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The energy spectra, dispersion laws, widths of exciton bands,
and effective masses for excitons of large and small radii have
been investigated. The account of the crystal lattice discreteness
allows us to reveal some new features of excitons: the anisotropy
of their relative motion and the dependences of the Rydberg
exciton constant and the exciton band width on the main quantum
number n.

1. Introduction

Developed in the pioneer works of Frenkel [1], Peierls
[2], Wannier [3], and Mott [4], the theory of excitons
has been experimentally confirmed for most dielectric
and semiconductor crystals. Its further elaboration has
occurred in two directions, as stated by Knox [5]: the
studies of “the exciton structure” and “the dynamics
of excitons.” As the former direction, Knox means the
determination of excited electron states depending on
the wave vector of an exciton in the ideal lattice.
According to [5], the latter direction includes the study
of the interaction of excitons with one another and with
other fields or particles. The present work can be referred
to the studies of the exciton structure.

The majority of theoretical and experimental works
in this field has considered the dynamics of excitons.
In this case, one of the well-known structural models
such as the model of Frenkel or Wannier—Mott excitons
and the model of excitons with charge transfer is used.
These works account for the interaction of excitons
with phonons, photons, defects of a crystal lattice or
admixtures, exciton-exciton interaction, etc. (see, e.g.,

[6—8]). If the interaction of excitons with other particles
or fields is weak, then the exciton structure varies
slightly. However, under strong interactions or the high
intensities of exciting fields, the structure of excitons can
be significantly changed. For example, under the strong
phonon-exciton interaction, the self-localized excitons
[8, Sections 12, 13] or the polaron states of electrons
and holes can be created. The strong photon-exciton
interaction leads to the creation of exciton polaritons
[8, Section 3]. At the high intensities of exciting fields,
the many-electron or many-exciton complexes, exciton
droplets, and other dynamical structures can be formed.

At present, the excitons in low-dimensional systems
(membranes, films, linear polymers, and biopolymers)
[9, 10] and in small volumes (quantum dots and wires)
[11, 12] are intensively studied. Such an attention to
these objects is obviously related to the possibility of
their practical use in electronics and other branches
of industry. These works are based on two-three
above-mentioned structural models of excitons. The
discreteness of a crystal lattice is considered rarely [9,
13], as well as the excitons with intermediate radii [5, 8,
14].

Consider the most studied model of Wannier—Mott
excitons with the energy spectrum [5]

En(k) = Eg +
~2k2

2mex
− Rex

n2
, (1)

where Eg — forbidden zone width, mex = me +
mh, me, mh — effective masses of an electron and
a hole, respectively, Rex = µe4/(2ε2~2) — Rydberg
constant of an exciton, µ = (memh)/mex, ε — dielectric



N.I. KISLUKHA, D.N. TULCHYNS’KA

constant, k — wave vector of an exciton, and n is
the principal quantum number of an exciton. Formula
(1) holds only near the exciton band bottom. The
numerous modifications and improvements of this model
are restricted by the region of small k. Moreover, the
band structure for the whole scope of the Brillouin zone
was not practically studied.

The goal of the present paper is, firstly, the
construction of a more general model of excitons which
would describe all the known excitons as partial cases.
Then we will take the discreteness of a crystal lattice
into account for excitons with small and intermediate
radii, which is the second purpose of our work.

2. Hamiltonian. Schrödinger Equation

The Hamiltonian with the electron-hole interaction for
Wannier—Mott excitons with intermediate and small
radii looks as

H = He + Hh + Heh, (2)

where He =
∑
n

E′
ga

+
n an +

∑
n,m

Inma+
n am, Hh =

∑
n,m

Jnmb+
n bm, Heh =

∑
n,m

Unma+
n b+

manbm, E
′
g — the

distance between the centers of the conduction and
valence bands, a+

n , an, b+
n , bn — the creation and

annihilation operators of electrons (a) and holes (b), n =
(n1, n2, n3) — numbers of lattice nodes, Inm — the
electron exchange energy, Inn = 0, Jnm — the
same for a hole, Unm — the Coulomb (or another)
interaction energy. The exchange integrals Inm, Jnm

quickly decrease as functions of the distance
∣∣∣→rn − →

rm

∣∣∣.
Therefore, it is possible to use the approximation of
nearest neighbors for Inm, Jnm. We have six nonzero
coefficients Inα 6= 0 for a cubic lattice (α = 1, 2, ... 6).
Let Inα ≡ −I; Jnα = −J. The signs of I, J correspond
to the positive effective masses of an electron and a hole
if I > 0, J > 0.

