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The process of droplet evaporation has been considered on the
basis of the general equations of the linear thermodynamics of
nonequilibrium processes, i.e. by examining the general equation of
diffusion taking into account the terms associated with gradients
of the chemical potential and the temperature. An analytical
expression for the temperature gradient, which arises in the
diffusion regime of evaporation, has been derived. A mechanism,
which explains the absence of the gas diffusion flow toward the
evaporating droplet even in the case of its nonzero concentration
gradient, has been proposed.

1. Introduction

The process of liquid droplet evaporation in a gaseous
environment plays an important role both in the nature
and in human vital functions. It is crucial for such an
atmospheric phenomenon as the formation and evolution
of clouds, or such an ecological situations as a variation
of the water evaporation rate, provided that there are
certain impurities in air. The problems belonging to
various other branches of science, which require the
application of methods involving aerosols, can also be
attributed to this scope.

In most cases, evaporation takes place in the presence
of a background gas, being the environment for an
evaporating droplet [1]. This process is accompanied by
the diffusion of vapor molecules into the background gas.
In this work, we examine just the diffusion regime of
evaporation, which is established if the condition λ

r ¿ 1,
where λ is the mean free path of molecules and r is the
droplet radius, holds true [1]. In the case of stationary
evaporation, the diffusion flow of a droplet substance
J is conventionally calculated on the basis of the Fick
diffusion law which reads [1]

J = −4πρ2 ∂n

∂ρ
D (1)

in the case of a system that was thermally stabilized
initially. Here, ρ is the radial coordinate, D the vapor
diffusion coefficient, and n the vapor concentration. The
diffusion coefficient is considered to be constant and
estimated by the methods of kinetic theory [2]. This

equation brings about the classical Maxwell formula for
the diffusion regime of droplet evaporation

J = 4πDr (n0 − n∞) , (2)

where n0 = n (r) is the vapor concentration in the near-
surface layer and n∞ the vapor concentration at infinity.
At the same time, to describe real processes, formula
(2) requires to take into account a plenty of corrections,
e.g., the influence of a Stefan flow, spatial confinement,
temperature decrease in the droplet during evaporation,
etc. [3]. It should be noted that all corrections are made
in expression (2) rather than in (1). This means that,
instead of formulating the general problem, some special
case is considered, and the obtained specific solution is
adjusted to describe various processes by the progressive
introduction of certain corrections into it.

Therefore, a conclusion can be drawn that the
construction of a thermodynamically substantiated
theory for the droplet evaporation in the diffusion
regime on the basis of the general equations of the
linear thermodynamics of nonequilibrium processes, i.e.
the general diffusion equation with regard for terms
associated with the gradients of the chemical potential
and the temperature, turns out an extremely challenging
task.

2. Description of the Model

Consider the process of liquid droplet evaporation
in a gaseous environment provided that the regime
of diffusion evaporation is stationary. In this case,
we assume that the vapor concentration near the
droplet’s surface is equal to the equilibrium one,
n0, i.e. the saturated vapor concentration at the
droplet temperature. The background gas is considered
insoluble in the droplet substance. Thus, there are
no flows directed toward the droplet. The droplet
shape is assumed unchangeable during the evaporation,
remaining a regular sphere. The process is considered
stationary and running in the absence of external fields.
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During the process, the system is considered to be placed
into a thermostat.

The system of equations, which describes the
process indicated, is constructed on the basis of the
fundamental phenomenological equation of irreversible
thermodynamics [4]. This equation asserts that the
flow of an evaporating substance −→

J k is coupled by
a linear relationship with the corresponding governing
thermodynamic potential. In the case of our system, this
phenomenological equation reads [4, 5]

−→
Jk = −Dk

−→∇nk −
m∑

i=1

m−1∑

j = 1
j 6= k

Lki

[
υi

∂p

∂nj
+

+RT

(
δij

ni
+

1
γi

∂γi

∂nj

)]
−→∇nj−

−
m∑

i=1

Lkiυi
KT

ρm

−→∇ρm −DT
−→∇T ,

Dk =
m∑

i=1

Lki

[
υi

∂P

∂nk
+ kT

(
δik

ni
+

1
γi

∂γi

∂nk

)]
,

DT =
m∑

i=1

Lki(PυiγT +
∂µi

∂T
) + Lkq, (3)

where m is the number of components in the medium,
Lki are the relevant phenomenological factors, υi = ∂µi

∂P
and γi are the partial molar volume and the activity
coefficient, respectively, of the i -th component, R is
the universal gas constant, k the Boltzmann constant,
T the temperature, δij the Kronecker symbol, KT =

ρm

(
∂P
∂ρm

)
T

the isothermal compressibility modulus,
ρm the density of the system, P the pressure, and
γT = 1

P

(
∂P
∂T

)
V

the thermal coefficient of pressure at a
constant volume. The temperature gradient −→∇T appears
in formula (3) owing merely to the evaporation process
and does not associated with the temperature gradient
that is created and maintained in the system by external
conditions.

In the framework of our model, we consider that the
gradient of the general density in the system vanishes:−→∇ρm = 0. Therefore, only those components of the
flow survive, which are governed by the concentration
gradient −→∇nj necessarily present and, as we suppose,
by the temperature gradient which arises owing to such

an evaporation. In this case, the boundary conditions for
the concentration look like
{

n1(r) = n0,
n1 (R∞) = nR,

(4)

where R∞ is the boundary condition at infinity. Then,
proceeding from Eq. (3), the system of differential
equations to determine the flow of a diffusing substance
in the stationary regime can be constructed as




−→
J 1 = −

[
L11

∂µ1
∂n1

+ L12
∂µ2
∂n1

]−→∇n1−
−

[
L11

∂µ1
∂n2

+ L12
∂µ2
∂n2

]−→∇n2−
−

[
L11

∂µ1
∂T + L12

∂µ2
∂T + L1q

]−→∇T ,

0 = −
[
L21

∂µ1
∂n1

+ L22
∂µ2
∂n1

]−→∇n1−
−

[
L21

∂µ1
∂n2

+ L22
∂µ2
∂n2

]−→∇n2−
−

[
L21

∂µ1
∂T + L22

∂µ2
∂T + L2q

]−→∇T ,

0 = −→∇n1 +−→∇n2.

