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The theory of the electron spectrum of spherically symmetric
states in a double-well spherical quantum dot (SQD) is proposed
and used to study the evolution of the spectrum, provided that the
dimensions ∆2 of the external well vary from zero to infinity. The
spectrum is shown to coincide, at ∆2 → 0, with the stationary
spectrum of a closed single-well SQD and to pass, at ∆2 → ∞,
to the quasistationary spectrum of an open SQD with the decay
of quantum states. A mechanism responsible for the decay of
quasistationary states in an open SQD is proposed for the first
time. It has been found that the redistribution of the probabilities
for a quasiparticle to occupy energy levels in the vicinity of the
resonance energy levels is the reason for the electron to exist in
an open SQD for a finite time interval. The “memory” of closed
double- and open single-well nanosystems with respect to the
locations of resonance levels on the energy scale is originated
from the anti-crossing (“bottle-neck”) effect. The way how the
mathematical tool of the theory of excitons and electron-phonon
interactions in open SQDs can be built on the basis of the proposed
theory is demonstrated.

1. Introduction

The theory of electron and hole wave functions and
spectra in simple and multilayered SQDs has been built
for both closed [1–3] and open nanoheterosystems [3–5].
As for the theory of excitons or the theory of interaction
of electrons, holes, and excitons with phonons in SQDs,
it is only at the development stage and includes various
models of the phonon subsystem in a closed system [3,6,
7]; mostly, it is the model of dielectric continuum. The
theory of quasiparticles, which interact with quantum
fields (phonons, photons) in closed nanosystems, is not
faced with basic difficulties, because the mathematical
tools of classical quantum mechanics (for excitons) [8,9]
and the methods of secondary quantization with the
application of Green’s functions [5] work well in this case.

At the same time, if one turns to the theory
of quasiparticles and their interaction with quantized
fields in open nanoheterosystems, the situation looks
considerably worse because of the basic problems

which do arise here and concern the applicability of
the mathematical methods developed for systems of
quasiparticles with stationary states. The quasiparticle
states in open systems are quasistationary, and it is the
key point why we have neither the theory of excitons nor
the theory of interaction of electrons, holes, and excitons
with phonons in such nanoheterosystems now.

The theory of electron and hole spectra in open
SQDs has been developed in works [4, 5] on the basis
of the general S-matrix theory [10]. It well describes
the properties of quasistationary energy states in these
systems and the lifetimes of electrons and holes which do
not interact with one another. However, as soon as the
necessity of constructing the theory which would take
into account the interaction between these quasiparticles
(excitons) or between these quasiparticles and quantized
fields (phonons, photons) arises, one meets the basic
difficulties. In this case, there are no difficulties with
the quantization of phonon or electromagnetic fields in
nanoheterosystems, because the mathematical methods
for the quantization of a field of oscillations [3] or
a phonon field [11] do not depend on whether the
nanosystem is closed or open.

The situation for electrons, holes, and excitons is
different. According to the general theory [10], the wave
functions of the quasiparticle quasistationary states
in open systems are not included into the complete
set of orthonormalized functions. This circumstance
makes the transformation of the Hamiltonian to the
particle number representation with respect to the
variables of those quasiparticles impossible. Therefore,
a straightforward use of the electron, hole, and exciton
wave functions, which were found for open systems in
the framework of the S -matrix method, does not enable
one to develop a theory, where the spectra of those
quasiparticles are renormalized by their interaction with
phonons or photons, by using the conventional methods
of the quantum field theory [3].
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The way out of this complicated situation could
be discovered in considering a closed double-well SQD
with a very large thickness ∆2 of the external well
rather than a simple open one (with a single well and
a single barrier). However, the basic question arises in
this case: Which must the thickness of the external
well in a closed SQD be in order that the electron
energy spectrum and the relevant wave functions can
be considered close (and with which accuracy?) to their
counterparts in the corresponding open system? The
classical literature [10] gives no answer to this question,
because it analyzes thoroughly only the transformation
of a quasistationary electron spectrum into a stationary
one owing to the layer-barrier thickening in a simple
open single-well nanosystem. But we are interested in
the inverse problem: How does the stationary spectrum
of an electron in a closed double-well nanosystem
gradually evolve to the quasistationary one, when the
dimensions of the external layer-sphere increase? In the
framework of such an approach, one more important
question arises, which has not been answered until now
as far as we know: Why do the quasistationary states,
in which the electron has a finite lifetime, exist in a
simple open nanosystem, whereas the spectrum in a
closed double-well nanosystem is stationary irrelatively
to the width of the external well and, at first sight,
cannot be transformed into a quasistationary one as
∆2 → ∞? However, as will be shown below, the
reason for such an opportunity, naturally, does exist:
this is a resonance approaching (“anti-crossing”) of
the electron energy levels in a nanosystem with two
wells, when the external well becomes expanded to
infinity.