On the two-particle states |ψ〉 =
∑
n,m

fnma+
n b+

m|0〉, the
Schrödinger equation H|Ψ〉 = E|Ψ〉 yields the equation
for fnm in the form

−
6∑

α=1

(Ifnα + Jfαm) + (Unm − E′) fnm = 0, (3)

where E′ = E−E′
g, fn1 ≡ f(n1+1, n2, n3)(m1, m2, m3), ...,

f6m ≡ f(n1, n2, n3)(m1, m2, m3+1).

3. Separation of Variables. Relative Motion

We introduce the new variables

νi =
I mi + Jni

I + J
, li = ni −mi; i = 1, 2, 3. (4)

They are discrete analogs of the center-of-mass and
relative coordinates. We set

fnm = eikνeiql · C(l), (5)

where k = (k1, k2, k3), kν =
3∑

i=1

kiνi, the same is

implied for q, C(l) ≡ C(l1, l2, l3), C(l) can be complex-
valued. If we set tan qi = J sin βi−I sin αi

I cos αi+J cos βi
, αi = J

I+J ki,
βi = I

I+J ki, then the variables can be separated, and
we get the system of equations describing the relative
motion
3∑

i=1

Li(C(li + 1) + C(li − 1)) + (Ul − E′)C(l) = 0. (6)

Here, Li = ±√I2 + J2 + 2IJ cos ki, Ul ≡
Unm, C(l2 ± 1) ≡ C(l1, l2 ± 1, l3). The negative sign
of Li corresponds to the bound states of an electron and
a hole. We restrict ourselves to this case in what follows.

4. Excitons with Large Radii

If C(l) in (6) is a smooth function of li, it is
possible to use the continual approximation: l →
(x, y, z), C(l) → Ψ(x, y, z), Ul → U(x, y, z), where
x, y, z are the dimensionless coordinates. Let Ψ(x ±
1, y, z) ≈ Ψ(x, y, z) ± dΨ

dx + 1
2

d2Ψ
dx2 , and let the same

hold for the variables y, z.
The conditions for the continual approximation to be

true are

|Ψ| À
∣∣∣∣
dΨ
dx

∣∣∣∣ À
∣∣∣∣
d2Ψ
dx2

∣∣∣∣ À ..., (7)

and the same holds for y and z.
We take U(x, y, z) = − e2

εar for the Coulomb
interaction, where r =

√
x2 + y2 + z2, ε and a —

dielectric and lattice constants. Then relation (6) yields

L1
d2Ψ
dx2

+ L2
d2Ψ
dy2

+ L3
d2Ψ
dz2

−

−
(

e2

εar
+ E′ − 2(L1 + L2 + L3)

)
Ψ = 0. (8)

Equation (8) has the anisotropy term due to the
wave vector k of an exciton. If the exciton moves
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along a diagonal of the cube (|k1| = |k2| = |k3|), Eq. (8)
corresponds to the isotropy:

L(k)∆Ψ−
(

e2

εar
− 6L(k) + E′

)
Ψ = 0, (9)

where L(k) = Li, k = |ki|.
Equation (9) which is similar to that for the hydrogen

wave function gives the energy spectrum

En(k) = E
′
g − 6

√
I2 + J2 + 2IJ cos k−

− e4

4ε2a2
√

I2 + J2 + 2IJ cos k
· 1
n2

, (10)

where n = 1, 2, ... — the principle quantum number.
It follows from (10) that

a) the Rydberg constant of an exciton depends on k;
b) the dispersion law, En(k), depends on n and can be
nonmonotone;
c) the widths of exciton bands are finite and depend
on n.

