n-th proton, V (q) — the Fourier
transform of the proton-proton, electron-electron, and
electron-proton Coulomb interactions, and ρi(q) — the
Fourier transform of the density of protons. At high
temperatures, the proton subsystem can be considered
as classical.

For all the temperatures under consideration, the
electron gas is strongly degenerated. Therefore, it is
expedient to use the representation of the plane wave
secondary quantization for its description. Then, the
Hamiltonian of the electron subsystem can be written
as

He =
∑

k

εka+
k ak +

1
2V

∑
q

V (q)[ρe(q)ρe(−q)−N ].

(3)

The first term on the right-hand side describes the
kinetic energy of the electron gas, the second one - the
Coulomb energy of the electron interaction. Here, a+

k

and ak are the operators of creation and annihilation,
respectively, for the electrons in the state with a
wavevector k, εk — the free electron energy, m — the
electron mass, ρe(q) — the Fourier transform of the
electron density operator, and N is the electron quantity
operator.

The Hamiltonian of the Coulomb interaction
between electrons and protons reads

Hie =
1
V

∑
q

V (q)ρi(q)ρe(−q). (4)

In the starting expression for the Hamiltonian, the
electric neutrality of the system is taken into account
through the elimination of the term with q = 0 in each
of the sums.

3. Internal Energy

The internal energy of the system can be obtained by
means averaging the Hamiltonian over a Gibbs ensemble

E =〉H〉 = Ei + Ee + Eie. (5)

A contribution of the proton subsystem to the energy is

Ei = 〈Hi〉 = N
3
2
kBT + N

1
2V

∑
q

′
V (q)[Si(q)− 1]. (6)

A prime near the index of summation means the
elimination of a summand with q = 0, and T is
the absolute temperature of the system. The first and
second terms on the right-hand side are the kinetic
energy of protons and the Madelung energy, respectively.
For the latter, the accuracy of calculations depends on
the accuracy of the approximation utilized for a static
structure factor of the proton subsystem, Si(q).

The energies of the electron subsystem and the
interaction between the electron and proton subsystems
are handy to be considered together. Their sum, i.e.
the ground-state energy of the electron gas in the field
of protons, can be expanded in a power series in the
electron-proton interaction:

Ee = 〈He〉+ 〈Hie〉 =
∞∑

n=0

En . (7)

Each summand obtained on the expansion in the
electron-proton interaction should be developed, in turn,
in a series in the electron-electron interaction. For the
zeroth order term of the electron-proton interaction
expansion, this series reads

E0 = E0e + EHF + Ecor (8)

or, at zero temperature,

E0 = N

(
1.105
rs

− 0.458
rs

− 0.058 + 0.016 lnrs

)
. (9)

Here, the first summand in the parentheses, which is
the zeroth order term of the expansion in the electron-
electron interaction, is the kinetic energy of an ideal
electron gas, with rs being the Brueckner nonideality
parameter defined as the radius of a sphere, whose
volume equals that shared by one electron in the
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system. The second summand is the first-order term
of the expansion in the electron-electron interaction or
the Hartree—Fock energy [12]. The third and fourth
summands are the higher-order terms of the expansion
in the electron-electron interaction or the correlation
energy, for which the Nozieres—Pines interpolating
formula [12,13] is used.

The ground-state energy of metallic hydrogen doesn’t
contain the first-order term of the expansion in the
electron-proton interaction, since this interaction is of
the Coulomb type and its zeroth Fourier component
doesn’t contribute to the energy due to the electric
neutrality of the system. The second- and higher-order
terms, the so-called band structure energy, read

En =
N
V n

∑
q1,... ,qn

Γ(n)(q1, . . . ,qn)V (q1) · · ·V (qn)×

×Si(q1, · · · ,qn)∆(q1 + · · ·+ qn). (10)

Here, Si(q1, · · · ,qn) is the n-particle structural factor
of the proton subsystem, ∆(q1 + · · · + qn) — the
Kronecker symbol, Γ(n)(q1, · · · ,qn) — the so-called
n-terminal electron network which formally precisely
takes into account the electron-electron interaction.
There are a few variants of approximate calculations
of the multiterminal electron networks [14—17] and the
multiparticle structural factors of the proton subsystem
[18]. For the two-terminal electron network, the results
obtained by all authors coincide with each other and
read