These and other questions were answered while
studying the evolution of the spectrum and the
probability density for an electron to be located in a
closed double-well SQD with one potential barrier, which
was the main content of this work. As a result, we
obtained the spectrum and the wave functions of the
electron in a closed double-well SQD, which turned out
close to their counterparts in a simple open nanosystem.
We also revealed, for the first time, the physical origin
of the electron lifetime finiteness in the quasistationary
state: the electron lifetime turned out to be the time
interval, within which the probability of finding the
electron in the SQD becomes redistributed over all the
states in the energy interval 2Γ in the neighborhood of
the resonance energy E, so that the probabilities for the
electron to occupy the states with the energies E ± Γ
become half as high as the probability to occupy the
state with the resonance energy E.

2. Nanosystem Hamiltonian. Spectrum and
Wave Functions

Consider the spectrum and the wave functions of the
electron in a closed SQD with two potential wells and
one barrier (Fig. 1,b). The geometrical parameters (the
radius of the internal well r0, the thickness of the layer-
barrier ∆1, and the thickness of the external well ∆2) are
indicated in Fig. 1,b. It is evident that, if ∆2 → 0, the
three-layer nanosystem coincides with a simple closed
SQD (Fig. 1,a), and, if ∆2 → ∞, it transforms into a
simple open double-layer SQD (Fig. 1,c). Figures 1,a—c
also exhibit schematically the potential energies of the
electron in corresponding nanoheterosystems.

In order to analyze the evolution features of the
electron spectrum and the electron wave functions in
relation to the variation of the external well thickness
∆2, we shall obtain them in the framework of the general
theory [3] by solving the stationary Schrödinger equation

−~
2

2
~∇ 1

m(r)
~∇+ U(~r) = EΨ(~r). (1)

In the spherical coordinate system with the point
of origin located at the SQD center, the electron
is characterized by the effective mass m(r) and the
potential energy U(r):

m(r) =
{

m0, r < r0, r1 < r < r2,
m1, r0 ≤ r ≤ r1, r2 ≤ r < ∞,

(2)

U(r) =
{

0, r < r0, r1 < r < r2,
U, r0 ≤ r ≤ r1, r2 ≤ r < ∞.

(3)

Taking the spherical symmetry of the problem into
account, the solution of Eq. (1) is tried in the form

Ψ`m(~r) = R`(r)Y`m(θ, ϕ), ` = 0, 1, 2, ...,

m = 0,±1,±2, ..., (4)

where Y`m(θ, ϕ) are the spherical functions [3, 8, 9], the
radial function R`(r) looks like

R`(r) = R0
` (r)θ(r − r0)+

+
2∑

i=1

Ri
`(r)[θ(ri − r)− θ(r − ri−1)] + Ri

`(r)θ(r − ri),

(5)
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Fig. 1. Geometrical schemes of a simple closed (a), a closed double-well (b), and a simple open (c) spherical quantum dot (SQD), and
the corresponding energy diagrams

and θ(ri − r) is the Heaviside function. The functions
Ri

`(r) obey the system of equations

{
d2

dr2
+

2
r

d

dr
+ K2

i −
`(` + 1)

r2

}
Ri

`(r) = 0, i = 0, 1, 2, 3,

(6)

whence they are obtained as the linear combinations of
Bessel functions

Ri
`(Kir) = Ai

`J`(Kir) + Bi
`N`(Kir). (7)

