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The spatial behavior of the order parameter near the interface in a
superconductor—insulator—superconductor (SIS) tunnel junction,
provided that the impurity concentration in superconductors is
arbitrary, has been investigated theoretically. The temperature is
assumed to be close to the critical one. The transmission coeffi-
cient D of the barrier for electrons may vary in a wide range of
values. The boundary conditions for the order parameter and the
expression for the equilibrium current density have been obtained.

1. Introduction

In 1962, B. Josephson [1] made his famous predicti-
on about the possibility for a stationary supercurrent
to run through a contact between two superconductors
separated by an insulating film, even in the absence of
voltage drop across the contact. This discovery initiated
the researches of spatially inhomogeneous compositions
formed by two weakly coupled superconductors, with the
whole body of investigations in this area being named
“weak superconductivity”. The substantial progress in
studying the current states in superconducting juncti-
ons was achieved owing to the use of the model with
a piecewise continuous profile of the order parameter
∆(r). A number of the results obtained on its basis are
exposed in monography [2].

However, such a simplified model turns out invalid
at temperatures close to the critical one, Tc. In this
case, the order parameter varies over the lengths
of the order of ξ0(1 − T/Tc)−1/2 and obeys the
Ginzburg—Landau equation. Near the interface, at the
distances not farther than ξ0, the dependence ∆(r)
varies quickly and satisfies the linear integral equati-
on. This region is rather narrow, but it has to be
studied to obtain the correct boundary condition for
the Ginzburg—Landau equation. Such a self-consistent
approach turned out fruitful for temperatures near the
critical one (see [2, 3]). For example, the self-consistent
problem concerning the impurity-free SIS junction at a
temperature of about Tc has been solved in work [4].
Of course, the result obtained there must be correct
for the SIS junctions as well, considered as a partial

case.
In this work, we study the influence of the barri-

er transparency on the shape of the phase dependence
of the current through the SIS junction. While solvi-
ng this problem, it is important to elucidate the spatial
behavior of the order parameter. This behavior is essenti-
ally governed by two factors: 1) availability of the weak
coupling and 2) pair-breaking action of the current. The
latter is especially important if the transparency of the
barrier is not low. A similar problem, but in the li-
mit l ¿ ξ0, was considered in work [5] on the basis
of the Uzadel equations. The same problem was studied
by other authors in the framework of model approaches
[6, 7]. In our work, in contrast to works [5, 6, 7], the
calculations were carried out for arbitrary concentrati-
ons of impurities. Our starting point was the system
of Gor’kov’s equations for Matsubara Green’s functi-
ons, i.e. all the results obtained have microscopic ori-
gin. We attempted to advance analytical calculations
as far as possible, not resorting to numerical calculati-
ons.

2. Behavior of the Order Parameter Near the
IS Interface

Consider the behavior of the order parameter near the
interface between two superconductors in a tunnel SIS
junction. The half-spaces z > 0 and z < 0 are filled wi-
th superconductors with non-magnetic impurities, and,
in the plane z = 0, there is an insulating film. At
temperatures close to the critical one and in the spatial
region near the interface, the order parameter is descri-
bed by the system of linear integral equations [2], the
dimensionless forms of which, taking into account the
geometry of our problem, look like
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Here, ζ = z/ξ0 is the dimensionless variable, ρ =
|g|N(0) is the dimensionless coupling constant, N(0)
is the electron density of states on the surface of the
Fermi sphere, |2n′ + 1| = |2n + 1| + 1/λ, λ = l/ξ0 is
the dimensionless mean free path of electrons, and ξ0

is the coherence length. The value of λ determines the
degree of superconductor contamination: at λ ¿ 1, the
superconductor is extremely dirty, and, at λ À 1, it is
pure enough.