(5)

3. Calculation of the Temperature Gradient
Occurring on the Droplet Evaporation

Proceeding from the system of differential equations
(5), we obtained an expression for the temperature
gradient which arises in the system owing to the
evaporation. Provided the conditions for the diffusion
regime that were indicated above, the following equation
was obtained:

−→∇T =

[
L21

(
∂µ1
∂n2

− ∂µ1
∂n1

)
+ L22

(
∂µ2
∂n2

− ∂µ2
∂n1

)]

L21
∂µ1
∂T + L22

∂µ2
∂T + L2q

−→∇n1. (6)

In our system, there is a concentration gradient
of the evaporating substance. Therefore, on the
basis of Eq. (5), we can draw an important
conclusion that a corresponding nonzero gradient
of temperature necessarily arises as well. The
corresponding temperature profile can be found from
expression (5):

∇ =
[
L21 (s01 + R ln n1)+

+L22 (s02 + R ln (1− n1)) + L2q

]−2

· const. (7)
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The value of the constant in expression (7) can be
determined using the temperature boundary conditions,
namely, the given temperature at infinity,

T (R∞) = T0

so that

const = T0

[
L21 (s01 + R ln n1) +

+L22 (s02 + R ln (1− n1)) + L2q

]2

.

The estimation of the temperature gradient that arises
owing to the diffusion of the evaporating liquid into the
background gas shows that the difference between the
temperatures near the droplet and at infinity amounts
to 5 ÷ 15 K, depending on the parameters which
characterize the mixture of the background gas and
the evaporating substance. This result agrees well with
experimental data on the evaporation of alcohols [6].

4. Calculation of the Evaporating Substance
Flow

To make a comparison between the solutions of system
(5) and Eq. (1), i.e. expression (2), we must specify the
expression for the activity coefficient γi of the solution.
Really, the expression for the diffusion flow −→

J1 of the
evaporating substance is derived from Eq. (5) and looks
like
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J 1 = −

[
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)
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−

−
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(
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∂n2
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+
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(
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)]
L11
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∂T + L1q

L21
∂µ1
∂T + L22

∂µ2
∂T + L2q

]
−→∇n1. (8)

Therefore, in order to find the dependence J1 (n1),
one has to know the dependence γi (ni). The simplest
case is the model of ideal solution, the activity
coefficient of which γ equals one [7]. In this case,
the final equation for the calculation of the flow −→

J1

reads

−→
J 1 = −2RT

[
L11

1
n1
− L21

1
1− n1

−

−
[
L21

1
n1
− L22

1
1− n1

]
×

×L11 (s01+R ln n1)+L12 (s02+R ln (1− n1))+L1q

L21 (s01+R ln n1)+L22 (s02+R ln (1− n1))+L2q

]
×

×−→∇n1. (9)

From this equation, taking the boundary conditions (4)
for our process into account, it is possible to obtain
the final expression for calculating the flow in the
case of ideal solution. In calculations of the diffusion
flow for various concentrations, we took the values
of Onsager coefficients to be those characteristic of
alcohols in order to make comparison with the classical
theory. The dependence of the evaporating substance
flow J on the substance concentration n in the near-
surface layer is plotted in the figure. It is evident
that, even in the case of ideal mixture, the result
obtained differs substantially from expression (2) which
can be derived from the classical Fick diffusion law
in the framework of the approximation of a constant
diffusion coefficient and the absence of a temperature
gradient.

5. Conclusions

In the case of the diffusion regime of the droplet
evaporation, there appears a temperature gradient in
the environment, caused by the evaporation. This
result corresponds to the experimental data on the
evaporation of alcohols [6]. The existence of the induced
temperature gradient allows one to explain the absence
of the background gas flow toward a droplet even
if the gas concentration gradient differs from zero.
This means that taking the classical Fick law with
a constant diffusion coefficient into consideration is
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not sufficient for examining such a process. The
approach developed allows the quantitative result for
the evaporating substance flow to be obtained in the
general case, i.e. the expression obtained does not
require to artificially introduce the further correction
terms for every specific process. In addition, we
derived the analytical expressions for the temperature
gradient which arises during evaporation, as well as
the expressions for the evaporating substance flow in
the case of ideal mixture. The equations obtained allow
the temperature gradient and the substance flow to be
determined for other types of mixtures as well, provided
that the values of the relevant activity coefficients are
known.
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ВИНИКНЕННЯ ГРАДIЄНТА ТЕМПЕРАТУРИ
ПРИ ДИФУЗIЙНОМУ РЕЖИМI
ВИПАРОВУВАННЯ КРАПЛI

Д.А. Гаврюшенко, В.М. Сисоєв, К.В. Черевко

Р е з ю м е

Розглянуто процес випаровування краплi на основi загальних
рiвнянь лiнiйної термодинамiки нерiвноважних процесiв, тобто
повного рiвняння дифузiї з урахуванням доданкiв, пов’язаних
з градiєнтом хiмiчного потенцiалу та температури. Отримано
аналiтичний вираз для градiєнта температури, що виникає при
дифузiйному режимi випаровування. Знайдено механiзми, що
пояснюють вiдсутнiсть дифузiї фонового газу до краплi за на-
явностi градiєнта його концентрацiї.
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