Here,

J`(Kir) =
{

j`(kir),
h+

` (iχir),

N`(Kir) =
{

n`(kir),
h−` (iχir),

Ui ≥ E,
Ui ≤ E,

(8)

K2
i =

2mi

~
(E − Ui) =

{
k2

i , i = 0, 2,
−χ2

i , i = 1.
(9)

Taking the boundary conditions that the wave
functions and their density flows are continuous at all

the system’s boundaries —

Ri
` (r)|r=ri

= Ri+1
` (r)|r=ri

1
mi

dRi
`(r)
dr

∣∣∣
r=ri

= 1
mi+1

dRi+1
` (r)

dr

∣∣∣
r=ri





, i = 0, 1, 2, 3,

(10)

— and the condition of normalization
∞∫

0

|R`(r)|2r2dr = 1 (11)

into account, the coefficients Ai
` and Bi

` and, therefore,
the complete set of electron wave functions and
the electron energy spectrum En` can be determined
unambiguously. Since the corresponding analytical
expressions are cumbersome, they are not presented
in the explicit form, and the relevant results will be
analyzed numerically in the next section.

Nevertheless, we would like to exhibit here the
dispersion equation and the wave functions of the
electron in a closed single-well system in their explicit
forms, because, in the next section, the evolution of the
electron spectrum of spherically symmetric states with
` = 0, which accompanies the variation of the external
well width ∆2 in a three-layer SQD from the case of a
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closed single-well nanosystem (with ∆2 = 0) to that of
an open one (with ∆2 →∞), will be analyzed in detail.
These expressions follow from the theory expounded
above, if one puts ∆2 → 0, and, in the energy range
E ≤ U , which is of interest to us, look like

j1(kr0)
j0(kr0)

= i
χm0

km1

h+
1 (iχr0)

h+
0 (iχr0)

, (12)

Rn0(r) =

=
{

j0(knr)/j0(knr)
∣∣
r≤r0 + h+

0 (iχnr)/h+
0 (iχnr)

∣∣
r≥r0

}
/

{
r3
0

2

[
1 +

∣∣∣∣
j1(knr0)
j0(knr0)

∣∣∣∣
2
]

+

+
∣∣h+

0 (iχnr0)
∣∣−2

∞∫

0

r2
∣∣h+

0 (iχnr)
∣∣2 dr

}
, (13)

where the subscript n = 1, 2, 3 . . . enumerates the energy
states En0, which are determined by the solutions of the
dispersion equation (12). Naturally, these expressions
coincide with those obtained earlier for the case ` = 0 in
works [1–3].

The spectrum and the wave functions of the electron
in a simple open nanosystem cannot be obtained,
in principle, making the limiting analytical transition
∆2 → ∞ in the corresponding expressions for a closed
double-well system. For the systems of such a type,
according to the general theory, the S -matrix method
[3, 10] is used to solve the Schrödinger equation (1). In
terms of the subsystem components, which correspond to
Fig. 1,c, the wave functions of the spherically symmetric
states (` = 0) look like

Rn0(r) =

=





R
(0)
0 (r) = kA(0)

0

[
h−0 (kr) + h+

0 (kr)
]

R
(1)
0 (r) = iχA(1)

0

[
h−0 (iχr)− S

(1)
0 h+

0 (iχr)
]

R
(2)
0 (r) = kA(2)

0

[
h−0 (kr)− S0(k)h+

0 (kr)
]

.