In the limit case ζ → ±∞, the system of equations
(1) and (2) has an asymptotically exact solution in the
form of linear functions

∆(ζ) as= ∆
′
+ζ + ∆+,

∆n(ζ) as=
∣∣∣∣
2n′ + 1
2n + 1

∣∣∣∣ (∆
′
+ζ + ∆+),

ζ → +∞, (3)

∆(ζ) as= ∆
′
−ζ + ∆−,

∆n(ζ) as=
∣∣∣∣
2n′ + 1
2n + 1

∣∣∣∣ (∆
′
−ζ + ∆−),

ζ → −∞. (4)

Let us rewrite Eqs. (1) and (2) by introducing
the symmetric and antisymmetric parts of both the
order parameter ∆(ζ) and the function ∆n(ζ) and
by transforming the integrals in such a way that the
integration is carried out over the semiaxis ζ > 0. As a
result, we obtain two systems




∆s(ζ)=
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+
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(5)

and

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where
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τ(x) = 1− 2D(x).

The exact solutions of system (5) are the constants

∆s = A, ∆n,s =
∣∣∣∣
2n′ + 1
2n + 1

∣∣∣∣ A. (7)

System (6) has no exact analytical solution, but it
may serve as the basis for obtaining the results that
are necessary for finding the limit value of the order
parameter. The latter will be included into the expressi-
on for the density of the current that can run through
the junction.

If ζ tends to infinity, we can obtain an asymptotically
exact solution of system (6):

∆a(ζ) = C(ζ + q∞), ∆n,a(ζ) =
∣∣∣∣
2n′ + 1
2n + 1

∣∣∣∣ C(ζ + q∞).

(8)
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Fig. 1. Dependence of the q∞-value on the transparency of the
insulator α and the dimensionless mean free path of electrons
λ = l/ξ0

Substitute the following expressions for ∆a(ζ) and
∆n,a(ζ) (their asymptotes are indicated) —

∆a(ζ) = ζ + q∞ + ψa(ζ), lim
ζ→∞

ψa(ζ) = 0,

∆n,a(ζ) =
∣∣∣∣
2n′+1
2n+1

∣∣∣∣ (ζ+q∞)+ψn,a(ζ), lim
ζ→∞

ψn,a(ζ) = 0

— into system (6). The global constant was put to unity,
because it is not fixed by the system in any case. As a
result, we obtain

ψa(ζ)−
∞∫

0

{K(ζ − ζ ′) + KD(ζ + ζ ′)}ψn,a(ζ ′)dζ ′ =

=

∞∫

0
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∣∣∣∣
2n′ + 1
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∣∣∣∣ ζ ′dζ ′ −

−q∞

∞∫

0
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∣∣∣∣
2n′ + 1
2n + 1

∣∣∣∣ dζ ′, (9)
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0

{
K̃(ζ−ζ ′)+K̃D(ζ+ζ ′)

}
ψn,a(ζ ′)dζ ′ =

=

∞∫

0

{
K̃(ζ + ζ ′) + K̃D(ζ + ζ ′)

} ∣∣∣∣
2n′ + 1
2n + 1

∣∣∣∣ ζ ′dζ ′ −

−q∞
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0

{
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2n′ + 1
2n + 1

∣∣∣∣ dζ ′. (10)

To find the constant q∞, we use the method of quasi-
orthogonality to asymptotics [8], which brings us to the
following final result:

q∞=
3χ1(λ)
χ(λ)

1∫

0

x3R(x)dx+
12χ(λ)

π2


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0

xD(x)dx

,

(11)

where

χ(λ) =
+∞∑

n=−∞

1
|2n′ + 1|(2n + 1)2

,

χ1(λ) =
+∞∑

n=−∞

1
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,

D(x) =
p2
0x

2

p2
0x

2 + K2
, R(x) =

K2

p2
0x

2 + K2
.

Expression (11) is one of the main results of this
work. It will be used to obtain the boundary condition
and to derive the formula for the current density. From
Fig. 1, where the dependence of q∞ on the dimensionless
mean free path of electrons λ and the relative height of
the barrier α = K/p0 is shown, one can see that, at large
λ’s, the values of q∞ are determined by the barrier hei-
ght only. This statement proves to be true by analytical
calculations. Really, in the case of pure enough junctions
(l À ξ0 or λ À 1), we have χ1(λ) ≈ π4

48 and χ(λ) ≈ 7ζ(3)
4 .