Γ(2)(q,−q) = −1
2

π(q)
ε(q)

. (11)

Here, π(q) is the polarization function of the electron
gas and ε(q) is its dielectric permittivity. We choose the
latter in the random phase approximation with regard
for the exchange interaction and electron correlations
in the local field approximation [19]. For the three-
terminal electron network, the results obtained by
different authors differ appreciably. As follows from our
calculations, it is in work [16] that the correct result is
obtained for the model of ideal electron gas. It is this
result that we use for our calculations:

Γ(3)(q1,q2,q3) =
Λ(3)

0 (q1,q2,q3)
ε(q1)ε(q2)ε(q3)

, (12)

where Λ(3)
0 (q1,q2,q3) is the three-terminal electron

network of the degenerate ideal electron gas. The

approximation used for the three-terminal network takes
into account the electron-electron interaction in the
approximation of a self-consistent field, which, in turn,
accounts for this interaction through the screening of
the external field, i.e. the proton field. After making the
substitution of summation by integration in a spherical
coordinate system, the second- and third-order terms of
the expansion in the electron-proton interaction can be
shown to take the form

E2 = N
−1
4π2

∞∫

0

π(q)
ε(q)

V 2(q)S (q)q2dq , (13)

E3 = N
1

4π4

∞∫

0

dq1q2
1

∞∫

0

dq2q2
2F (q1, q2), (14)

F (q1, q2) =
1
2

π∫

0

Λ(3)
0 (q1,q2,−q1 − q2)

ε(q1)ε(q2)ε(|q1 − q2|) V (q1)×

×V (q2)V (|q1 + q2|)S(q1,q2,−q1 − q2) sin(θ12)dθ12.

Since the electron-proton interaction is known precisely,
the principal approximation that we used to calculate
the third-order term of the expansion in the electron-
proton interaction is the geometric approximation for
the three-particle structural factor [18, 20, 21]:

S(q1,q2,q3) = S(q1)S(q2)S(q3). (15)

It is seen from Fig. 1 that, as the density increases, the
role of the band structure energy, namely the second-
and third-order terms of the expansion in the electron-
proton interaction, decreases, i.e. the convergence
conditions for the perturbation expansion in terms
of this interaction get improved. In addition, over
all the regions of densities and temperatures under
investigation, the third-order term of the expansion
in the electron-proton interaction is smaller than the
second-order one. One more circumstance is noteworthy:
at the densities greater than that of the transition into
the metallic state (0.3 mole/cm3), the internal energy
becomes positive and approaches the value characteristic
of an ideal gas, as the density grows.

4. Free Energy and Pressure

By definition, the free energy reads

F = E − TS, (16)
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Fig. 1. Internal energy for metallic hydrogen at a temperature of
9000 K. E0, E2, and E3 are the zero-, second-, and third-order
perturbation terms, respectively

where S is the entropy of the system which consists
of the electron and proton terms. For the degenerate
electron gas, the electron term can be neglected in
comparison with the proton one. The latter can be
chosen in the rigid sphere approximation [13,22,23] as

S = Si = Srs = S0i + Si(η), (17)

where

S0i = NkB ln

[
e
n

(
eMkBT
2π~2

)3/2
]

(18)

is the entropy of the ideal proton gas, M the
proton mass, n the density of protons, and η their
packing density. The contribution originated from the
interaction between protons is

Si(η) = NkB
3η2 − 4η

(1− η)2
. (19)

As is seen from Figs. 2 and 3, the free energy and
pressure are the monotonically increasing functions of
density. For the case of free energy, this dependence is
almost linear.

5. Effective Pairwise Proton-Proton
Interaction

The important characteristic of metals is the effective
pairwise interionic interaction. The corresponding
expression for the pairwise proton-proton interaction
in the second-order of the perturbation expansion in
the electron-proton interaction, Veff(R) with R being
a distance between protons, is well-known [23]. Its

Fig. 2. Density dependence of the free energy for metallic hydrogen
at various temperatures

Fig. 3. Pressure dependence of the free energy for metallic
hydrogen at various temperatures

important property is that it contains no fitting
parameters and depends only on the system density.
The only universal approximation used for its derivation
is the random phase approximation for the electron
subsystem with regard for the exchange interaction and
electron correlations in the local field approximation.