(14)

The coefficient A
(2)
0 = 1/

√
2π is determined by the

normalization condition [10]
∞∫

0

R∗0k(r)R
0k′ (r)r

2dr = δ(k − k
′
), (15)

while the other unknown coefficients A0
0, A1

0, and S1
0

and the S 0-matrix are determined unequivocally from

the boundary conditions

R
(i)
0 (Kiri) = R

(i+1)
0 (Ki+1ri, )

1
mi

dR
(i)
0 (Kir)

dr

∣∣∣∣
r=ri

= 1
mi+1

dR
(i+1)
0 (Ki+1r)

dr

∣∣∣∣
r=ri+1

. (16)

In such a way, we find the system of orthonormalized
functions R0(r); they correspond to the quasistationary
states, which are determined by the poles of the S 0-
matrix. The remaining part of the work deals with the
analysis of the probability density only. Therefore, the
cumbersome analytical expressions for R0(r) will not
be written down explicitly. Instead, we propose the
explicit expression of the S 0-matrix for the spherically
symmetric states:

S0(k) = e−2ikr1×

×
{

e2χ(r0−r1) [m0(χr1 + 1)−m1(ikr1 + 1)] +

+ [m0(χr1 − 1) + m1(ikr1 + 1)] ξ

}
/

/

{
e2χ(r0−r1) [m0(χr1 + 1) + m1(ikr1 − 1)]+

+ [m0(χr1 − 1)−m1(ikr1 − 1)] ξ

}
, (17)

where

ξ =
{

m0 −m1 + χm0r0 + ikm1r0 − e−2ikr0×

× [m0(χr0 + 1)−m1(ikr0 + 1)]
}

/

/

{
m0 −m1 − χm0r0 + ikm1r0 + e−2ikr0×

× [m0(χr0 − 1) + m1(ikr0 + 1)]
}

. (18)

It will be used to determine the energy spectrum En0

and the decay parameters Γn0 as the real and imaginary
parts, respectively, of the S -matrix poles.

It is the poles of the S 0-matrix (17) and the radial
wave functions Rn0(r) (14) that comprise the energy
spectrum and the wave functions of electron in the closed
double-well system in the limiting case ∆2 →∞, which
will be demonstrated in detail in the next section.
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Fig. 2. Dependence of the electron spectrum on the thickness ∆2 of the external SQD well

3. Properties of the Electron Spectrum in a
Closed Double-well SQD. The physical
origins of the quasistationary states in an
open SQD

The calculations of the electron spectrum were carried
out, according to the expounded theory, for a
closed double-well SQD (HgS/CdS/HgS/CdS) with the
following parameters which are in good agreement with
the rectangular potential model (a small difference
between the lattice constants of contacting layers):
mHgS = 0.036, mCdS = 0.2, U = 1350 meV, aHgS =
5.851 Å, and aCdS = 5.818 Å.

Let us analyze now the evolution of the electron
spectrum in the symmetric states with ` = 0 in relation
to the variation of the external well width ∆2, provided
that the SQD radius r0 = 20aHgS and the thickness
of the internal barrier ∆1 = aCdS remain constant.
The thickness of the external barrier-medium is assumed
infinite.

The dependence of the spectrum En0 on the thickness
of the external well ∆2 is shown in Fig. 2. From the
figure, one can see that the spectrum obtained at ∆2 = 0
coincides with the spectrum in a closed single-well SQD,
as it has to be: Ecl

10 = 53.38 meV, Ecl
20 = 223.99 meV,

and Ecl
30 = 526.85 meV. Figure 2 also illustrates that the

energies of all the three levels gradually decrease as the
value of ∆2 grows, until they approach, from below, the

region of the first “bottle-neck”, which is formed owing to
the first levels created by the internal and external wells
coming closer. We recall that the mechanisms of the anti-
crossing (“bottle neck”) emergence were discussed a lot
of times [1, 5]. They are associated with the repulsion
between the levels of both potential wells owing to their
interaction which appears because the height of the
potential barrier is finite.