Hence, the expression for q∞ looks like

q∞=
π4
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Since the coefficients in the asymptotes are
interrelated by the equalities

∆′
+ −∆′

− = 0, ∆+ + ∆− = A,

∆′
+ + ∆′

− = C, ∆+ + ∆− = Cq∞,
(13)

the following relations are obtained:

∆′
+ = ∆′

−,

∆+ = ∆− + 2q∞∆′
−.

(14)

They connect the coefficients in the right- and left-hand
asymptotes and constitute the boundary conditions for
the order parameter.

3. Boundary Condition for the
Ginzburg—Landau Equation. Calculation of
the Current Through the Junction

In the Ginzburg—Landau theory, the order parameter is
known (see, e.g., work [2]) to satisfy the equation

ξ2(T )
ξ2
0

d2∆(ζ)
dζ2

− 1
∆2∞

|∆(ζ)|2∆(ζ) + ∆(ζ) = 0. (15)

The solution of this equation, provided a current through
the junction, is tried in the form

∆(ζ) = exp {±iϕ/2}∆∞f(ζ) exp {2imχ(ζ)} , (16)

where χ(ζ) is the continuous (χ(−0) = χ(+0) = 0)
component of the order parameter phase, which determi-
nes the superconducting speed dχ(ζ)

dζ = ξ0vs(ζ), and ϕ is
the phase jump across the junction.

Let us substitute Eq. (16) into Eq. (15) and separate
the imaginary and real parts. As a result, we obtain the
equations

ξ2(T )
ξ2
0

f ′′(ζ)− ξ2(T )4m2v2
s(ζ)f(ζ) + f(ζ)− f3(ζ)=0,

(17)

vs(ζ)f2(ζ) = const. (18)

Let us also rewrite relations (14) in terms of the function
f(ζ):




f ′+ cosϕ− 2mυs(0)ξ0f+ sinϕ = f ′−,

f ′+ sin ϕ + 2mυs(0)ξ0f+ cosϕ = 2mυs(0)ξ0f−,

f+ cosϕ = f− + 2q∞f ′−,

f+ sin ϕ = 4mυs(0)ξ0q∞f−.

(19)

This system has a nontrivial solution, provided that

4mυs(0)ξ0q∞ = sin ϕ. (20)

Taking this condition into account, Eqs. (19) yield

f+ = f−, f ′+ = −f ′−,
f ′+
f+

=
1

2q∞
(1− cos ϕ). (21)

To find the equation for f+ which is, in essence, the
boundary condition for the Ginzburg—Landau equati-
on, the third equality in (21) should be combined with
another relation between f+ and f ′+. The latter is deri-
ved as the first integral of Eq. (17), namely,

ξ(T )
ξ0

f ′+ −
f2
∞ − f2

+

f+

√
f2∞ − 1 +

1
2
f2
+ = 0. (22)

Here, f∞ is the value of the function f(ζ) at infinity.
For f+, making use of Eqs. (21) and (22), the followi-

ng equation is obtained:

f6
+ − 2

(
1 +

ξ2(T )
ξ2
0q2∞

sin4 ϕ

2

)
f4
+ + f2

∞(4− 3f2
∞)f2

+ +

+2f4
∞(f2

∞ − 1) = 0. (23)

Its solution, which agrees with the expression for f+ at
f∞ = 1, looks like

f2
+ = ±2

3

√
a2 − 3 b ×

× sin

(
π

6
− 1

3
arctan

√
4(a2 − 3b)3

(9 ba− 27 c−2 a3)2
−1

)
− a

3
,

(24)

where

a = −2
(

1 +
ξ2(T )
ξ2
0q2∞

sin4 ϕ

2

)
,

b = f2
∞(4− 3f2

∞),

c = 2f4
∞(f2

∞ − 1). (25)

The sign “+” is actual in Eq. (24) if 27c− 9ab+2a3 ≥ 0;
otherwise, the sign “−” is valid.