We will find a rigid sphere diameter σ, i.e. the
minimal distance that protons can approach each other
at a given temperature, from the condition of equality
of the proton kinetic and potential energies:

Veff(σ) = 3kBT/2. (20)

Here, the kinetic energy is counted out from the bottom
of a potential well. The character of the effective pairwise
proton-proton interaction is seen from Fig. 4.

As follows from the figure, for the hydrogen density
corresponding to the transition into metallic state (0.3
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Fig. 4. Effective pairwise proton-proton interaction (in units of
Celsius degrees) as a function of the distance between protons for
various densities (T=3000 K)

mole/cm3), the potential well depth is only a few
hundreds of Celsius degrees. At higher densities, the
potential well practically disappears. Thus, for metallic
hydrogen being at high temperatures, only the repulsion
between protons is important. This is unambiguous
evidence against the possibility that metallic hydrogen
can exist at high temperatures as the external pressure
is taken away. Under these conditions, the system is
unstable.

6. Discussion of Results

According to the data of the authors who made the
discovery of metallic hydrogen [2], the pressure equals
1.4 Mbar at a temperature of 3000 K and a density
of 0.3 mole/cm3. As follows from our calculations,
the pressure is 1.38 Mbar under the same conditions.
From our point of view, such closeness of the pressure
values gives the evidence for the similarity of the
simplifying assumptions and the methods of calculations
of the pressure, rather than indicates the adequacy of
the theory to the experiment conditions. A problem
concerning the applicability of various models, for
example that of nearly free electrons, can be solved
within the frames of the theory itself. The dimensionless
parameter that characterizes the applicability of the
model of nearly free electrons is ~/εFτ , where εF is the
Fermi energy, τ the lifetime of an electron on the Fermi
level. This time is close to the relaxation time for the
electric and thermal conductivities in metals. The model
is applicable when this parameter is less than unity.

Figure 5 shows the density dependence of this
parameter for the three values of temperatures. It is seen
from the figure that ~/εFτ is close to unity at high

Fig. 5. Density dependence of the dimensionless parameter ~/εFτ

at various temperatures

temperatures provided that the densities are low. Thus,
under these conditions, the model of nearly free electrons
is inapplicable. On the contrary, at low temperatures,
the parameter is less than unity for the case of high
densities, and therefore, the above model is applicable. In
particular, the model is applicable for the density n=0.3
mole/cm3, at which metallic hydrogen was obtained for
the first time.

The second important feature of the theory is
a fundamental role of the electron-proton interaction
in the formation of not only the kinetic, but also
thermodynamic properties of metallic hydrogen. This
follows from the results of numerical calculations. When
the electron-proton interaction is not accounted for, the
pressure takes on a nonphysical value −0.27 Mbar at a
temperature of 3000 K and a density of 0.3 mole/cm3.
The account of this interaction in the second-order
perturbation theory already results in a pressure of 1.13
Mbar. Further, when the third-order term is taken into
account, the pressure becomes equal to 1.38 Mbar. How
correct is the use of the perturbation theory for the
calculation of the energy of an electron gas in the field
of protons is seen from the following estimations. In
the first approximation with respect to the electron-
proton interaction, the electron gas energy equals 0.45
a.u. The second-order term is equal to −0.076 a.u., and
the third-order one −0.17 a.u. Such values of the first
terms of the perturbation expansion in the electron-
proton interaction allow one to optimistically estimate
the convergence of the whole series.

In this respect, the situation with convergence of the
series of the perturbation expansion for the energy is
better than that, for example, for the electric resistance
[10]. In the latter case, as is seen from Fig.
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6, the perturbation expansion series which begins with
the second-order terms in the electron-proton interaction
converges too slowly. It also follows from the figure that,
for all the density values under consideration, the third-
order term is less than the second-order one only by a
few tens of percents. However, the convergence of the
perturbation expansion series for the electric resistance
improves with increase in the density.