We are interested in the process of formation of
quasistationary states. The latter, as follows from the
calculations of the S 0-matrix (and can be seen from
Fig. 2), possess the following energy characteristics:
the resonance energies Eop

10 = 52.55 meV, Eop
20 =

224.18 meV, and Eop
30 = 531.67 meV; and the halfwidths

Γ10 = 1.065 meV, Γ20 = 4.49 meV, and Γ30 =
7.722 meV.

Now, Fig. 2 makes evident that all the anti-crossings
are located in the vicinities of the relevant resonance
energies. Therefore, in order to elucidate the origin and
the mechanism of formation of the quasistationary states
as ∆2 →∞, we must study the anti-crossing properties
in detail. Figure 2 shows that they are as follows.

In the energy interval around an arbitrary
quasistationary state energy, the “bottle necks” decrease
and the lines of both levels that form them gradually
change their slopes from vertical to horizontal ones as
the value of ∆2 increases (Fig. 2,a). In so doing, the
spectrum density grows more quickly than the “bottle
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Fig. 3. Probability density distributions ρn0(r) of the electron in a double-well SQD in various (n = 1, 2, 3) states which are transformed
to quasistationary ones if ∆2 →∞

necks” become narrower. Therefore, as one can see
from Fig. 1,b, in the case where the values of ∆2 are
large, more and more energy levels, which correspond
to the stationary states in the closed double-well SQD,
fall into the energy intervals around the energies Eop

n0

of the open SQD which contain the quasistationary
states characterized by the halfwidths Γn0. Since the
distinction between the anti-crossing lines and the
other lines of the spectrum becomes eliminated at
large ∆2-values (and even more so at ∆2 → ∞),
it may appear that the “memory” of the system,
which contains the information on the existence of the
isolated states, the energies of which, at small ∆2-values,
corresponded to linear sections in the dependences
En0(∆2) and which were coupled to such stationary
SQD states, in which the electron is mainly localized
in the internal well, also becomes erased. Certainly,
such a “memory” does exist in the system, but the
complete body of information is contained not so
much in the energy spectrum as in the wave functions
of the corresponding states. Nevertheless, in order
to elucidate the origin of why the quasistationary
states with the halfwidths Γn0 and the corresponding
lifetimes τn0 = ~/Γn0 do arise in an open system,

it will be sufficient to analyze the density of the
electron probability distribution in the nanosystem
ρn0(r) = r2|Rn0(r)|2 rather than the wave functions
themselves.

The examples of such dependences ρn0(r) in the
states with the energies close to the energies of stationary
states in a closed SQD with two wells are depicted in
Fig. 3. The results obtained testify that if the dimensions
of the internal well (r0 = 20aHgS) and the barrier
(∆1 = aCdS) are taken fixed and the size of the external
well is selected according to the condition that the
dependences ρn0(r) should possess the same numbers
of maxima within its limits (here, this number equals
4), the electron probability distribution will have the
same number of maxima (1, 2, or 3) within the first
well as that for the corresponding simple closed SQD
with the principal quantum number n = 1, 2, 3 has. The
probabilities for the electron to be located in the internal
well or in the barrier are close to each other in this case
(W10 = 0.88, W20 = 0.89, and W30 = 0.91).

The evolution of the probabilities Wn0 =
r1+∆1∫

0

ρn0(r) dr for the electron to be located either in

the internal well or in the barrier with the variation of
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the external well thickness is shown in Fig. 4. This figure
illustrates the redistribution process of the probability
for the electron to occupy the states with various
energies in the closed double-well SQD. Simultaneously,
it reveals obviously the gradual emergence of discrete
quasistationary bands, which accompanies the growth
of ∆2, and their transformation into continuous
quasistationary bands which are peaked at the resonance
energies Ev

n0 and have the halfwidths Γn0 (the lifetime
τn0 = ~/Γn0).