Now, we are able to proceed to the derivaton of the
expression for the density of the current which can run
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Fig. 2. Dependences of the current density on the phase difference
between the junction’s electrodes for various mean free paths of
electrons. T = 0.98Tc and j0 = env0

2p0ξ0

through the junction. The general formula of the
Ginzburg—Landau theory for the current density in di-
rty superconductors [2],

j(ζ) = i
7ζ(3)
16π2

enυ0

p0ξ0T 2
c

(
∆

d
∗
∆

dζ
− ∗

∆
d∆
dζ

)
χ(ξ0/l), (26)

is taken as the initial one. Here,

χ(ξ0/l) =
8

7ζ(3)

∞∑
n=0

1
(2n + 1)2(2n + 1 + ξ0/l)

.

We calculate the current in the region z À ξ0,
where the asymptote of the order parameter is linear.
We substitute Eq. (3) into Eq. (26) and use relation
(14) and expression (16) for the order parameter. Then,
expression (26) for the current reads

j =
7ζ(3)
16π2

enυ0∆2
∞

p0ξ0T 2
c

f+f−
q∞

χ(ξ0/l) sin ϕ. (27)

Here, f+ and f− are the values of the function f(ζ)
at ζ = +0 and ζ = −0, respectively. As follows from
Eq. (21), they are identical and given by expression (24).

The final formula for the current, which can
run through an SIS junction, provided an arbitrary
concentration of impurities in the superconductor
electrodes and an incomplete transparency of the
insulating film, is

j =
1
3

env0

p0ξ0

(
1− T

Tc

)
χ(ξ0/l)

q∞

{
∓

√
a2 − 3f2

∞(4− 3f2
∞)×

× sin
(

π

6
− 1

3
arctgK

)
− a

2

}
sin ϕ, (28)

K=

√
4(a2 − 3f2

∞(4− 3f2
∞))3

(9f2∞(4−3f2∞)a− 54f4∞(f2∞− 1)−2 a3)2
−1. (29)

Thus, we obtained the expression for the coefficient
q∞ (11), which is valid for an arbitrary transparency of
the insulator. It allowed us to determine the amplitude
of the order parameter at the interface and, therefore,
to study its spatial behavior. Based on these results,
we found the current density (28) in the SIS tunnel
junction for an arbitrary concentration of impurities and
in the wide range of the electron transmission factor.
From Fig. 2, it is evident that the current reveals a
complicated dependence on the phase difference as the
transparency factor grows. In the limit case l ¿ ξ0,
our result agrees with the form of the current-versus-
phase dependence obtained in work [5], where just this
limit case was studied. The agreement with the general
conclusions drawn by other authors in works [6, 7] is
also achieved. That is, if the transparency factor grows,
the maximal value of the current is attained at 0 <
ϕmax < π/2; the closer ϕmax is to zero, the higher is
the transparency.

In the opposite case D ¿ 1, this dependence comes
closer to a sinusoidal one. The origin of the compli-
cation of the current-versus-phase dependence is the
especially nonlinear inverse effect of the current on
the spatial variation of the order parameter, and this
coupling manifests itself in the current. It is obvi-
ous that such an influence would be observed wi-
th a greater amplitude if the transparency were hi-
gher. The obtained result, besides its fundamental
contribution to the study of Josephson junctions,
may have practical implications. For example, the
dependence j(ϕ) may serve as a basis for the
construction of the energy-versus-phase dependence for
Josephson junctions, which is important while designing
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superconductor-based quantum bits [9] (see also revi-
ew [10]).
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ДЖОЗЕФСОНIВСЬКI КОНТАКТИ ПРИ НЕПОВНIЙ
ПРОЗОРОСТI БАР’ЄРА ЗА НАЯВНОСТI ДОМIШОК

В.Є. Сахнюк, A.В. Свiдзинський

Р е з ю м е

Теоретично дослiджено просторову поведiнку параметра по-
рядку поблизу границi в тунельному контактi за наявностi до-
мiшок довiльної концентрацiї. Температура вважається близь-
кою до критичної. Коефiцiєнт проходження D електронiв крiзь
дiелектрик може змiнюватися в широкому iнтервалi значень.
Одержано граничнi умови для параметра порядку, а також ви-
раз для густини рiвноважного струму.
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