As concerns the pressure (Fig. 3), its value
grows with increase in both temperature and density.
The corresponding dependences have monotonic and
nonlinear character. The reliability of the results
obtained is higher at temperatures far exceeding 3000
K, than at the temperature at which metallic hydrogen
was obtained under terrestrial conditions. The reason
for this consists in the presence of the band gap of 3000
K in width in the electron energy spectrum of metallic
hydrogen at a density of 0.3 mole/cm3. This allows
one to apply the theory developed, for example, to the
estimation of the pressure in the cores of giant planets
of the Solar system, where the temperatures are much
higher.

At the same time, in the case of high temperatures,
it is necessary to take into account the temperature
correction terms to both the multiterminal networks and
the dielectric permittivity of the electron gas. It can be
easily seen that, even within the temperature interval
under consideration, the dimensionless parameter ~/εFτ
that characterizes the electron gas degeneration is
sufficiently great, and its account can noticeably change
the results that we obtained.

Returning to the pressure at which metallic hydrogen
was discovered, it should be mentioned the following.
Both the electric resistance and pressure were calculated
by us within the frames of the same model and with
the application of the same approximations. The value
of electric resistance, measured experimentally, is more
than one order higher than that obtained by us as a
result of the approximate summation of terms of the
perturbation expansion series for the electric resistance.
Under these conditions, the pressure values obtained
by us theoretically cannot be close to the experimental
ones. Most likely, these values are far smaller. Thus,
the answer to the question, at which pressure metallic
hydrogen was discovered, remains open. The reason for
such an uncertainty is not associated with the model of
metallic hydrogen that we used. As was noted above,
the conditions of the model applicability are fulfilled
well enough. One of the reasons can originate from a
neglect of the band gap existence in the electron energy
spectrum, which, however, is important only at the

Fig. 6. Electric resistance at 9000 K. R2 and R3 are the
contributions of the second- and third-order perturbation terms,
respectively; R is the result of the approximate summation of the
perturbation expansion series

relatively low temperatures and densities. The other
reason lies in the uncertainty as to which fraction of
hydrogen is in the atomic state. The role of the latter can
also be important only at the relatively low temperatures
and densities.

Thus, the theory we developed pretends to the
quantitative description of both the equilibrium and
nonequilibrium properties of metallic hydrogen only in a
region of high temperatures and densities. At the same
time, if a temperature equals 3000 K, the density should
by far exceed 0.3 mole/cm3. Moreover, if the density
equals 0.3 mole/cm3, then the temperature should by
far exceed 3000 K.
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ТЕРМОДИНАМIЧНI ВЛАСТИВОСТI
МЕТАЛIЧНОГО ВОДНЮ

В.Т. Швець, С.В. Дацько, Є.К. Малиновський

Р е з ю м е

Обчислено внутрiшню i вiльну енергiю та тиск металiчного вод-
ню як функцiї густини та температури. Дослiджений iнтервал
температур i густин вiдповiдає як умовам експерименту з отри-
мання металiчного водню, так i умовам в ядрах планет-гiгантiв
Сонячної системи, таких, як Юпiтер i Сатурн. Вважається,
що водень перебуває в атомарному станi i всi його електро-
ни колективiзованi. Для знаходження термодинамiчних потен-
цiалiв металiчного водню використовується теорiя збурень за
електрон-протонною взаємодiєю. Електронна пiдсистема роз-
глядається у наближеннi випадкових фаз iз врахуванням об-
мiнної взаємодiї i кореляцiй електронiв у наближеннi локально-
го поля. Протон-протонна взаємодiя враховується у наближен-
нi твердих сфер. Оскiльки для металiчного водню електрон-
протонна взаємодiя вiдома точно, то, фактично, єдиним пара-
метром теорiї є дiаметр твердих сфер. Для його обчислення
використано парну ефективну електрон-протонну взаємодiю.
У чисельних розрахунках термодинамiчних характеристик ме-
талiчного водню взято до уваги члени нульового, другого i
третього порядкiв теорiї збурень. Член третього порядку ви-
явився досить суттєвим, але в усьому розглянутому iнтервалi
температур i тискiв вiн значно менший за член другого поряд-
ку. Термодинамiчнi потенцiали металiчного водню є монотонно
зростаючими функцiями густини i температури. Значення тис-
ку для температур i густин, характерних для умов отримання
металiчного водню в земних умовах, з високою точнiстю збiга-
ються з вiдповiдними значеннями, наведеними авторами вiд-
криття металiчного водню.
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