Let us analyze the evolution of the probabilities Wn0

for the electron to occupy various states in two internal
SQD layers as the parameter ∆2 changes. But first let
us introduce the concept of the quasistationary state
bandwidth 2Γ̃n0. We define it as the energy interval,
which is located about the resonance energy Ẽn0 and
whose edge values Ẽn0 ± Γ̃n0 correspond to the states,
in which the probability Wn0 for the electron to be
located in two internal SQD layers is half as much as the
probability W̃n0 for the electron to occupy the state with
the resonance energy Ẽn0. As is seen from Fig. 4,a, if
the external well is narrow enough (∆2 = 200aHgS), the
probabilities W̃10 and W̃20 are more than twice as large
as the corresponding probabilities Wn0 for those levels
which are located aside. The probability W̃30 exceeds
the probability Wn0 for the neighbor, towards the higher
energies, state by a factor of more than two, and that
for the neighbor, towards the lower energies, state by a
factor of less than two. This circumstance, i.e. the large
probability values for two neighbor states, is caused by
the fact that just these states form the anti-crossing at
∆2 = 200aHgS. Therefore, no sufficient conditions come
true yet at ∆2 = 200aHgS for the quasistationary band
to appear.

From Fig. 4,b, one can see that, provided the external
well is rather thick (∆2 = 1000aHgS), there are no
components contributing to the discrete band around the
lowest quasistationary state Ẽ10, but near the second,
Ẽ20, and third, Ẽ30, resonance quasistationary states,
there are already states which satisfy the condition for
the halfwidths Γ̃20 and Γ̃30 of the corresponding bands
to emerge. At the thickness ∆2 = 10000aHgS (Fig. 4,c),
all the three quasistationary discrete bands have their
halfwidths. While comparing Figs. 4,c and d, one can
see that the positions of the resonance energy levels
in the closed double-well (Fig. 4,c) and open single-
well (Fig. 4,d) SQDs, as well as the widths of the
discrete bands, are practically identical, although their
normalizations are different, of course.

Figure 4 illustrates well the process of formation of
the quasistationary state bands with their key

Fig. 4. Evolution of the probabilities W̃n0 for the electron to be
located in two internal layers of a closed SQD and to possess the
energy in the vicinity of the resonance ones (a–c), and the energy
dependence of the probabilities Wn0 in a simple open SQD (d)
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Fig. 5. Dependences of the discrete peak width 2Γ̃ of the quasistationary states on the thickness ∆2 of the external well

characteristics — the resonance energies Eop
n0 and

the halfwidths Γn0 — when the dimensions of the
external well of a closed SQD increase. From Fig. 4,
one can see how the probability for the electron
to be located in both internal SQD layers becomes
redistributed between various states as the quantity ∆2

grows. At small ∆2-values (Fig. 4,a), the probabilities
are large for the resonance states and relatively
small for the others. As ∆2 increases (Fig. 4,b),
the probabilities decrease in the resonance states but
relatively increase in the neighbor ones. Since the
growth of ∆2 stimulates the narrower intervals between
the energy levels, very large values of ∆2 (Fig. 4,c)
bring about the appearance of the Lorentzian-like peaks
with the halfwidths Γ̃n0 which are located around
the resonance energies and, at ∆2 → ∞, transform
into the quasistationary bands with the halfwidths Γn0

(Fig. 4,d).
The emergence of the halfwidths Γ̃n0 of the discrete

peaks of quasistationary states in a closed double-well
SQD, their dependence on ∆2, and their convergence, as
∆2 →∞, to the halfwidths Γn0 of continuous bands of a
simple open SQD (the amplitudes of Γn0 are determined
as the imaginary parts of the poles of the corresponding
S -matrix) are illustrated well by Fig. 5. From this figure,
it is evident that the formation of the discrete bands of
quasistationary states proceeds from larger to smaller
halfwidths as ∆2 increases.

Thus, we are able to assume that the energy
spectrum and the wave functions of a closed double-
well SQD can always approximate those of a simple
open SQD with a sufficient accuracy. This circumstance
allows one to develop, on this basis, both the theory of
excitons and the theory of phonon interaction for simple
open systems.