The monotonicity of En(k) depends on the
dimensionless parameter γ = 1

2IJ (U2
a/(24n2) − (I2+

+J2)), where Ua = e2/(εa). If |γ| ≥ 1, then the
dispersion law En(k) is monotone, and k1 = 0, k2 = π
correspond to the minimum and maximum of En(k),
respectively. The exciton band width is ∆En = En(π)−
En(0), i.e.,

∆En =





12J

(
1− U2

a

24n2 (I2 − J2)

)
, if I > J,

12I

(
1− U2

a

24n2 (I2 − J2)

)
, if I < J.

If |γ| < 1, the maximum of En(k) arises at k3 =
arccos γ. At k1 = 0, k2 = π, it has two minima. But
conditions (7) can be broken in this case. It is possible
to present inequality (7) as

Rn À a, (11)

where Rn = 3an2L(k)/Ua — the intermediate radius
of an exciton in the state characterized by n, k. The
function L(k) has minimum at k = π. Then inequality
(11) gives |I − J | À Ua/3n2 which together with the
inequality |γ| < 1 imply that 1

2
√

6n
> |I±J|

Ua
À 1

3n2 .
It is satisfied only at large n and small |I − J |/Ua.
Since condition (11) is more strict than |γ| < 1,
the nonmonotone behavior of En(k) can be evidently
revealed for the excitons with intermediate radii.

It is possible to use the perturbative methods
for solving Eq. (8), if L(ki) satisfies the condition

|L(0)− L(π)|/|L(0)| ¿ 1 or if |k1| ≈ |k2| ≈ |k3|. Then
we can get a small correction to En(0) in (10). Equation
(8) is anisotropic, but the effective mass is isotropic. At
small k, the anisotropy is negligibly small. In this case,
we have two small parameters k and |∆Ψ|/|Ψ|, which
follows from (7). In order to keep the quantities to be
of the same order, we must decompose relation (6) in a
different way: in Ψ to within k2

i and in d2Ψ
dx2 , d2Ψ

dy2 , d2Ψ
dz2

getting L(ki) ≈ L(0). Thus, we obtain the equation

−(I + J)∆Ψ−
(

Ua

r
+ E′ + 6(I + J)− 2IJ

I + J
k2

)
Ψ = 0.

It is exactly the equation for the wave function of a
Wannier-Mott exciton. The energy coincides with (1) if
we set µ = ~2/2a2(I+J), mex = ~2(I+J)/4IJa2, Eg =
E′ − 6(I + J).

5. Excitons of Small Radii

It is possible to solve system (6) in the discrete version
by means of the method of successive approximations in
the case where

|Li| ¿ Ua. (12)

It is convenient to introduce the dimensionless
quantities: λi = −Li/Ua > 0, λi ¿ 1, ε = E′

Ua
,

ul = −Ul/Ua, ul =
{

u0, if l = 0,

1/
√

l21 + l22 + l23, if l 6= 0.

Then Eq. (6) can be transformed into
3∑

i=1

λi (C(li + 1) + C(li − 1))+(ε + ul)C(l) = 0. (13)

We get the solutions in the zero-order approximation,
if we put λi = 0 in (13). Then we have (ε + ul)C(l) = 0.
Provided Cl 6= 0, ε = −ul. It is the energy in the zero-
order approximation.

There are crystals (including molecular ones), for
which u0 > 1. In this case, the nearest energy level
corresponds to Frenkel-like excitons. The next levels
correspond to l 6= 0. In another crystals, u0 < 1 or
even u0 < 0. Then the nearest energy level corresponds
to l 6= 0, and the Frenkel-like excitons do not exist
apparently. We consider the first case, u0 > 1, and solve
system (13) in the first-order approximation for the level
ε0 = −u0. We take ε0 = −u0 + δ, C(0, 0, 0) = 1 − x,
C(±1, 0, 0) = y1, C(0, ±1, 0) = y2, C(0, 0, ±1) = y3,
and C(l) = 0. We assume also that the quantities δ, x, yi

have the first order of smallness (∼ λi). In this case,
system (13) together with the normalization condition
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∑
l

|C(l)|2 = 1 are satisfied to within ∼ λi. Then δ =

0, x = 0, yi = λi

u0−1 .
In the second-order approximation, we introduce the

corrections of the second order in ∼ λ2
i and obtain

C(0, 0, 0) = 1− 2
λ2

1 + λ2
2 + λ2

3

(u0 − 1)2
, C(±1, 0, 0) =

λ1

u0 − 1
,

C(0, ±1, 0) =
λ2

u0 − 1
, C(0, 0, ±1) =

λ3

u0 − 1
,

C(±1, ±1, 0) =
2λ1λ2

(u0 − 1)(u0 −
√

2
2 )