At last, we note that, since the halfwidths Γn0

of the quasistationary energy bands are coupled to
the corresponding lifetimes τn0 = ~/Γn0, the results
obtained enable the lifetime τn0 to be interpreted as the
time interval, during which the probability distribution
for the quasiparticle to be located in the quantum dot
of the open system is transformed into a peak with the
halfwidth Γn0 around the resonance energy En0. Since
these states belong to the whole system, this means that,
within this time interval, the quasiparticle formed in the
SQD nucleus, where it was in a certain resonance state,
penetrates through the potential barrier and moves in
the free space of the open system [10].

Now, it becomes also clear why, in contrast to the
dispersion equation which defines the energy spectrum
of closed systems only, the S -matrix gives both the
spectrum and the halfwidths of the quasistationary
states. It is so, because, as one can see from the
analysis presented above, the S -matrix can be expressed
unambiguously in terms of the wave functions of the
open system. Therefore, it contains the information
concerning not only the energy of resonance states but,
owing to its dependence on the probability density
distribution, the halfwidth of the quasistationary state
band in the open system. Whereas, such information in
the closed system can be obtained only in terms of the
energy distribution of the probability for the electron to
be located in either of the internal SQD layers, which
is possible only provided that the wave functions are
known, as has been demonstrated in this work.

4. Conclusions

1. The stationary electron spectrum in a closed
double-well nanosystem gradually transforms into a
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quasistationary one if the thickness of the external layer-
sphere tends to infinity.

2. The halfwidth of the discrete band of
quasistationary electron states in a closed double-well
system tends asymptotically to that of the continuous
quasistationary band in the simple open system if the
thickness of the external layer-sphere tends to infinity.

3. The electron wave functions in a double-well
nanosystem with a large enough but finite thickness
of the layer-well are included into the complete set
of wave functions and can serve, with the necessary
accuracy, as the basis for changing over to the particle
number representation over the electron variables in
open systems, if the electron interaction with phonon
and photon fields are taken into account. Thus, we
obtain an opportunity to construct the theory of
electron-phonon or electron-photon interaction in open
nanosystems.
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ЕВОЛЮЦIЯ ЕЛЕКТРОННОГО СПЕКТРА
СФЕРИЧНО-СИМЕТРИЧНИХ СТАНIВ
ПРИ ПЕРЕХОДI ВIД ЗАКРИТОЇ
ДВОЯМНОЇ ДО ПРОСТОЇ ВIДКРИТОЇ
СФЕРИЧНОЇ КВАНТОВОЇ ТОЧКИ

М.В. Ткач, Ю.О. Сетi

Р е з ю м е

Побудовано теорiю i дослiджено еволюцiю спектра сферично-
симетричних станiв електрона двоямної сферичної квантової
точки (СКТ) при змiнi розмiрiв зовнiшньої ями ∆2 вiд нуля
до нескiнченностi. Показано що при ∆2 → 0 спектр збiгаєть-
ся зi стацiонарним спектром одноямної закритої СКТ, а при
∆2 → ∞ вiн переходить у квазiстацiонарний спектр простої
вiдкритої СКТ iз затуханням квантових станiв. Вперше вияв-
лено механiзм виникнення затухання квазiстацiонарних станiв
у вiдкритiй СКТ i встановлено, що причиною, яка зумовлює
iснування часу життя електрона у вiдкритiй СКТ протягом
певного часу, є перерозподiл ймовiрностей перебування квазi-
частинки на всiх рiвнях енергiй в околi резонансних енергiй.
“Пам’ять” двоямної закритої наносистеми про положення ре-
зонансних рiвнiв (як i простої вiдкритої) у шкалi енергiй зумо-
влена iснуванням ефекту антикросингу (“пляшкового горла”).
Показано, як на основi викладеної теорiї може бути розвинутий
математичний апарат теорiї екситонiв та електрон-фононної
взаємодiї у вiдкритих СКТ.
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