,

C(±1, 0, ±1) =
2λ1λ3

(u0 − 1)(u0 −
√

2
2 )

,

C(0, ±1, ±1) =
2λ2λ3

(u0 − 1)(u0 −
√

2
2 )

,

C(±2, 0, 0) =
λ2

1

(u0 − 1)(u0 − 1
2 )

,

C( 0, ±2, 0) =
λ2

2

(u0 − 1)(u0 − 1
2 )

,

C(0, 0, ±2) =
λ2

3

(u0 − 1)(u0 − 1
2 )

,

ε0 = −u0 −
2

(
λ2

1 + λ2
2 + λ2

3

)

u0 − 1
.

The dispersion law, exciton band width, and effective
mass are as follows:

E0 = E′
g + U0+

+2
3(I2 + J2) + 2IJ(cos k1 + cos k2 + cos k3)

U0 − Ua
, (14)

∆E =
24IJ

Ua − U0
, mex =

~2(Ua − U0)
4IJa2

.

In the third-order approximation, we get the
corrections proportional to λ3

i .
The second energy level in the zero-order

approximation corresponds to |l| = 1, and ε1 =
−u1 = −1. This level is degenerate: C(±1, 0, 0) =
C( 0, ±1, 0) = C( 0, 0, ±1) =

√
6

6 . It splits in the second-
order approximation, and the wave function C(l) is
transformed by the representations of some point group.
In the case where k = 0 or |k1| = |k2| = |k3|, this group

involves the inversions and 2-, 3-, and 4-fold symmetry
axes, which intersect at the point l = 0. If ki is arbitrary,
then the point group consists of the inversions and a 2-
fold symmetry axis. The calculations and results are
highly unwieldy in the last case. Therefore, we set forth
the results for the isotropic case in the second-order
approximation. The normalized totally symmetric wave
function C(l) (the identity representation) reads

C(±1, 0, 0) = C(0, ±1, 0) = C(0, 0, ±1) =
√

6
6

+ O(λ2),

C(0, 0, 0) =
√

6
1− u0

λ,

C(±1, ±1, 0) = C(±1, 0, ±1) =

= C(0, ±1, ±1) =
√

6
3

(
2 +

√
2
)

λ,

C(±2, 0, 0) = C(0, ±2, 0) = C(0, 0, ±2) =
√

6
3 λ,

where O(λ2) — small corrections of the order of∼ λ 2,
all other C(l) are proportional to λ2, λ3, ..., ε = −1 −
2λ2

(
3

1−u0
+ 9 + 4

√
2
)

. In this case, the energy

E11 = E
′
g − Ua − 2L2(k)

Ua

(
3

1− u0
+ 9 + 4

√
2
)

. (15)

The energy in the second-order approximation,

E12 = E
′
g − Ua − 2L2(k)

Ua

(
5 + 2

√
2
)

, (16)

corresponds to several states with different symmetries:
a) C(±1, 0, 0) = C(0, ±1, 0) = C(0, 0, ±1) = ±

√
6

6 +
O(λ2), all other C(l) are proportional to λ, λ2, ..., or are
zero.
b) C(±1, 0, 0) = ±

√
2

2 + O(λ2), other C(l) ∼
λ, λ2, λ3, ...,
c) C(1, 0, 0) = −iC(0, 1, 0) = −C(−1, 0, 0) =
iC(0, −1, 0) = 1

2 + O(λ2),
d) C(±1, 0, 0) = ei 2π

3 C(0, ±1, 0) = ei 4π
3 C(0, 0, ±1) =

±
√

6
6 + O(λ2).
The solution of system (13), C(±1, 0, 0) =

−C(0, ±1, 0) = 1
2 + O(λ2); C(0, 0, 0) = C(0, 0, ±1) =

0, ε = −1− 2λ2(3 +
√

2), corresponds to the energy

E13 = E
′
g − Ua − 2L2(k)

Ua

(
3 +

√
2
)

. (17)

The succession of the energy levels E1α (15)–(17) can be
different, by depending on u0. If u0 > 1 + 3

4

(
2−√2

)
,

then E11 < E12 < E13; if 1 + 1
2

(
2−√2

)
< u0 <
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1 + 3
4

(
2−√2

)
, thenE12 < E11 < E13; and if 1 < u0 <

1 + 1
2

(
2−√2

)
, then E12 < E13 < E11.

The method of successive approximations can be
used for the zero-approximation energy levels at |l | =√

2,
√

3, 2,
√

5,
√

6,
√

8, ... . Then we get the energy
spectra

El1,l2,l3 = E
′
g −

Ua√
l21 + l22 + l23

+ O(λ2), (18)

where li = 1; 2; 3, ..., O(λ2) — the small corrections to
the zero-approximation energy.

In the case u0 < 1 or u0 < 0, the solutions of system
(13) are the same, however the lowest level corresponds
to (15), and the energy of a Frenkel-like exciton (14) will
be higher, or it does not exist.

We can obtain formula (18) without the usage of the
approximation of nearest neighbors for Inm, Jnm. The
single condition for it is

|Inm|, |Jnm| ¿ Ua. (19)

That is, the widths of the conduction and valence
bands must be less than the Coulomb energy at the
distance r = a. For the noncubic crystals, formula
(18) will take another form. For the hexagonal lattice,
formula (18) becomes

El1,l2,l3 = E
′
g −

Ua√
l21 + l22 + l23 + l1l2 + l1l3 + l2l3

+

+O(λ2), (20)

and, for an arbitrary lattice with primitive translation
vectors

→
a1,

→
a2,

→
a3, it looks as

El1l2l3 = E
′
g −

e2

ε
∣∣∣l1→a1 + l2

→
a2 + l3

→
a3

∣∣∣
+ O(λ2). (21)

Similar multiplet structures of the exciton energy
spectra can be revealed in all crystals, in which condition
(19) takes place. The value of the splitting in a multiplet
is proportional to (I + J)2/Ua. The number of levels in
the multiplet and their degeneracy depend on the exciton
wave vector k. If k = 0 or |k1| = |k2| = |k3|, the exciton
states possess the higher symmetry, and the number of
levels in the multiplet is minimum.

6. Conclusions

1. The account of the crystal lattice discreteness allows
us to derive the following new features of large-radius
excitons:
a) Relative motion anisotropy due to the wave vector

of an exciton k.

b) Dispersion law results in a finite value of the
exciton band width and its dependence on the
principal quantum number n.

c) Dependence of the exciton Rydberg constant on k.
2. For small-radius excitons:
a) The multiplet structure of the energy spectra is

obtained in the second order of the successive
approximations.

b) The parameters of the structure (the number
of levels in a multiplet, their degeneracy and
symmetry) depend on the wave vector k.

c) The value of the splitting in a multiplet is
proportional to (I + J)2/Ua.

d) The approximate energy spectrum depending on
the unit cell geometry is obtained.
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ЕНЕРГЕТИЧНI СПЕКТРИ ЕКСИТОНIВ З РIЗНИМИ
РАДIУСАМИ

М.I. Кислуха, Д.М. Тульчинська

Р е з ю м е

Дослiджено енергетичнi спектри, закони дисперсiї, ширини ек-
ситонних зон та ефективнi маси для екситонiв великого та ма-
лого радiусiв. Врахування дискретностi кристалiчної ґратки
дає можливiсть виявити новi властивостi екситонiв: анiзотро-
пiю вiдносного руху електрона i дiрки, залежнiсть постiйної
Рiдберга екситона та ширини екситонної зони вiд головного
квантового числа n.
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